1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
|
% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\section{Specifying Coordinates}
\label{section-points}
\subsection{Overview}
Most \pgfname\ commands expect you to provide the coordinates of a \emph{point}
(also called \emph{coordinate}) inside your picture. Points are always
``local'' to your picture, that is, they never refer to an absolute position on
the page, but to a position inside the current |{pgfpicture}| environment. To
specify a coordinate you can use commands that start with |\pgfpoint|.
\subsection{Basic Coordinate Commands}
The following commands are the most basic for specifying a coordinate.
\begin{command}{\pgfpoint\marg{x coordinate}\marg{y coordinate}}
Yields a point location. The coordinates are given as \TeX\ dimensions.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpoint{1cm}{1cm}} {2pt}
\pgfpathcircle{\pgfpoint{2cm}{5pt}} {2pt}
\pgfpathcircle{\pgfpoint{0pt}{.5in}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointorigin}
Yields the origin. Same as |\pgfpoint{0pt}{0pt}|.
\end{command}
\begin{command}{\pgfpointpolar\marg{degree}{\ttfamily\char`\{}\meta{radius}\opt{|/|\meta{y-radius}}{\ttfamily\char`\}}}
Yields a point location given in polar coordinates. You can specify the
angle only in degrees, radians are not supported, currently.
If the optional \meta{y-radius} is given, the polar coordinate is actually
a coordinate on an ellipse whose $x$-radius is given by \meta{radius} and
whose $y$-radius is given by \meta{y-radius}.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\foreach \angle in {0,10,...,90}
{\pgfpathcircle{\pgfpointpolar{\angle}{1cm}}{2pt}}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\foreach \angle in {0,10,...,90}
{\pgfpathcircle{\pgfpointpolar{\angle}{1cm and 2cm}}{2pt}}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Coordinates in the XY-Coordinate System}
Coordinates can also be specified as multiples of an $x$-vector and a
$y$-vector. Normally, the $x$-vector points one centimeter in the $x$-direction
and the $y$-vector points one centimeter in the $y$-direction, but using the
commands |\pgfsetxvec| and |\pgfsetyvec| they can be changed. Note that the
$x$- and $y$-vector do not necessarily point ``horizontally'' and
``vertically''.
\begin{command}{\pgfpointxy\marg{$s_x$}\marg{$s_y$}}
Yields a point that is situated at $s_x$ times the $x$-vector plus $s_y$
times the $y$-vector.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointxy{1}{0}}
\pgfpathlineto{\pgfpointxy{2}{2}}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfsetxvec\marg{point}}
Sets that current $x$-vector for usage in the $xyz$-coordinate system.
\example
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointxy{1}{0}}
\pgfpathlineto{\pgfpointxy{2}{2}}
\pgfusepath{stroke}
\color{red}
\pgfsetxvec{\pgfpoint{0.75cm}{0cm}}
\pgfpathmoveto{\pgfpointxy{1}{0}}
\pgfpathlineto{\pgfpointxy{2}{2}}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfsetyvec\marg{point}}
Works like |\pgfsetxvec|.
\end{command}
\begin{command}{\pgfpointpolarxy\marg{degree}{\ttfamily\char`\{}\meta{radius}\opt{|/|\meta{y-radius}}{\ttfamily\char`\}}}
This command is similar to the |\pgfpointpolar| command, but the
\meta{radius} is now a factor to be interpreted in the $xy$-coordinate
system. This means that a degree of |0| is the same as the $x$-vector of
the $xy$-coordinate system times \meta{radius} and a degree of |90| is the
$y$-vector times \meta{radius}. As for |\pgfpointpolar|, a \meta{radius}
can also be a pair separated by a slash. In this case, the $x$- and
$y$-vectors are multiplied by different factors.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\begin{scope}[x={(1cm,-5mm)},y=1.5cm]
\foreach \angle in {0,10,...,90}
{\pgfpathcircle{\pgfpointpolarxy{\angle}{1}}{2pt}}
\pgfusepath{fill}
\end{scope}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Three Dimensional Coordinates}
It is also possible to specify a point as a multiple of three vectors, the
$x$-, $y$-, and $z$-vector. This is useful for creating simple three
dimensional graphics.
\begin{command}{\pgfpointxyz\marg{$s_x$}\marg{$s_y$}\marg{$s_z$}}
Yields a point that is situated at $s_x$ times the $x$-vector plus $s_y$
times the $y$-vector plus $s_z$ times the $z$-vector.
%
\begin{codeexample}[]
\begin{pgfpicture}
\pgfsetarrowsend{to}
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpointxyz{0}{0}{1}}
\pgfusepath{stroke}
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpointxyz{0}{1}{0}}
\pgfusepath{stroke}
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpointxyz{1}{0}{0}}
\pgfusepath{stroke}
\end{pgfpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfsetzvec\marg{point}}
Works like |\pgfsetxvec|.
\end{command}
Inside the $xyz$-coordinate system, you can also specify points using spherical
and cylindrical coordinates.
\begin{command}{\pgfpointcylindrical\marg{degree}\marg{radius}\marg{height}}
This command yields the same as
%
\begin{verbatim}
\pgfpointadd{\pgfpointpolarxy{degree}{radius}}{\pgfpointxyz{0}{0}{height}}
\end{verbatim}
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw [->] (0,0) -- (1,0,0) node [right] {$x$};
\draw [->] (0,0) -- (0,1,0) node [above] {$y$};
\draw [->] (0,0) -- (0,0,1) node [below left] {$z$};
\pgfpathcircle{\pgfpointcylindrical{80}{1}{.5}}{2pt}
\pgfusepath{fill}
\draw[red] (0,0) -- (0,0,.5) -- +(80:1);
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointspherical\marg{longitude}\marg{latitude}\marg{radius}}
This command yields a point ``on the surface of the earth'' specified by
the \meta{longitude} and the \meta{latitude}. The radius of the earth is
given by \meta{radius}. The equator lies in the $xy$-plane.
%
\begin{codeexample}[]
\begin{tikzpicture}
\pgfsetfillcolor{lightgray}
\foreach \latitude in {-90,-75,...,30}
{
\foreach \longitude in {0,20,...,360}
{
\pgfpathmoveto{\pgfpointspherical{\longitude}{\latitude}{1}}
\pgfpathlineto{\pgfpointspherical{\longitude+20}{\latitude}{1}}
\pgfpathlineto{\pgfpointspherical{\longitude+20}{\latitude+15}{1}}
\pgfpathlineto{\pgfpointspherical{\longitude}{\latitude+15}{1}}
\pgfpathclose
}
\pgfusepath{fill,stroke}
}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Building Coordinates From Other Coordinates}
Many commands allow you to construct a coordinate in terms of other
coordinates.
\subsubsection{Basic Manipulations of Coordinates}
\begin{command}{\pgfpointadd\marg{$v_1$}\marg{$v_2$}}
Returns the sum vector $\meta{$v_1$} + \meta{$v_2$}$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpointadd{\pgfpoint{1cm}{0cm}}{\pgfpoint{1cm}{1cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointscale\marg{factor}\marg{coordinate}}
Returns the vector $\meta{factor}\meta{coordinate}$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpointscale{1.5}{\pgfpoint{1cm}{0cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointdiff\marg{start}\marg{end}}
Returns the difference vector $\meta{end} - \meta{start}$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpointdiff{\pgfpoint{1cm}{0cm}}{\pgfpoint{1cm}{1cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointnormalised\marg{point}}
This command returns a normalised version of \meta{point}, that is, a
vector of length 1pt pointing in the direction of \meta{point}. If
\meta{point} is the $0$-vector or extremely short, a vector of length 1pt
pointing upwards is returned.
This command is \emph{not} implemented by calculating the length of the
vector, but rather by calculating the angle of the vector and then using
(something equivalent to) the |\pgfpointpolar| command. This ensures that
the point will really have length 1pt, but it is not guaranteed that the
vector will \emph{precisely} point in the direction of \meta{point} due to
the fact that the polar tables are accurate only up to one degree.
Normally, this is not a problem.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathcircle{\pgfpoint{2cm}{1cm}}{2pt}
\pgfpathcircle{\pgfpointscale{20}
{\pgfpointnormalised{\pgfpoint{2cm}{1cm}}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points Traveling along Lines and Curves}
\label{section-pointsattime}
The commands in this section allow you to specify points on a line or a curve.
Imagine a point ``traveling'' along a curve from some point $p$ to another
point $q$. At time $t=0$ the point is at $p$ and at time $t=1$ it is at $q$ and
at time, say, $t=1/2$ it is ``somewhere in the middle''. The exact location at
time $t=1/2$ will not necessarily be the ``halfway point'', that is, the point
whose distance on the curve from $p$ and $q$ is equal. Rather, the exact
location will depend on the ``speed'' at which the point is traveling, which in
turn depends on the lengths of the support vectors in a complicated manner. If
you are interested in the details, please see a good book on Bézier curves.
\begin{command}{\pgfpointlineattime\marg{time $t$}\marg{point $p$}\marg{point $q$}}
Yields a point that is the $t$th fraction between $p$ and~$q$, that is, $p
+ t(q-p)$. For $t=1/2$ this is the middle of $p$ and $q$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpoint{2cm}{2cm}}
\pgfusepath{stroke}
\foreach \t in {0,0.25,...,1.25}
{\pgftext[at=
\pgfpointlineattime{\t}{\pgfpointorigin}{\pgfpoint{2cm}{2cm}}]{\t}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointlineatdistance\marg{distance}\marg{start point}\marg{end point}}
Yields a point that is located \meta{distance} many units away from the
start point in the direction of the end point. In other words, this is the
point that results if we travel \meta{distance} steps from \meta{start
point} towards \meta{end point}.
%
\example
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpoint{3cm}{2cm}}
\pgfusepath{stroke}
\foreach \d in {0pt,20pt,40pt,70pt}
{\pgftext[at=
\pgfpointlineatdistance{\d}{\pgfpointorigin}{\pgfpoint{3cm}{2cm}}]{\d}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointarcaxesattime\marg{time $t$}\marg{center}\marg{0-degree axis}\marg{90-degree axis}\marg{start angle}\\\marg{end angle}}
Yields a point on the arc between \meta{start angle} and \meta{end angle}
on an ellipse whose center is at \meta{center} and whose two principal axes
are \meta{0-degree axis} and \meta{90-degree axis}. For $t=0$ the point at
the \meta{start angle} is returned and for $t=1$ the point at the \meta{end
angle}.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpoint{2cm}{1cm}}
\pgfpatharcaxes{0}{60}{\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}
\pgfusepath{stroke}
\foreach \t in {0,0.25,0.5,0.75,1}
{\pgftext[at=\pgfpointarcaxesattime{\t}{\pgfpoint{0cm}{1cm}}
{\pgfpoint{2cm}{0cm}}{\pgfpoint{0cm}{1cm}}{0}{60}]{\t}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointcurveattime\marg{time $t$}\marg{point $p$}\marg{point $s_1$}\marg{point $s_2$}\marg{point $q$}}
Yields a point that is on the Bézier curve from $p$ to $q$ with the support
points $s_1$ and $s_2$. The time $t$ is used to determine the location,
where $t=0$ yields $p$ and $t=1$ yields $q$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\pgfpathmoveto{\pgfpointorigin}
\pgfpathcurveto
{\pgfpoint{0cm}{2cm}}{\pgfpoint{0cm}{2cm}}{\pgfpoint{3cm}{2cm}}
\pgfusepath{stroke}
\foreach \t in {0,0.25,0.5,0.75,1}
{\pgftext[at=\pgfpointcurveattime{\t}{\pgfpointorigin}
{\pgfpoint{0cm}{2cm}}
{\pgfpoint{0cm}{2cm}}
{\pgfpoint{3cm}{2cm}}]{\t}}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on Borders of Objects}
The following commands are useful for specifying a point that lies on the
border of special shapes. They are used, for example, by the shape mechanism to
determine border points of shapes.
\begin{command}{\pgfpointborderrectangle\marg{direction point}\marg{corner}}
This command returns a point that lies on the intersection of a line
starting at the origin and going towards the point \meta{direction point}
and a rectangle whose center is in the origin and whose upper right corner
is at \meta{corner}.
The \meta{direction point} should have length ``about 1pt'', but it will be
normalized automatically. Nevertheless, the ``nearer'' the length is to
1pt, the less rounding errors.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,1.5);
\pgfpathrectanglecorners{\pgfpoint{-1cm}{-1.25cm}}{\pgfpoint{1cm}{1.25cm}}
\pgfusepath{stroke}
\pgfpathcircle{\pgfpoint{5pt}{5pt}}{2pt}
\pgfpathcircle{\pgfpoint{-10pt}{5pt}}{2pt}
\pgfusepath{fill}
\color{red}
\pgfpathcircle{\pgfpointborderrectangle
{\pgfpoint{5pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfpathcircle{\pgfpointborderrectangle
{\pgfpoint{-10pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfpointborderellipse\marg{direction point}\marg{corner}}
This command works like the corresponding command for rectangles, only this
time the \meta{corner} is the corner of the bounding rectangle of an
ellipse.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,1.5);
\pgfpathellipse{\pgfpointorigin}{\pgfpoint{1cm}{0cm}}{\pgfpoint{0cm}{1.25cm}}
\pgfusepath{stroke}
\pgfpathcircle{\pgfpoint{5pt}{5pt}}{2pt}
\pgfpathcircle{\pgfpoint{-10pt}{5pt}}{2pt}
\pgfusepath{fill}
\color{red}
\pgfpathcircle{\pgfpointborderellipse
{\pgfpoint{5pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfpathcircle{\pgfpointborderellipse
{\pgfpoint{-10pt}{5pt}}{\pgfpoint{1cm}{1.25cm}}}{2pt}
\pgfusepath{fill}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on the Intersection of Lines}
\begin{command}{\pgfpointintersectionoflines\marg{$p$}\marg{$q$}\marg{$s$}\marg{$t$}}
This command returns the intersection of a line going through $p$ and $q$
and a line going through $s$ and $t$. If the lines do not intersection, an
arithmetic overflow will occur.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw (.5,0) -- (2,2);
\draw (1,2) -- (2,0);
\pgfpathcircle{%
\pgfpointintersectionoflines
{\pgfpointxy{.5}{0}}{\pgfpointxy{2}{2}}
{\pgfpointxy{1}{2}}{\pgfpointxy{2}{0}}}
{2pt}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on the Intersection of Two Circles}
\begin{command}{\pgfpointintersectionofcircles\marg{$p_1$}\marg{$p_2$}\marg{$r_1$}\marg{$r_2$}\marg{solution}}
This command returns the intersection of the two circles centered at $p_1$
and $p_2$ with radii $r_1$ and $r_2$. If \meta{solution} is |1|, the first
intersection is returned, otherwise the second one is returned.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (2,2);
\draw (0.5,0) circle (1);
\draw (1.5,1) circle (.8);
\pgfpathcircle{%
\pgfpointintersectionofcircles
{\pgfpointxy{.5}{0}}{\pgfpointxy{1.5}{1}}
{1cm}{0.8cm}{1}}
{2pt}
\pgfusepath{stroke}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsubsection{Points on the Intersection of Two Paths}
\begin{pgflibrary}{intersections}
This library defines the below command and allows you to calculate the
intersections of two arbitrary paths. However, due to the low accuracy of
\TeX, the paths should not be ``too complicated''. In particular, you
should not try to intersect paths consisting of lots of very small segments
such as plots or decorated paths.
\end{pgflibrary}
\begin{command}{\pgfintersectionofpaths\marg{path 1}\marg{path 2}}
This command finds the intersection points on the paths \meta{path 1} and
\meta{path 2}. The number of intersection points (``solutions'') that are
found will be stored, and each point can be accessed afterward. The code
for \meta{path 1} and \meta{path 2} is executed within a \TeX{} group and
so can contain transformations (which will be in addition to any existing
transformations). The code should not use the path in any way, unless the
path is saved first and restored afterward. \pgfname{} will regard
solutions as ``a bit special'', in that the points returned will be
``absolute'' and unaffected by any further transformations.
%
\begin{codeexample}[preamble={\usetikzlibrary{intersections}}]
\begin{pgfpicture}
\pgfintersectionofpaths
{
\pgfpathellipse{\pgfpointxy{0}{0}}{\pgfpointxy{1}{0}}{\pgfpointxy{0}{2}}
\pgfgetpath\temppath
\pgfusepath{stroke}
\pgfsetpath\temppath
}
{
\pgftransformrotate{-30}
\pgfpathrectangle{\pgfpointorigin}{\pgfpointxy{2}{2}}
\pgfgetpath\temppath
\pgfusepath{stroke}
\pgfsetpath\temppath
}
\foreach \s in {1,...,\pgfintersectionsolutions}
{\pgfpathcircle{\pgfpointintersectionsolution{\s}}{2pt}}
\pgfusepath{stroke}
\end{pgfpicture}
\end{codeexample}
\begin{command}{\pgfintersectionsolutions}
After using the |\pgfintersectionofpaths| command, this \TeX-macro will
indicate the number of solutions found.
\end{command}
\begin{command}{\pgfpointintersectionsolution\marg{number}}
After using the |\pgfintersectionofpaths| command, this command will
return the point for solution \meta{number} or the origin if this
solution was not found. By default, the intersections are simply
returned in the order that the intersection algorithm finds them.
Unfortunately, this is not necessarily a ``helpful'' ordering. However
the following two commands can be used to order the solutions more
helpfully.
\end{command}
\let\ifpgfintersectionsortbyfirstpath=\relax
\begin{command}{\pgfintersectionsortbyfirstpath}
Using this command will mean the solutions will be sorted along
\meta{path 1}.
\end{command}
\let\ifpgfintersectionsortbysecondpath=\relax
\begin{command}{\pgfintersectionsortbysecondpath}
Using this command will mean the solutions will be sorted along
\meta{path 2}.
\end{command}
\end{command}
\subsection{Extracting Coordinates}
There are two commands that can be used to ``extract'' the $x$- or
$y$-coordinate of a coordinate.
\begin{command}{\pgfextractx\marg{dimension}\marg{point}}
Sets the \TeX-\meta{dimension} to the $x$-coordinate of the point.
%
\begin{codeexample}[code only]
\newdimen\mydim
\pgfextractx{\mydim}{\pgfpoint{2cm}{4pt}}
%% \mydim is now 2cm
\end{codeexample}
%
\end{command}
\begin{command}{\pgfextracty\marg{dimension}\marg{point}}
Like |\pgfextractx|, except for the $y$-coordinate.
\end{command}
\begin{command}{\pgfgetlastxy\marg{macro for $x$}\marg{macro for $y$}}
Stores the most recently used $(x,y)$ coordinates into two macros.
%
\begin{codeexample}[]
\pgfpoint{2cm}{4cm}
\pgfgetlastxy{\macrox}{\macroy}
Macro $x$ is `\macrox' and macro $y$ is `\macroy'.
\end{codeexample}
%
Since $(x,y)$ coordinates are usually assigned globally, it is safe to use
this command after path operations.
\end{command}
\subsection{Internals of How Point Commands Work}
\label{section-internal-pointcmds}
As a normal user of \pgfname\ you do not need to read this section. It is
relevant only if you need to understand how the point commands work internally.
When a command like |\pgfpoint{1cm}{2pt}| is called, all that happens is that
the two \TeX-dimension variables |\pgf@x| and |\pgf@y| are set to |1cm| and
|2pt|, respectively. These variables belong to the set of internal \pgfname\
registers, see section~\ref{section-internal-registers} for details. A command
like |\pgfpathmoveto| that takes a coordinate as parameter will just execute
this parameter and then use the values of |\pgf@x| and |\pgf@y| as the
coordinates to which it will move the pen on the current path.
Since commands like |\pgfpointnormalised| modify other variables besides
|\pgf@x| and |\pgf@y| during the computation of the final values of |\pgf@x|
and |\pgf@y|, it is a good idea to enclose a call of a command like |\pgfpoint|
in a \TeX-scope and then make the changes of |\pgf@x| and |\pgf@y| global as in
the following example:
%
\begin{codeexample}[code only]
...
{ % open scope
\pgfpointnormalised{\pgfpoint{1cm}{1cm}}
\global\pgf@x=\pgf@x % make the change of \pgf@x persist past the scope
\global\pgf@y=\pgf@y % make the change of \pgf@y persist past the scope
}
% \pgf@x and \pgf@y are now set correctly, all other variables are
% unchanged
\end{codeexample}
\makeatletter
Since this situation arises very often, the macro |\pgf@process| can
be used to perform the above code:
%
\begin{command}{\pgf@process\marg{code}}
Executes the \meta{code} in a scope and then makes |\pgf@x| and |\pgf@y|
global.
\end{command}
Note that this macro is used often internally. For this reason, it is not a
good idea to keep anything important in the variables |\pgf@x| and |\pgf@y|
since they will be overwritten and changed frequently. Instead, intermediate
values can be stored in the \TeX-dimensions |\pgf@xa|, |\pgf@xb|, |\pgf@xc| and
their |y|-counterparts |\pgf@ya|, |\pgf@yb|, |\pgf@yc|. For example, here is the
code of the command |\pgfpointadd|:
%
\begin{codeexample}[code only]
\def\pgfpointadd#1#2{%
\pgf@process{#1}%
\pgf@xa=\pgf@x%
\pgf@ya=\pgf@y%
\pgf@process{#2}%
\advance\pgf@x by\pgf@xa%
\advance\pgf@y by\pgf@ya}
\end{codeexample}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "pgfmanual"
%%% End:
|