1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
\section{Triangles}
\subsection{Definition of triangles \tkzcname{tkzDefTriangle}}
The following macros will allow you to define or construct a triangle from \tkzname{at least} two points.
At the moment, it is possible to define the following triangles:
\begin{itemize}
\item \tkzname{two angles} determines a triangle with two angles;
\item \tkzname{equilateral} determines an equilateral triangle;
\item \tkzname{half} determines a right-angled triangle such that the ratio of the measurements of the two adjacent sides to the right angle is equal to $2$;
\item \tkzname{pythagore} determines a right-angled triangle whose side measurements are proportional to 3, 4 and 5;
\item \tkzname{school} determines a right-angled triangle whose angles are 30, 60 and 90 degrees;
\item \tkzname{golden} determines a right-angled triangle such that the ratio of the measurements on the two adjacent sides to the right angle is equal to $\Phi=1.618034$, I chose "golden triangle" as the denomination because it comes from the golden rectangle and I kept the denomination "gold triangle" or "Euclid's triangle" for the isosceles triangle whose angles at the base are 72 degrees;
\item \tkzname{euclide} or \tkzname{gold} for the gold triangle;
\item \tkzname{cheops} determines a third point such that the triangle is isosceles with side measurements proportional to $2$, $\Phi$ and $\Phi$.
\end{itemize}
\begin{NewMacroBox}{tkzDefTriangle}{\oarg{local options}\parg{A,B}}%
The points are ordered because the triangle is constructed following the direct direction of the trigonometric circle. This macro is either used in partnership with \tkzcname{tkzGetPoint} or by using \tkzname{tkzPointResult} if it is not necessary to keep the name.
\medskip
\begin{tabular}{lll}%
\toprule
options & default & definition \\
\midrule
\TOline{two angles= \#1 and \#2}{no defaut}{triangle knowing two angles}
\TOline{equilateral} {no defaut}{equilateral triangle }
\TOline{pythagore}{no defaut}{proportional to the pythagorean triangle 3-4-5}
\TOline{school} {no defaut}{angles of 30, 60 and 90 degrees }
\TOline{gold}{no defaut}{angles of 72, 72 and 36 degrees, $A$ is the apex}
\TOline{euclide} {no defaut}{same as above but $[AB]$ is the base}
\TOline{golden} {no defaut}{B rectangle and $AB/AC = \Phi$}
\TOline{cheops} {no defaut}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
\bottomrule
\end{tabular}
\medskip
\tkzcname{tkzGetPoint} allows you to store the point otherwise \tkzname{tkzPointResult} allows for immediate use.
\end{NewMacroBox}
\subsubsection{Option \tkzname{golden}}
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}[scale=.8]
\tkzInit[xmax=5,ymax=3] \tkzClip[space=.5]
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[golden](A,B)\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B) \tkzDrawBisector(A,C,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{equilateral}}
\begin{tkzexample}[latex=7 cm,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDefTriangle[equilateral](A,B)
\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDefTriangle[equilateral](B,A)
\tkzGetPoint{D}
\tkzDrawPolygon(B,A,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{gold} or \tkzname{euclide} }
\begin{tkzexample}[latex=7 cm,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDefTriangle[euclide](A,B)\tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\tkzDrawBisector(A,C,B)
\end{tikzpicture}
\end{tkzexample}
\newpage
\subsection{Drawing of triangles}
\begin{NewMacroBox}{tkzDrawTriangle}{\oarg{local options}\parg{A,B}}%
Macro similar to the previous macro but the sides are drawn.
\medskip
\begin{tabular}{lll}%
\toprule
options & default & definition \\
\midrule
\TOline{two angles= \#1 and \#2}{equilateral}{triangle knowing two angles}
\TOline{equilateral} {equilateral}{equilateral triangle }
\TOline{pythagore}{equilateral}{proportional to the pythagorean triangle 3-4-5}
\TOline{school} {equilateral}{the angles are 30, 60 and 90 degrees }
\TOline{gold}{equilateral}{the angles are 72, 72 and 36 degrees, $A$ is the vertex }
\TOline{euclide} {equilateral}{identical to the previous one but $[AB]$ is the base}
\TOline{golden} {equilateral}{B rectangle and $AB/AC = \Phi$}
\TOline{cheops} {equilateral}{isosceles in C and $AC/AB = \frac{\Phi}{2}$}
\bottomrule
\end{tabular}
\medskip
In all its definitions, the dimensions of the triangle depend on the two starting points.
\end{NewMacroBox}
\subsubsection{Option \tkzname{pythagore}}
This triangle has sides whose lengths are proportional to 3, 4 and 5.
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A}
\tkzDefPoint(4,0){B}
\tkzDrawTriangle[pythagore,fill=blue!30](A,B)
\tkzMarkRightAngles(A,B,tkzPointResult)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{school}}
The angles are 30, 60 and 90 degrees.
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}
\tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B}
\tkzDrawTriangle[school,fill=red!30](A,B)
\tkzMarkRightAngles(tkzPointResult,B,A)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{golden}}
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,-10){M}
\tkzDefPoint(3,-10){N}
\tkzDrawTriangle[golden,color=brown](M,N)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{gold}}
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoint(5,-5){I}
\tkzDefPoint(8,-5){J}
\tkzDrawTriangle[gold,color=blue!50](I,J)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{euclide}}
\begin{tkzexample}[latex=6 cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoint(10,-5){K}
\tkzDefPoint(13,-5){L}
\tkzDrawTriangle[euclide,color=blue,fill=blue!10](K,L)
\end{tikzpicture}
\end{tkzexample}
\section{Specific triangles with \tkzcname{tkzDefSpcTriangle}}
The centers of some triangles have been defined in the "points" section, here it is a question of determining the three vertices of specific triangles.
\begin{NewMacroBox}{tkzDefSpcTriangle}{\oarg{local options}\parg{A,B,C}}
The order of the points is important!
\medskip
\begin{tabular}{lll}%
\toprule
options & default & definition \\
\midrule
\TOline{in or incentral}{centroid}{two-angled triangle}
\TOline{ex or excentral} {centroid}{equilateral triangle }
\TOline{extouch}{centroid}{proportional to the pythagorean triangle 3-4-5}
\TOline{intouch or contact} {centroid}{ 30, 60 and 90 degree angles }
\TOline{centroid or medial}{centroid}{ angles of 72, 72 and 36 degrees, $A$ is the vertex }
\TOline{orthic} {centroid}{same as above but $[AB]$ is the base}
\TOline{feuerbach} {centroid}{B rectangle and $AB/AC = \Phi$}
\TOline{euler} {centroid}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
\TOline{tangential} {centroid}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
\TOline{name} {no defaut}{AC=BC, AC and BC are proportional to $2$ and $\Phi$.}
\midrule
\end{tabular}
\medskip
\tkzcname{tkzGetPoint} allows you to store the point otherwise \tkzname{tkzPointResult} allows for immediate use.
\end{NewMacroBox}
\subsubsection{Option \tkzname{medial} or \tkzname{centroid} }
The geometric centroid of the polygon vertices of a triangle is the point $G$ (sometimes also denoted $M$) which is also the intersection of the triangle's three triangle medians. The point is therefore sometimes called the median point. The centroid is always in the interior of the triangle.\\
\href{http://mathworld.wolfram.com/TriangleCentroid.html}{Weisstein, Eric W. "Centroid triangle" From MathWorld--A Wolfram Web Resource.}
In the following example, we obtain the Euler circle which passes through the previously defined points.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[rotate=90,scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{M}
\tkzDefSpcTriangle[medial,name=M](A,B,C){_A,_B,_C}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawSegments[dashed,red](A,M_A B,M_B C,M_C)
\tkzDrawPolygon[color=red](M_A,M_B,M_C)
\tkzDrawPoints(A,B,C,M)
\tkzDrawPoints[red](M_A,M_B,M_C)
\tkzAutoLabelPoints[center=M,font=\scriptsize]%
(A,B,C,M_A,M_B,M_C)
\tkzLabelPoints[font=\scriptsize](M)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{in} or \tkzname{incentral} }
The incentral triangle is the triangle whose vertices are determined by
the intersections of the reference triangle’s angle bisectors with the
respective opposite sides.\\
\href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Incentral triangle" From MathWorld--A Wolfram Web Resource.}
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoints{ 0/0/A,5/0/B,1/3/C}
\tkzDefSpcTriangle[in,name=I](A,B,C){_a,_b,_c}
\tkzInCenter(A,B,C)\tkzGetPoint{I}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](I_a,I_b,I_c)
\tkzDrawPoints(A,B,C,I,I_a,I_b,I_c)
\tkzDrawCircle[in](A,B,C)
\tkzDrawSegments[dashed](A,I_a B,I_b C,I_c)
\tkzAutoLabelPoints[center=I,
blue,font=\scriptsize](I_a,I_b,I_c)
\tkzAutoLabelPoints[center=I,red,
font=\scriptsize](A,B,C,I_a,I_b,I_c)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{ex} or \tkzname{excentral} }
The excentral triangle of a triangle $ABC$ is the triangle $J_aJ_bJ_c$ with vertices corresponding to the excenters of $ABC$.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.6]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral,name=J](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[extouch,name=T](A,B,C){_a,_b,_c}
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawPolygon[red](J_a,J_b,J_c)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints[red](J_a,J_b,J_c)
\tkzLabelPoints(A,B,C)
\tkzLabelPoints[red](J_b,J_c)
\tkzLabelPoints[red,above](J_a)
\tkzClipBB \tkzShowBB
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{intouch}}
The contact triangle of a triangle $ABC$, also called the intouch triangle, is the triangle formed by the points of tangency of the incircle of $ABC$ with $ABC$.\\
\href{http://mathworld.wolfram.com/ContactTriangle.html}{Weisstein, Eric W. "Contact triangle" From MathWorld--A Wolfram Web Resource.}
We obtain the intersections of the bisectors with the sides.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=.75]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[intouch,name=X](A,B,C){_a,_b,_c}
\tkzInCenter(A,B,C)\tkzGetPoint{I}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](X_a,X_b,X_c)
\tkzDrawPoints[red](A,B,C)
\tkzDrawPoints[blue](X_a,X_b,X_c)
\tkzDrawCircle[in](A,B,C)
\tkzAutoLabelPoints[center=I,blue,font=\scriptsize]%
(X_a,X_b,X_c)
\tkzAutoLabelPoints[center=I,red,font=\scriptsize]%
(A,B,C)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{extouch}}
The extouch triangle $T_aT_bT_c$ is the triangle formed by the points of tangency of a triangle $ABC$ with its excircles $J_a$, $J_b$, and $J_c$. The points $T_a$, $T_b$, and $T_c$ can also be constructed as the points which bisect the perimeter of $A_1A_2A_3$ starting at $A$, $B$, and $C$.\\
\href{http://mathworld.wolfram.com/ExtouchTriangle.html}{Weisstein, Eric W. "Extouch triangle" From MathWorld--A Wolfram Web Resource.}
We obtain the points of contact of the exinscribed circles as well as the triangle formed by the centres of the exinscribed circles.
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.7]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[excentral,
name=J](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[extouch,
name=T](A,B,C){_a,_b,_c}
\tkzDefTriangleCenter[nagel](A,B,C)
\tkzGetPoint{N_a}
\tkzDefTriangleCenter[centroid](A,B,C)
\tkzGetPoint{G}
\tkzDrawPoints[blue](J_a,J_b,J_c)
\tkzClipBB \tkzShowBB
\tkzDrawCircles[gray](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawLines[add=1 and 1](A,B B,C C,A)
\tkzDrawSegments[gray](A,T_a B,T_b C,T_c)
\tkzDrawSegments[gray](J_a,T_a J_b,T_b J_c,T_c)
\tkzDrawPolygon[blue](A,B,C)
\tkzDrawPolygon[red](T_a,T_b,T_c)
\tkzDrawPoints(A,B,C,N_a)
\tkzLabelPoints(N_a)
\tkzAutoLabelPoints[center=Na,blue](A,B,C)
\tkzAutoLabelPoints[center=G,red,
dist=.4](T_a,T_b,T_c)
\tkzMarkRightAngles[fill=gray!15](J_a,T_a,B
J_b,T_b,C J_c,T_c,A)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{feuerbach}}
The Feuerbach triangle is the triangle formed by the three points of tangency of the nine-point circle with the excircles.\\
\href{http://mathworld.wolfram.com/FeuerbachTriangle.html}{Weisstein, Eric W. "Feuerbach triangle" From MathWorld--A Wolfram Web Resource.}
The points of tangency define the Feuerbach triangle.
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=1]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPoint(0.5,2.5){C}
\tkzDefCircle[euler](A,B,C) \tkzGetPoint{N}
\tkzDefSpcTriangle[feuerbach,
name=F](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[excentral,
name=J](A,B,C){_a,_b,_c}
\tkzDefSpcTriangle[extouch,
name=T](A,B,C){_a,_b,_c}
\tkzDrawPoints[blue](J_a,J_b,J_c,F_a,F_b,F_c,A,B,C)
\tkzClipBB \tkzShowBB
\tkzDrawCircle[purple](N,F_a)
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[blue](F_a,F_b,F_c)
\tkzDrawCircles[gray](J_a,F_a J_b,F_b J_c,F_c)
\tkzAutoLabelPoints[center=N,dist=.3,
font=\scriptsize](A,B,C,F_a,F_b,F_c,J_a,J_b,J_c)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{tangential}}
The tangential triangle is the triangle $T_aT_bT_c$ formed by the lines tangent to the circumcircle of a given triangle $ABC$ at its vertices. It is therefore antipedal triangle of $ABC$ with respect to the circumcenter $O$.\\
\href{http://mathworld.wolfram.com/TangentialTriangle.html}{Weisstein, Eric W. "Tangential Triangle." From MathWorld--A Wolfram Web Resource. }
\begin{tkzexample}[latex=8cm,small]
\begin{tikzpicture}[scale=.5,rotate=80]
\tkzDefPoints{0/0/A,6/0/B,1.8/4/C}
\tkzDefSpcTriangle[tangential,
name=T](A,B,C){_a,_b,_c}
\tkzDrawPolygon[red](A,B,C)
\tkzDrawPolygon[blue](T_a,T_b,T_c)
\tkzDrawPoints[red](A,B,C)
\tkzDrawPoints[blue](T_a,T_b,T_c)
\tkzDefCircle[circum](A,B,C)
\tkzGetPoint{O}
\tkzDrawCircle(O,A)
\tkzLabelPoints[red](A,B,C)
\tkzLabelPoints[blue](T_a,T_b,T_c)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Option \tkzname{euler}}
The Euler triangle of a triangle $ABC$ is the triangle $E_AE_BE_C$ whose vertices are the midpoints of the segments joining the orthocenter $H$ with the respective vertices. The vertices of the triangle are known as the Euler points, and lie on the nine-point circle.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[rotate=90,scale=1.25]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefSpcTriangle[medial,
name=M](A,B,C){_A,_B,_C}
\tkzDefTriangleCenter[euler](A,B,C)
\tkzGetPoint{N} % I= N nine points
\tkzDefTriangleCenter[ortho](A,B,C)
\tkzGetPoint{H}
\tkzDefMidPoint(A,H) \tkzGetPoint{E_A}
\tkzDefMidPoint(C,H) \tkzGetPoint{E_C}
\tkzDefMidPoint(B,H) \tkzGetPoint{E_B}
\tkzDefSpcTriangle[ortho,name=H](A,B,C){_A,_B,_C}
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawCircle(N,E_A)
\tkzDrawSegments[blue](A,H_A B,H_B C,H_C)
\tkzDrawPoints(A,B,C,N,H)
\tkzDrawPoints[red](M_A,M_B,M_C)
\tkzDrawPoints[blue]( H_A,H_B,H_C)
\tkzDrawPoints[green](E_A,E_B,E_C)
\tkzAutoLabelPoints[center=N,font=\scriptsize]%
(A,B,C,M_A,M_B,M_C,H_A,H_B,H_C,E_A,E_B,E_C)
\tkzLabelPoints[font=\scriptsize](H,N)
\tkzMarkSegments[mark=s|,size=3pt,
color=blue,line width=1pt](B,E_B E_B,H)
\tkzDrawPolygon[color=red](M_A,M_B,M_C)
\end{tikzpicture}
\end{tkzexample}
\endinput
|