1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
|
% Copyright 2019 by Till Tantau and Mark Wibrow
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\section{Circuit Libraries}
\label{section-library-circuits}
\emph{Written and documented by Till Tantau, and Mark Wibrow. Inspired
by the work of Massimo Redaelli.}
\subsection{Introduction}
The circuit libraries can be used to draw different kinds of electrical or
logical circuits. There is not a single library for this, but a whole hierarchy
of libraries that work in concert. The main design goal was to create a balance
between ease-of-use and ease-of-extending, while creating high-quality
graphical representations of circuits.
%
\begin{codeexample}[setup code,hidden]
\tikzset{
% from `shape` library
shape example/.style= {color = black!30,
draw,
fill = yellow!30,
line width = .5cm,
inner xsep = 2.5cm,
inner ysep = 0.5cm}
}
\end{codeexample}
\subsubsection{A First Example}
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,x=3cm,y=2cm,semithick,
every info/.style={font=\footnotesize},
small circuit symbols,
set resistor graphic=var resistor IEC graphic,
set diode graphic=var diode IEC graphic,
set make contact graphic= var make contact IEC graphic]
% Let us start with some contacts:
\foreach \contact/\y in {1/1,2/2,3/3.5,4/4.5,5/5.5}
{
\node [contact] (left contact \contact) at (0,\y) {};
\node [contact] (right contact \contact) at (1,\y) {};
}
\draw (right contact 1) -- (right contact 2) -- (right contact 3)
-- (right contact 4) -- (right contact 5);
\draw (left contact 1) to [diode] ++(down:1)
to [voltage source={near start,
direction info={volt=3}},
resistor={near end,ohm=3}] ++(right:1)
to (right contact 1);
\draw (left contact 1) to [resistor={ohm=4}] (right contact 1);
\draw (left contact 1) to [resistor={ohm=3}] (left contact 2);
\draw (left contact 2) to [voltage source={near start,
direction info={<-,volt=8}},
resistor={ohm=2,near end}] (right contact 2);
\draw (left contact 2) to [resistor={near start,ohm=1},
make contact={near end,info'={[red]$S_1$}}]
(left contact 3);
\draw (left contact 3) to [current direction'={near start,info=$\iota$},
resistor={near end,info={$R=4\Omega$}}]
(right contact 3);
\draw (left contact 4) to [voltage source={near start,
direction info={<-,volt=8}},
resistor={ohm=2,near end}] (right contact 4);
\draw (left contact 3) to [resistor={ohm=1}] (left contact 4);
\draw (left contact 4) to [resistor={ohm=3}] (left contact 5);
\draw (left contact 5) to [resistor={ohm=4}] (right contact 5);
\draw (left contact 5) to [diode] ++(up:1)
to [voltage source={near start,
direction info={volt=3}},
resistor={near end,ohm=3}] ++(right:1)
to (right contact 5);
\end{tikzpicture}
\end{codeexample}
An important feature of the |circuits| library is that the appearance of a
circuit can be configured in general ways and that the labels are placed
automatically by default. Here is the graphic once more, generated from
\emph{exactly the same source code}, with only the options of the
|{tikzpicture}| environment replaced by
|[rotate=-90,circuit ee IEC,x=3.25cm,y=2.25cm]|:
%
\begin{tikzpicture}[rotate=-90,circuit ee IEC,x=3cm,y=2.25cm]
% Let us start with some contacts:
\foreach \contact/\y in {1/1,2/2,3/3.5,4/4.5,5/5.5}
{
\node [contact] (left contact \contact) at (0,\y) {};
\node [contact] (right contact \contact) at (1,\y) {};
}
\draw (right contact 1) -- (right contact 2) -- (right contact 3)
-- (right contact 4) -- (right contact 5);
\draw (left contact 1) to [diode] ++(down:1)
to [voltage source={near start,direction info={volt=3}},
resistor={near end,ohm=3}] ++(right:1)
to (right contact 1);
\draw (left contact 1) to [resistor={ohm=4}] (right contact 1);
\draw (left contact 1) to [resistor={ohm=3}] (left contact 2);
\draw (left contact 2) to [voltage source={near start,
direction info={<-,volt=8}},
resistor={ohm=2,near end}] (right contact 2);
\draw (left contact 2) to [resistor={near start,ohm=1},
make contact={near end,info'={[red]$S_1$}}] (left contact 3);
\draw (left contact 3) to [current direction'={near start,info=$\iota$},
resistor={near end,info={$R=4\Omega$}}]
(right contact 3);
\draw (left contact 4) to [voltage source={near start,
direction info={<-,volt=8}},
resistor={ohm=2,near end}] (right contact 4);
\draw (left contact 3) to [resistor={ohm=1}] (left contact 4);
\draw (left contact 4) to [resistor={ohm=3}] (left contact 5);
\draw (left contact 5) to [resistor={ohm=4}] (right contact 5);
\draw (left contact 5) to [diode] ++(up:1)
to [voltage source={near start,direction info={volt=3}},
resistor={near end,ohm=3}] ++(right:1)
to (right contact 5);
\end{tikzpicture}
\subsubsection{Symbols}
A circuit typically consists of numerous electronic elements like logical gates
or resistors or diodes that are connected by wires. In \pgfname/\tikzname, we
use nodes for the electronic elements and normal lines for the wires.
\tikzname\ offers a large number of different ways of positioning and
connecting nodes in general, all of which can be used here. Additionally, the
|circuits| library defines an additional useful |to|-path that is particularly
useful for elements like a resistor on a line.
There are many different names that are used to refer to electrical
``elements'', so a bit of terminology standardization is useful: We will call
such elements \emph{symbols}. A \emph{symbol shape} is a \pgfname\ shape
declared using the |\pgfdeclareshape| command. A \emph{symbol node} is a node
whose shape is a symbol shape.
\subsubsection{Symbol Graphics}
Symbols can be created by |\node[shape=some symbol shape]|. However, in order
to represent some symbols correctly, just using standard \pgfname\ shapes is
not sufficient. For instance, most symbols have a visually appealing ``default
size'', but the size of a symbol shape depends only on the current values of
parameters like |minimum height| or |inner xsep|.
For these reasons, the circuit libraries introduce the concept of a
\emph{symbol graphic}. This is a style that causes a |\node| to not only have
the correct shape, but also the correct size and the correct path usage. More
generally, this style may set up things in any way so that the ``symbol looks
correct''. When you write, for instance, |\node[diode]|, then the style called
|diode graphic| is used, which in turn is set to something like
|shape=diode IEC,draw,minimum height=...|.
Here is an overview of the different kinds of circuit libraries:
%
\begin{itemize}
\item The \tikzname-library |circuits| defines general keys for creating
circuits. Mostly, these keys are useful for defining more specialized
libraries.
You normally do not use this library directly since it does not define
any symbol graphics.
\item The \tikzname-library |circuits.logic| defines keys for creating
logical gates like and-gates or xor-gates. However, this library also
does not actually define any symbol graphics; this is done by two
sublibraries:
%
\begin{itemize}
\item The library |circuits.logic.US| defines symbol graphics that
cause the logical gates to be rendered in the ``US-style''. It
includes all of the above libraries and you can use this
library directly.
\item The library |circuits.logic.IEC| also defines symbol graphics
for logical gates, but it uses rectangular gates rather that
the round US-gates. This library can coexist peacefully with
the above library, you can change which symbol graphics are
used ``on the fly''.
\end{itemize}
\item The \tikzname-library |circuits.ee| defines keys for symbols from
electrical engineering like resistors or capacitors. Again,
sublibraries define the actual symbol graphics.
%
\begin{itemize}
\item The library |circuits.ee.IEC| defines symbol shapes that
follow the IEC norm.
\end{itemize}
\item The \pgfname-libraries |shapes.gates.*| define (circuit) symbol
shapes. However, you normally do not use these shapes directly, rather
you use a style that uses an appropriate symbol graphic, which in turn
uses one of these shapes.
\end{itemize}
Let us have a look at a simple example. Suppose we wish to create a logical
circuit. Then we first have to decide which symbol graphics we would like to
use. Suppose we wish to use the US-style, then we would include the library
|circuits.logic.US|. If you wish to use IEC-style symbols, use
|circuits.logic.IEC|. If you cannot decide, include both:
%
\begin{codeexample}[code only]
\usetikzlibrary{circuits.logic.US,circuits.logic.IEC}
\end{codeexample}
%
To create a picture that contains a US-style circuit you can now use the option
|circuit logic US|. This will set up keys like |and gate| to create use an
appropriate symbol graphic for rendering an |and gate|. Using the
|circuit logic IEC| instead will set up |and gate| to use another symbol
graphic.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.US}}]
\begin{tikzpicture}[circuit logic US]
\matrix[column sep=7mm]
{
\node (i0) {0}; & & \\
& \node [and gate] (a1) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
};
\draw (i0.east) -- ++(right:3mm) |- (a1.input 1);
\draw (i1.east) -- ++(right:3mm) |- (a1.input 2);
\draw (i1.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (a1.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\begin{tikzpicture}[circuit logic IEC]
\matrix[column sep=7mm]
{
\node (i0) {0}; & & \\
& \node [and gate] (a1) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
};
\draw (i0.east) -- ++(right:3mm) |- (a1.input 1);
\draw (i1.east) -- ++(right:3mm) |- (a1.input 2);
\draw (i1.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (a1.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}
\end{codeexample}
\subsubsection{Annotations}
An \emph{annotation} is a little extra drawing that can be added to a symbol.
For instance, when you add two little parallel arrows pointing away from some
electrical element, this usually means that the element is light emitting.
Instead of having one symbol for ``diode'' and another for ``light emitting
diode'', there is just one |diode| symbol, but you can add the |light emitting|
annotation to it. This is done by passing the annotation as a parameter to the
symbol as in the following example:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\draw (0,0) to [diode={light emitting}] (3,0)
to [resistor={adjustable}] (3,2);
\end{codeexample}
\subsection{The Base Circuit Library}
\begin{tikzlibrary}{circuits}
This library is a base library that is included by other circuit libraries.
You do not include it directly, but you will typically use some of the
general keys, described below.
\end{tikzlibrary}
\begin{key}{/tikz/circuits}
This key should be passed as an option to a picture or a scope that contains
a circuit. It will do some internal setups. This key is normally called by
more specialized keys like |circuit ee IEC|.
\end{key}
\subsubsection{Symbol Size}
\begin{key}{/tikz/circuit symbol unit=\meta{dimension} (initially 7pt)}
This dimension is a ``unit'' for the size of symbols. The libraries
generally define the sizes of symbols relative to this dimension. For
instance, the longer side of an inductor is, by default, in the IEC library
equal to five times this \meta{dimension}. When you change this
\meta{dimension}, the size of all symbols will automatically change
accordingly.
Note, that it is still possible to overwrite the size of any particular
symbol. These settings apply only to the default sizes.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC]
\draw (0,1) to [resistor] (3.5,1);
\draw[circuit symbol unit=14pt]
(0,0) to [resistor] (3.5,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{stylekey}{/tikz/huge circuit symbols}
This style sets the default circuit symbol unit to |10pt|.
\end{stylekey}
%
\begin{stylekey}{/tikz/large circuit symbols}
This style sets the default circuit symbol unit to |8pt|.
\end{stylekey}
%
\begin{stylekey}{/tikz/medium circuit symbols}
This style sets the default circuit symbol unit to |7pt|.
\end{stylekey}
%
\begin{stylekey}{/tikz/small circuit symbols}
This style sets the default circuit symbol unit to |6pt|.
\end{stylekey}
%
\begin{stylekey}{/tikz/tiny circuit symbols}
This style sets the default circuit symbol unit to |5pt|.
\end{stylekey}
\begin{key}{/tikz/circuit symbol size=|width| \meta{width} |height| \meta{height}}
This key sets |minimum height| to \meta{height} times the current value of
the circuit symbol unit and the |minimum width| to \meta{width} times this
value. Thus, this option can be used with a node command to set the size of
the node as a multiple of the circuit symbol unit.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC]
\draw (0,1) to [resistor] (2,1) to[inductor] (4,1);
\begin{scope}
[every resistor/.style={circuit symbol size=width 3 height 1}]
\draw (0,0) to [resistor] (2,0) to[inductor] (4,0);
\end{scope}
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\subsubsection{Declaring New Symbols}
\begin{key}{/tikz/circuit declare symbol=\meta{name}}
This key is used to declare a symbol. It does not cause this symbol to be
shown nor does it set a graphic to be used for the symbol, it simply
``prepares'' several keys that can later be used to draw a symbol and to
configure it.
In detail, the first key that is defined is just called \meta{name}. This
key should be given as an option to a |node| or on a |to| path, as
explained below. The key will take options, which can be used to influence
the way the symbol graphic is rendered.
Let us have a look at an example. Suppose we want to define a symbol called
|foo|, which just looks like a simple rectangle. We could then say
%
\begin{codeexample}[code only]
\tikzset{circuit declare symbol=foo}
\end{codeexample}
%
The symbol could now be used like this:
%
\begin{codeexample}[code only]
\node [foo] at (1,1) {};
\node [foo={red}] at (2,1) {};
\end{codeexample}
However, in the above example we would not actually see anything since we
have not yet set up the graphic to be used by |foo|. For this, we must use
a key called |set foo graphic| or, generally, |set| \meta{name} |graphic|.
This key gets graphic options as parameter that will be set when a symbol
|foo| should be shown:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits}}]
\begin{tikzpicture}
[circuit declare symbol=foo,
set foo graphic={draw,shape=rectangle,minimum size=5mm}]
\node [foo] at (1,1) {};
\node [foo={red}] at (2,1) {};
\end{tikzpicture}
\end{codeexample}
In detail, when you use the key \meta{name}=\meta{options} with a node, the
following happens:
%
\begin{enumerate}
\item The |inner sep| is set to |0.5pt|.
\item The following style is executed:
%
\begin{stylekey}{/tikz/every circuit symbol}
Use this style to set up things in general.
\end{stylekey}
\item The graphic options that have been set using |set| \meta{name}
|graphic| are set.
\item The style |every |\meta{name} is executed. You can use it to
configure the symbol further.
\item The \meta{options} are executed.
\end{enumerate}
The key \meta{name} will have a different effect when it is used on a |to|
path command inside a |circuit| environment (the |circuit| environment sets
up |to| paths in such a way that the use of a key declared using
|circuit declare symbol| is automatically detected). When \meta{name} is
used on a |to| path, the above actions also happen (setting the inner
separation, using the symbol graphic, and so on), but they are passed to
the key |circuit handle symbol|, which is explained next.
\end{key}
\begin{key}{/tikz/circuit handle symbol=\meta{options}}
This key is mostly used internally. Its purpose is to render a symbol. The
effect of this key differs, depending on whether it is used as the optional
argument of a |to| path command or elsewhere.
If the key is not used as an argument of a |to| path command, the
\meta{options} are simply executed.
The more interesting case happens when the key is given on a |to| path
command. In this case, several things happen:
%
\begin{enumerate}
\item The |to| path is locally changed and set to an internal path
(which you should not try to change) that consists mostly of a
single straight line.
\item The \meta{options} are tentatively executed with filtering
switched on. Everything is filtered out, except for the key |pos|
and also the styles |at start|, |very near start|, |near start|,
|midway|, |near end|, |very near end|, and |at end|. If none of
them is found, |midway| is used.
\item The filtered option is used to determine a position for the
symbol on the path. At the given position (with |pos=0|
representing the start and |pos=1| representing the end), a node
will be added to the path (in a manner to be described presently).
\item This node gets \meta{options} as its option list.
\item The node is added by virtue of a special |markings| decoration.
This means that a |mark| command is executed that causes the node
to be placed as a mark on the path.
\item The marking decoration will automatically subdivide the path and
cause a line to be drawn from the start of the path to the node's
border (at the position that lies on a line from the node's center
to the start of the path) and then from the node's border (at a
position on the other side of the node) to the end of the path.
\item The marking decoration will also take care of the case that
multiple marks are present on a path, in this case the lines from
and to the borders of the nodes are only between consecutive nodes.
\item The marking decoration will also rotate the coordinate system in
such a way that the $x$-axis points along the path. Thus, if you
use the |transform shape| option, the node will ``point along'' the
path.
\item In case a node is at |pos=0| or at |pos=1| some special code will
suppress the superfluous lines to the start or end of the path.
\end{enumerate}
The net effect of all of the above is that a node will be placed ``on the
path'' and the path will have a ``gap'' just large enough to encompass the
node. Another effect is that you can use this key multiple times on a path
to add several node to a path, provided they do not overlap.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits}}]
\begin{tikzpicture}[circuit]
\draw (0,0) to [circuit handle symbol={draw,shape=rectangle,near start},
circuit handle symbol={draw,shape=circle,near end}] (3,2);
\end{tikzpicture}
\end{codeexample}
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits}}]
\begin{tikzpicture}[transform shape,circuit]
\draw (0,0) to [circuit handle symbol={draw,shape=rectangle,at start},
circuit handle symbol={draw,shape=circle,near end}] (3,2);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\subsubsection{Pointing Symbols in the Right Direction}
Unlike normal nodes, which generally should not be rotated since this will make
their text hard to read, symbols often need to be rotated. There are two ways
of achieving such rotations:
%
\begin{enumerate}
\item When you place a symbol on a |to| path, the graphic symbol is
automatically rotated such that it ``points along the path''. Here is
an examples that shows how the inductor shape (which looks, unrotated,
like this: \tikz[circuit ee IEC]\node[inductor]{};) is automatically
rotated around:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\draw (3,0) to[inductor] (1,0) to[inductor] (0,2);
\end{codeexample}
%
\item Many shapes cannot be placed ``on'' a path in this way, namely
whenever there are more than two possible inputs. Also, you may wish to
place the nodes first, possibly using a matrix, and connect them
afterwards. In this case, you can simply add rotations like |rotate=90|
to the shapes to rotate them. The following four keys make this
slightly more convenient:
%
\begin{key}{/tikz/point up}
This is the same as |rotate=90|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \node [diode,point up] {};
\end{codeexample}
\end{key}
%
\begin{key}{/tikz/point down}
This is the same as |rotate=-90|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \node [diode,point down] {};
\end{codeexample}
\end{key}
%
\begin{key}{/tikz/point left}
This is the same as |rotate=-180|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \node [diode,point left] {};
\end{codeexample}
\end{key}
%
\begin{key}{/tikz/point right}
This key has no effect.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \node [diode,point right] {};
\end{codeexample}
\end{key}
\end{enumerate}
\subsubsection{Info Labels}
Info labels are used to add text to a circuit symbol. Unlike normal nodes like
a rectangle, circuit symbols typically do not have text ``on'' them, but the
text is placed next to them (like the text ``$3\,\Omega$'' next to a resistor).
\tikzname\ already provides the |label| option for this purpose. The |info|
option is built on top of this option, but it comes in some predefined variants
that are especially useful in conjunction with circuits.
\begin{key}{/tikz/info=\opt{|[|\meta{options}|]|\meta{angle}|:|}\meta{text}}
This key has nearly the same effect as the |label| key, only the following
style is used additionally automatically:
%
\begin{stylekey}{/tikz/every info}
Set this style to configure the styling of info labels. Since this
key is \emph{not} used with normal labels, it provides an easy way
of changing the way info labels look without changing other
labels.
\end{stylekey}
%
The \meta{options} and \meta{angle} are passed directly to the |label|
command.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\node [resistor,info=$3\Omega$] {};
\end{tikzpicture}
\end{codeexample}
You will find a detailed discussion of the |label| option on
page~\pageref{label-option}.
Hint: To place some text \emph{on} the main node, use |center| as the
\meta{angle}:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\node [resistor,info=center:$3\Omega$] {};
\node [resistor,point up,info=center:$R_1$] at (2,0) {};
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/info'=\opt{|[|\meta{options}|]|\meta{angle}|:|}\meta{text}}
This key works exactly like the |info| key, only in case the \meta{angle}
is missing, it defaults to |below| instead of the current value of
|label position|, which is usually |above|. This means that when you use
|info|, you get a label above the node, while when you use the |info'| key
you get a label below the node. In case the node has been rotated, the
positions of the info nodes are rotated accordingly.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\draw (0,0) to[resistor={info={$3\Omega$},info'={$R_1$}}] (3,0)
to[resistor={info={$4\Omega$},info'={$R_2$}}] (3,2);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/info sloped=\opt{|[|\meta{options}|]|\meta{angle}|:|}\meta{text}}
This key works like |info|, only the |transform shape| option is set when
the label is drawn, causing it to follow the sloping of the main node.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\draw (0,0) to[resistor={info sloped={$3\Omega$}}] (3,0)
to[resistor={info sloped={$4\Omega$}}] (3,2);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/info' sloped=}
This is a combination of |info'| and |info sloped|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\draw (0,0) to[resistor={info' sloped={$3\Omega$}}] (3,0)
to[resistor={info' sloped={$4\Omega$}}] (3,2);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/circuit declare unit=\marg{name}\marg{unit}}
This key is used to declare keys that make it easy to attach physical units
to nodes. The idea is that instead of |info=$3\Omega$| you can write
|ohm=3| or instead of |info'=$5\mathrm{S}$| you can write |siemens'=5|.
In detail, four keys are defined, namely |/tikz/|\meta{name},
|/tikz/|\meta{name}|'|, |/tikz/|\meta{name} |sloped|, and
|/tikz/|\meta{name}|'| |sloped|. The arguments of all of these keys are of
the form \opt{|[|\meta{options}|]|\meta{angle}|:|}\meta{value} and it is
passed (slightly modified) to the corresponding key |info|, |info'|, |info|
|sloped|, or |info'| |sloped|. The ``slight modification'' is the
following: The text that is passed to the, say, |info| key is not
\meta{value}, but rather |$\mathrm{|\meta{value}\meta{unit}|}$|
This means that after you said |circuit declare unit={ohm}{\Omega}|, then
|ohm=5k| will have the same effect as
|info={[every ohm]$\mathrm{5k\Omega}$}|. Here, |every ohm| is a style that
allows you to configure the appearance of this unit. Since the |info| key
is used internally, by changing the |every info| style, you can change the
appearance of all units infos.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC,circuit declare unit={my ohm}{O}]
\draw (0,0) to[resistor={my ohm' sloped=3}] (3,2);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\subsubsection{Declaring and Using Annotations}
Annotations are quite similar to info labels. The main difference is that they
generally cause something to be drawn by default rather than some text to be
added (although an annotation might also add some text).
Annotations can be declared using the following key:
\begin{key}{/tikz/circuit declare annotation=\marg{name}\marg{distance}\marg{path}}
This key is used to declare an annotation named \meta{name}. Once declared,
it can be used as an argument of a symbol and will add the drawing in
\meta{path} to the symbol. In detail, the following happens:
\textbf{The Main Keys.}
Two keys called \meta{name} and \meta{name}|'| are defined. The second
causes the annotation to be ``mirrored and placed on the other side'' of
the symbol. Both of these keys may also take further keys as parameter like
|info| keys. Whenever the \meta{name} key is used, a local scope is opened
and in this scope the following things are done:
%
\begin{enumerate}
\item The style |every| \meta{name} is executed.
\item The following style is executed and then |arrows=->|:
%
\begin{stylekey}{/tikz/annotation arrow}
This style should set the |>| key to some desirable arrow tip.
\end{stylekey}
\item The coordinate system is shifted such that the origin is at the
north anchor of the symbol. (For the \meta{name}|'| key the
coordinate system is flipped and shifted such that the origin is at
the south anchor of the symbol.)
\item The |label distance| is locally set to \meta{distance}.
\item The parameter options given to the \meta{name} key are executed.
\item The \meta{path} is executed.
\end{enumerate}
\textbf{Usage.}
What all of the above amounts to is best explained by an example. Suppose
we wish to create an annotation that looks like a little circular arrow
(like \tikz \draw [->] (0,0) arc (-270:80:1ex);). We could then say:
%
\begin{codeexample}[code only]
\tikzset{circuit declare annotation=
{circular annotation}
{9pt}
{(0pt,8pt) arc (-270:80:3.5pt)}
}
\end{codeexample}
%
We can then use it like this:
%
\tikzset{circuit declare annotation=
{circular annotation}
{8pt}
{(0pt,8pt) arc (-270:80:3.5pt)}
}
\begin{codeexample}[
preamble={\usetikzlibrary{circuits.ee.IEC}}
pre={\tikzset{circuit declare annotation=
{circular annotation}
{8pt}
{(0pt,8pt) arc (-270:80:3.5pt)}
}}]
\tikz[circuit ee IEC]
\draw (0,0) to [resistor={circular annotation}] (3,0);
\end{codeexample}
%
Well, not very impressive since we do not see anything. This is due to the
fact that the \meta{path} becomes part of a path that contains the symbol
node an nothing else. This path is not drawn or filled, so we do not see
anything. What we must do is to use an |edge| path operation:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikzset{circuit declare annotation={circular annotation}{9pt}
{(0pt,8pt) edge[to path={arc(-270:80:3.5pt)}] ()}
}
\tikz[circuit ee IEC]
\draw (0,0) to [resistor={circular annotation}] (3,0)
to [capacitor={circular annotation'}] (3,2);
\end{codeexample}
%
The \meta{distance} is important for the correct placement of additional
|info| labels. When an annotation is present, the info labels may need to
be moved further away from the symbol, but not always. For this reason, an
annotation defines an additional \meta{distance} that is applied to all
info labels given as parameters to the annotation. Here is an example, that
shows the difference:
%
\tikzset{circuit declare annotation={circular annotation}{9pt}
{(0pt,8pt) edge[to path={arc (-270:80:3.5pt)}] ()}
}
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}
pre={\tikzset{circuit declare annotation=
{circular annotation}
{8pt}
{(0pt,8pt) arc (-270:80:3.5pt)}
}}]
\tikz[circuit ee IEC]
\draw (0,0) to [resistor={circular annotation,ohm=5}] (2,0)
to [resistor={circular annotation={ohm=5}}] (4,0);
\end{codeexample}
%
\end{key}
\subsubsection{Theming Symbols}
\label{section-theming-symbols}
For each symbol, a certain graphical representation is chosen to actually show
the symbol. You can modify this graphical representation in several ways:
%
\begin{itemize}
\item You can select a different library and use a different |circuit ...|
key. This will change all graphics used for the symbols.
\item You can generally change the size of graphic symbols by setting
|circuit size unit| to a different value or using a key like
|small circuit symbols|.
\item You can add options to the graphics used by symbols either globally
by setting the |every circuit| |symbol| style or locally by setting the
|every| \meta{name} style, where \meta{name} is the name of a symbol.
For instance, in the following picture the symbols are ridiculously
thick and resistors are red.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
[circuit ee IEC,
every circuit symbol/.style={ultra thick},
every resistor/.style={red}]
\draw (0,0) to [inductor] ++(right:3) to [resistor] ++(up:2);
\end{tikzpicture}
\end{codeexample}
%
\item You can selectively change the graphic used for a symbol by saying
|set resistor graphic=|.
\item You can change one or more of the following styles:
%
\begin{stylekey}{/tikz/circuit symbol open (initially draw)}
This style is used with symbols that consist of lines that surround
some area. For instance, the IEC version of a resistor is an open
symbol.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC,
circuit symbol open/.style={thick,draw,fill=yellow}]
\draw (0,0) to [inductor] ++(right:3) to [resistor] ++(up:2);
\end{codeexample}
\end{stylekey}
%
\begin{stylekey}{/tikz/circuit symbol filled (initially {draw,fill=black})}
This style is used with symbols that are completely filled. For
instance, the variant IEC version of an inductor is a filled, black
rectangle.
\end{stylekey}
%
\begin{stylekey}{/tikz/circuit symbol lines (initially draw)}
This style is used with symbols that consist only of lines that do
not surround anything. Examples are a capacitor.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC,
circuit symbol lines/.style={thick,draw=red}]
\draw (0,0) to [capacitor] ++(right:3) to [resistor] ++(up:2);
\end{codeexample}
\end{stylekey}
%
\begin{stylekey}{/tikz/circuit symbol wires (initially draw)}
This style is used for symbols that consist only of ``wires''. The
difference to the previous style is that a symbol consisting of
wires will look strange when the lines are thicker than the lines
of normal wires, while for symbols consisting of lines (but not
wires) it may look nice to make them thicker. An example is the
|make contact| symbol.
Compare
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC,circuit symbol lines/.style={draw,very thick}]
\draw (0,0) to [capacitor={near start},
make contact={near end}] (3,0);
\end{codeexample}
%
to
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC,circuit symbol wires/.style={draw,very thick}]
\draw (0,0) to [capacitor={near start},
make contact={near end}] (3,0);
\end{codeexample}
\end{stylekey}
\end{itemize}
All circuit environments like |circuit logic IEC| mainly use options like
|set and gate graphic=...| to set up the graphics used for a certain symbol. It
turns out that graphic hidden in the ``|...|'' part is also always available as
a separate style, whose name contains the library's initials. For instance, the
|circuit logic IEC| option actually contains the following command:
%
\begin{codeexample}[code only]
set and gate graphic = and gate IEC graphic,
\end{codeexample}
%
The |and gate IEC graphic| style, in turn, is defined as follows:
%
\begin{codeexample}[code only]
\tikzset{and gate IEC graphic/.style=
{
circuit symbol open,
circuit symbol size=width 2.5 height 4,
shape=and gate IEC,
inner sep=.5ex
}
}
\end{codeexample}
Normally, you do not need to worry about this, since you will not need to
access a style like |and gate IEC graphic| directly; you will only use the
|and gate| key. However, sometimes libraries define \emph{variants} of a
graphic; for instance, there are two variants for the resistor graphic in the
IEC library. In this case you can set the graphic for the resistor to this
variant (or back to the original) by saying |set resistor graphic| yourself:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[circuit ee IEC]
% Standard resistor
\draw (0,2) to [resistor] (3,2);
% Var resistor
\begin{scope}[set resistor graphic=var resistor IEC graphic]
\draw (0,1) to [resistor] (3,1);
% Back to original
\draw [set resistor graphic=resistor IEC graphic]
(0,0) to [resistor] (3,0);
\end{scope}
\end{tikzpicture}
\end{codeexample}
\subsection{Logical Circuits}
\subsubsection{Overview}
A \emph{logical circuit} is a circuit that contains what we call \emph{logical
gates} like an |and gate| or an |xor gate|. The logical libraries are intended
to make it easy to draw such circuits.
In the following, we first have a look at the different libraries that can be
used in principle and how the symbols look like. Then we have a more detailed
look at how the symbols are used. Finally, we discuss the implementation
details.
There are different ways of depicting logical gates, which is why there are
different (sub-)libraries for drawing them. They provide the necessary
graphical representations of the symbols declared in the following library:
\begin{tikzlibrary}{circuits.logic}
This library declares the logical gate symbols, but does not provide the
symbol graphics. The library also defines the following key which, however,
is also only used indirectly, namely by other libraries:
%
\begin{key}{/tikz/circuit logic}
This style calls the keys |circuit| (which internally calls
|every circuit|, then it defines the |inputs| key and it calls the
|every circuit logic| key.
%
\begin{key}{/tikz/inputs=\meta{inputs}}
This key is defined only inside the scope of a |circuit logic|.
There, it has the same effect as |logic gate inputs|, described on
page~\pageref{logic-gate-inputs}.
\end{key}
%
\begin{stylekey}{/tikz/every circuit logic}
Use this key to configure the appearance of logical circuits.
\end{stylekey}
\end{key}
\end{tikzlibrary}
Since the |circuits.logic| library does not define any actual graphics, you need
to use one of the following libraries, instead:
\begin{tikzlibrary}{circuits.logic.IEC}
This library provides graphics based on gates recommended by the
International Electrotechnical Commission. When you include this library,
you can use the following key to set up a scope that contains a logical
circuit where the gates are shown in this style.
\begin{key}{/tikz/circuit logic IEC}
This key calls |circuit logic| and installs the IEC-like graphics for
the logical symbols like |and gate|.
As explained in Section~\ref{section-theming-symbols}, for each graphic
symbol of the library there is also a style that stores this particular
appearance. These keys are called |and gate IEC graphic|,
|or gate IEC graphic|, and so on.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\begin{tikzpicture}[circuit logic IEC,
every circuit symbol/.style={
logic gate IEC symbol color=black,
fill=blue!20,draw=blue,very thick}]
\matrix[column sep=7mm]
{
\node (i0) {0}; & & \\
& \node [and gate] (a1) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
};
\draw (i0.east) -- ++(right:3mm) |- (a1.input 1);
\draw (i1.east) -- ++(right:3mm) |- (a1.input 2);
\draw (i1.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (a1.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}
\end{codeexample}
\end{key}
\end{tikzlibrary}
\begin{tikzlibrary}{circuits.logic.US}
This library provides graphics showing ``American'' logic gates. It defines
the following key:
\begin{key}{/tikz/circuit logic US}
This style calls |circuit logic| and installs US-like graphics for the
logical symbols like |and gate|. For instance, it says
%
\begin{codeexample}[code only]
set and gate graphic = and gate US graphic
\end{codeexample}
Here is an example:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.CDH}}]
\begin{tikzpicture}[circuit logic CDH,
tiny circuit symbols,
every circuit symbol/.style={
fill=white,draw}]
\matrix[column sep=7mm]
{
\node (i0) {0}; & & \\
& \node [and gate] (a1) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
};
\draw (i0.east) -- ++(right:3mm) |- (a1.input 1);
\draw (i1.east) -- ++(right:3mm) |- (a1.input 2);
\draw (i1.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (a1.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}
\end{codeexample}
\end{key}
\end{tikzlibrary}
\begin{tikzlibrary}{circuits.logic.CDH}
This library provides graphics based on the logic symbols used in A. Croft,
R. Davidson, and M. Hargreaves (1992), \emph{Engineering Mathematics},
Addison-Wesley, 82--95. They are identical to the US-style symbols, except
for the and- and nand-gates.
\begin{key}{/tikz/circuit logic CDH}
This key calls |circuit logic US| and installs the two special and- and
nand-gates, that is, it uses |set and gate graphic| with
|and gate CDH graphic| and likewise for nand-gates.
\end{key}
\end{tikzlibrary}
Inside |circuit logic XYZ| scopes, you can now use the keys shown in
Section~\ref{section-logic-symbols}. We have a more detailed look at one of
them, all the other work the same way:
\begin{key}{/tikz/and gate}
This key should be passed to a |node| command. It will cause the node to
``look like'' an |and gate|, where the exact appearance of the gate is
dictated by the which circuit environment is used. To further configure the
appearance of the |and gate|, see Section~\ref{section-theming-symbols}.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\tikz [circuit logic IEC] \node [and gate] {$A$};
\end{codeexample}
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.US}}]
\tikz [circuit logic US]
{
\node [and gate,point down] {$A$};
\node [and gate,point down,info=center:$A$] at (1,0) {};
}
\end{codeexample}
\medskip\textbf{Inputs.}
Multiple inputs can be specified for a logic gate (provided they support
multiple inputs: a not gate -- also known as an inverter -- does not).
However, there is an upper limit for the number of inputs which has been
set to 1024, which should be \emph{way} more than would ever be needed.
The following key is used to configure the inputs. It is available only
inside a |circuit logic| environment.
\begin{key}{/tikz/inputs=\meta{input list} (initially \char`\{normal,normal\char`\})}
If a gate has $n$ inputs, the \meta{input list} should consists of $n$
letters, each being |i| for ``inverted'' or |n| for ``normal''.
Inverted gates will be indicated by a little circle. In any case the
anchors for the inputs will be set up appropriately, numbered from top
to bottom |input 1|, |input 2|, \ldots and so on. If the gate only
supports one input the anchor is simply called |input| with no
numerical index.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\begin{tikzpicture}[circuit logic IEC]
\node[and gate,inputs={inini}] (A) {};
\foreach \a in {1,...,5}
\draw (A.input \a -| -1,0) -- (A.input \a);
\draw (A.output) -- ++(right:5mm);
\end{tikzpicture}
\end{codeexample}
\end{key}
(This key is just a shorthand for |logic gate inputs|, described in detail
on page~\pageref{logic-gate-inputs}. There you will also find descriptions
of how to configure the size of the inverted circles and the way the symbol
size increases when there are too many inputs.)
\textbf{Output.}
Every logic gate has one anchor called |output|.
\end{key}
\subsubsection{Symbols: The Gates}
\label{section-logic-symbols}
The following table shows which symbols are declared by the main
|circuits.logic| library and their appearance in the different sublibraries.
\medskip
\def\gateexamples#1{%
\texttt{#1}
\indexkey{#1} &
\tikz[baseline,circuit logic IEC] \node[#1,label=] {}; &
\tikz[baseline,circuit logic US] \node[#1] {}; &
\tikz[baseline,circuit logic CDH] \node[#1] {};
}
\begin{tabular}{lccc}
\emph{Key} & \emph{Appearance inside} & \emph{Appearance inside} & \emph{Appearance inside} \\
& |circuit logic IEC| & |circuit logic US| & |circuit logic CDH| \\
\gateexamples{/tikz/and gate}\\
\gateexamples{/tikz/nand gate}\\
\gateexamples{/tikz/or gate}\\
\gateexamples{/tikz/nor gate}\\
\gateexamples{/tikz/xor gate}\\
\gateexamples{/tikz/xnor gate}\\
\gateexamples{/tikz/not gate}\\
\gateexamples{/tikz/buffer gate}
\end{tabular}
\subsubsection{Implementation: The Logic Gates Shape Library}
The previous sections described the \tikzname\ interface for creating logical
circuits. In this section we take a closer look at the underlying \pgfname\
libraries.
Just as there are several \tikzname\ circuit libraries, there are two
underlying \pgfname\ shape libraries, one for creating US-style gates and one
for IEC-style gates. These libraries define \emph{shapes} only. It is the job
of the circuit libraries to ``theme'' them so that they ``look nice''. However,
in principle, you can also use these shapes directly.
Let us begin with the base library that defines the handling of inputs.
\begin{pgflibrary}{shapes.gates.logic}
This library defines common keys used by all logical gate shapes.
\begin{key}{/pgf/logic gate inputs=\meta{input list} (initially \char`\{normal,normal\char`\})}
\label{logic-gate-inputs}%
Specify the inputs for the logic gate. The keyword |inverted| indicates
an inverted input which will mean \pgfname{} will draw a circle
attached to the main shape of the logic gate. Any keyword that is not
|inverted| will be treated as a ``normal'' or ``non-inverted'' input
(however, for readability, you may wish to use |normal| or
|non-inverted|), and \pgfname{} will not draw the circle. In both cases
the anchors for the inputs will be set up appropriately, numbered from
top to bottom |input 1|, |input 2|, \ldots and so on. If the gate only
supports one input the anchor is simply called |input| with no
numerical index.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\begin{tikzpicture}[minimum height=0.75cm]
\node[and gate IEC, draw, logic gate inputs={inverted, normal, inverted}]
(A) {};
\foreach \a in {1,...,3}
\draw (A.input \a -| -1,0) -- (A.input \a);
\draw (A.output) -- ([xshift=0.5cm]A.output);
\end{tikzpicture}
\end{codeexample}
For multiple inputs it may be somewhat unwieldy to specify a long list,
thus, the following ``shorthand'' is permitted (this is an extension of
ideas due to Jürgen Werber and Christoph Bartoschek): Using |i| for
inverted and |n| for normal inputs, \meta{input list} can be specified
\emph{without the commas}. So, for example, |ini| is equivalent to
|inverted, normal, inverted|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.US}}]
\begin{tikzpicture}[minimum height=0.75cm]
\node[or gate US, draw,logic gate inputs=inini] (A) {};
\foreach \a in {1,...,5}
\draw (A.input \a -| -1,0) -- (A.input \a);
\draw (A.output) -- ([xshift=0.5cm]A.output);
\end{tikzpicture}
\end{codeexample}
\end{key}
The height of the gate may be increased to accommodate the number of
inputs. In fact, it depends on three variables: $n$, the number of inputs,
$r$, the radius of the circle used to indicate an inverted input and $s$,
the distance between the centers of the inputs. The default height is then
calculated according to the expression $(n+1)\times\max(2r,s)$. This then
may be increased to accommodate the node contents or any minimum size
specifications.
The radius of the inverted input circle and the distance between the
centers of the inputs can be customized using the following keys:
\begin{key}{/pgf/logic gate inverted radius=\meta{length} (initially 2pt)}
Set the radius of the circle that is used to indicate inverted inputs.
This is also the radius of the circle used for the inverted output of
the |nand|, |nor|, |xnor| and |not| gates.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.CDH}}]
\begin{tikzpicture}[minimum height=0.75cm]
\tikzset{every node/.style={shape=nand gate CDH, draw, logic gate inputs=ii}}
\node[logic gate inverted radius=2pt] {A};
\node[logic gate inverted radius=4pt] at (0,-1) {B};
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/logic gate input sep=\meta{length} (initially .125cm)}
Set the distance between the \emph{centers} of the inputs to the logic
gate.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\begin{tikzpicture}[minimum size=0.75cm]
\draw [help lines] grid (3,2);
\tikzset{every node/.style={shape=and gate IEC, draw, logic gate inputs=ini}}
\node[logic gate input sep=0.33333cm] at (1,1)(A) {A};
\node[logic gate input sep=0.5cm] at (3,1) (B) {B};
\foreach \a in {1,...,3}
\draw (A.input \a -| 0,0) -- (A.input \a)
(B.input \a -| 2,0) -- (B.input \a);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\pgfname{} will increase the size of the logic gate to accommodate the
number of inputs, and the size of the inverted radius and the separation
between the inputs. However with all shapes in this library, any increase
in size (including any minimum size requirements) will be applied so that
the default aspect ratio is unaltered. This means that changing the height
will change the width and vice versa.
\end{pgflibrary}
\subsubsection{Implementation: The US-Style Logic Gates Shape Library}
\begin{pgflibrary}{shapes.gates.logic.US}
This library provides ``American'' logic gate shapes whose names are
suffixed with the identifier |US|. Additionally, alternative |and| and
|nand| gates are provided which are based on the logic symbols used in A.
Croft, R. Davidson, and M. Hargreaves (1992), \emph{Engineering
Mathematics}, Addison-Wesley, 82--95. These two shapes are suffixed with
|CDH|.
The ``compass point'' anchors apply to the main part of the shape and do
not include any inverted inputs or outputs. This library provides an
additional feature to facilitate the relative positioning of logic gates:
\begin{key}{/pgf/logic gate anchors use bounding box=\meta{boolean} (initially false)}
When set to |true| this key will ensure that the compass point anchors
use the bounding rectangle of the main shape, which, ignore any
inverted inputs or outputs, but includes any |outer sep|. This
\emph{only} affects the compass point anchors and is not set on a shape
by shape basis: whether the bounding box is used is determined by value
of this key when the anchor is accessed.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.US}}]
\begin{tikzpicture}[minimum height=1.5cm]
\node[xnor gate US, draw, gray!50,line width=2pt] (A) {};
\foreach \x/\y/\z in {false/blue/1pt, true/red/2pt}
\foreach \a in {north, south, east, west, north east,
south east, north west, south west}
\draw[logic gate anchors use bounding box=\x, color=\y]
(A.\a) circle(\z);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
The library defines a number of shapes. For each shape the allowed number
of inputs is also shown:
%
\begin{itemize}
\item |and gate US|, two or more inputs
\item |and gate CDH|, two or more inputs
\item |nand gate US|, two or more inputs
\item |nand gate CDH|, two or more inputs
\item |or gate US|, two or more inputs
\item |nor gate US|, two or more Inputs
\item |xor gate US|, two inputs
\item |xnor gate US|, two inputs
\item |not gate US|, one input
\item |buffer gate US|, one input
\end{itemize}
In the following, we only have a detailed look at the anchors defined by
one of them. We choose the |nand gate US| because it shows all the
``interesting'' anchors.
\begin{shape}{nand gate US}
This shape is a nand gate, which supports two or more inputs. If less
than two inputs are specified an error will result. The anchors for
this gate with two non-inverted inputs (using the normal compass point
anchors) are shown below. Anchor |30| is an example of a border anchor.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.US}}]
\Huge
\begin{tikzpicture}
\node[name=s,shape=nand gate US,shape example, inner sep=0cm,
logic gate inputs={in},
logic gate inverted radius=.5cm] {Nand Gate\vrule width1pt height2cm};
\foreach \anchor/\placement in
{center/above, text/above, 30/above right,
mid/right, mid east/left, mid west/above,
base/below, base east/below, base west/left,
north/above, south/below, east/above, west/above,
north east/above, south east/below, south west/below, north west/above,
output/right, input 1/above, input 2/below}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
(For the definition of the |shape example| style, see
Section~\ref{section-libs-shapes}.)
\end{shape}
\end{pgflibrary}
\subsubsection{Implementation: The IEC-Style Logic Gates Shape Library}
\begin{pgflibrary}{shapes.gates.logic.IEC}
This library provides rectangular logic gate shapes. These shapes are
suffixed with |IEC| as they are based on gates recommended by the
International Electrotechnical Commission.
By default each gate is drawn with a symbol, $\char`\&$ for |and| and
|nand| gates, $\geq1$ for |or| and |nor| gates, $1$ for |not| and |buffer|
gates, and $=1$ for |xor| and |xnor| gates. These symbols are drawn
automatically (internally they are drawn using the ``foreground'' path),
and are not strictly speaking part of the node contents. However, the gate
is enlarged to make sure the symbols are within the border of the node. It
is possible to change the symbols and their position within the node using
the following keys:
\begin{key}{/pgf/and gate IEC symbol=\meta{text} (initially \char`\\char\char`\`\char`\\\char`\&)}
Set the symbol for the |and gate|. Note that if the node is filled,
this color will be used for the symbol, making it invisible, so it will
be necessary set \meta{text} to something like |\color{black}\char`\&|.
Alternatively, the |logic gate IEC symbol color| key can be used to set
the color of all symbols simultaneously.
In \tikzname, when the |use IEC style logic gates| key has been used,
this key can be replaced by |and gate symbol|.
\end{key}
\begin{key}{/pgf/nand gate IEC symbol=\meta{text} (initially \char`\\char\char`\`\char`\\\char`\&)}
Set the symbol for the |nand gate|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |nand gate symbol|.
\end{key}
\begin{key}{/pgf/or gate IEC symbol=\meta{text} (initially \char`\$\char`\\geq1\char`\$)}
Set the symbol for the |or gate|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |or gate symbol|.
\end{key}
\begin{key}{/pgf/nor gate IEC symbol=\meta{text} (initially \char`\$\char`\\geq1\char`\$)}
Set the symbol for the |nor gate|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |nor gate symbol|.
\end{key}
\begin{key}{/pgf/xor gate IEC symbol=\meta{text} (initially \char`\{\char`\$=1\char`\$\char`\})}
Set the symbol for the |xor gate|. Note the necessity for braces, as
the symbol contains |=|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |xor gate symbol|.
\end{key}
\begin{key}{/pgf/xnor gate IEC symbol=\meta{text} (initially \char`\{\char`\$=1\char`\$\char`\})}
Set the symbol for the |xnor gate|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |xnor gate symbol|.
\end{key}
\begin{key}{/pgf/not gate IEC symbol=\meta{text} (initially 1)}
Set the symbol for the |not gate|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |not gate symbol|.
\end{key}
\begin{key}{/pgf/buffer gate IEC symbol=\meta{text} (initially 1)}
Set the symbol for the |buffer gate|. In \tikzname, when the
|use IEC style logic gates| key has been used, this key can be replaced
by |buffer gate symbol|.
\end{key}
\begin{key}{/pgf/logic gate IEC symbol align=\meta{align} (initially top)}
Set the alignment of the logic gate symbol (in \tikzname, when the
|use IEC style logic gates| key has been used, |IEC| can be omitted).
The specification in \meta{align} is a comma separated list from |top|,
|bottom|, |left| or |right|. The distance between the border of the
node and the outer edge of the symbol is determined by the values of
the |inner xsep| and |inner ysep|.
%
\begin{codeexample}[preamble={\usetikzlibrary{shapes.gates.logic.IEC}}]
\begin{tikzpicture}[minimum size=1cm, use IEC style logic gates]
\tikzset{every node/.style={nor gate, draw}}
\node (A) at (0,1.5) {};
\node [logic gate symbol align={bottom, right}] (B) at (0,0) {};
\foreach \g in {A, B}{
\foreach \i in {1,2}
\draw ([xshift=-0.5cm]\g.input \i) -- (\g.input \i);
\draw (\g.output) -- ([xshift=0.5cm]\g.output);
}
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/pgf/logic gate IEC symbol color=\meta{color}}
This key sets the color for all symbols simultaneously. This color can
be overridden on a case by case basis by specifying a color when
setting the symbol text.
\end{key}
The library defines the following shapes:
%
\begin{itemize}
\item |and gate IEC|, two or more inputs
\item |nand gate IEC|, two or more inputs
\item |or gate IEC|, two or more inputs
\item |nor gate IEC|, two or more inputs
\item |xor gate IEC|, two inputs
\item |xnor gate IEC|, two inputs
\item |not gate IEC|, one input
\item |buffer gate IEC|, one input
\end{itemize}
Again, we only have a look at the nand-gate in more detail:
\begin{shape}{nand gate IEC}
This shape is a nand gate. It supports two or more inputs. If less than
two inputs are specified an error will result. The anchors for this
gate with two inverted inputs are shown below. Anchor |30| is an
example of a border anchor.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.logic.IEC}}]
\Huge
\begin{tikzpicture}
\node[name=s,shape=nand gate IEC ,shape example, inner xsep=1cm, inner ysep=1cm,
minimum height=6cm, nand gate IEC symbol=\color{black!30}\char`\&,
logic gate inputs={in},
logic gate inverted radius=0.65cm]
{Nand Gate\vrule width1pt height2cm};
\foreach \anchor/\placement in
{center/above, text/above, 30/above right,
mid/right, mid east/left, mid west/above,
base/below, base east/below, base west/left,
north/above, south/below, east/above, west/above,
north east/above, south east/below, south west/below, north west/above,
output/right, input 1/above, input 2/below}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
\end{shape}
\end{pgflibrary}
\subsection{Electrical Engineering Circuits}
\subsubsection{Overview}
An \emph{electrical engineering circuit} contains symbols like resistors or
capacitors or voltage sources and annotations like the two arrows pointing
toward an element whose behaviour is light dependent. The electrical
engineering libraries, abbreviated ee-libraries, provide such symbols and
annotations.
Just as for logical gates, there are different ways of drawing ee-symbols.
Currently, there is one main library for drawing circuits, which uses the
graphics from the International Electrotechnical Commission, but you can add
your own libs. This is why, just as for logical gates, there is a base library
and more specific libraries.
\begin{tikzlibrary}{circuits.ee}
This library declares the ee symbols, but (mostly) does not provide the
symbol graphics, which is left to the sublibraries. Just like the logical
gates library, a key is defined that is normally only used internally:
%
\begin{key}{/tikz/circuit ee}
This style calls the keys |circuit| (which internally calls
|every circuit| and the following style:
%
\begin{stylekey}{/tikz/every circuit ee}
Use this key to configure the appearance of logical circuits.
\end{stylekey}
\end{key}
The library also declares some standard annotations and units.
\end{tikzlibrary}
As for logical circuits, to draw a circuit the first step is to include a
library containing the symbols graphics. Currently, you have to include
|circuits.ee.IEC|.
\begin{tikzlibrary}{circuits.ee.IEC}
When this library is loaded, you can use the following style:
%
\begin{key}{/tikz/circuit ee IEC}
This style calls |circuit ee| and installs the IEC-like graphics for
the logical symbols like |resistor|.
\end{key}
\end{tikzlibrary}
Inside the |circuit ee IEC| scope, you can now use the keys for symbols, units,
and annotations listed in the later sections. We have a more detailed look at
one of each of them, all the others work the same way.
Let us start with an example of a symbol: the resistor symbol. The other
predefined symbols are listed in Section~\ref{section-circuits-ee-symbols} and
later sections.
\begin{key}{/tikz/resistor=\opt{\meta{options}}}
This key should be used with a |node| path command or with the |to| path
command.
\medskip\textbf{Using the Key with Normal Nodes.}
When used with a node, it will cause this node to ``look like'' a resistor
(by default, in the IEC library, this is just a simple rectangle).
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\node [resistor] {};
\end{codeexample}
Unlike normal nodes, a resistor node generally should not take any text (as
in |node [resistor] {foo}|). Instead, the labeling of resistors should be
done using the |label|, |info| and |ohm| options.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\node [resistor,ohm=5] {};
\end{codeexample}
The \meta{options} make no real sense when the |resistor| option is used
with a normal node, you can just as well given them to the |node| itself.
Thus, the following has the same effect as the above example:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\node [resistor={ohm=5}] {};
\end{codeexample}
In a circuit, you will often wish to rotate elements. For this, the options
|point up|, |point down|, |point left| or |point right| may be especially
useful. They are just shorthands for appropriate rotations like
|rotate=90|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] {
\node (R1) [resistor,point up,ohm=5] at (3,1) {};
\node (R2) [resistor,ohm=10k] at (0,0) {};
\draw (R2) -| (R1);
}
\end{codeexample}
\medskip\textbf{Using the Key on a To Path.}
When the |resistor| key is used on a |to| path inside a |circuit ee IEC|,
the |circuit handle symbol| key is called internally. This has a whole
bunch of effects:
%
\begin{enumerate}
\item The path currently being constructed is cut up to make place for
a node.
\item This node will be a |resistor node| that is rotated so that it
points ``along'' the path (unless an option like |shift only| or an
extra rotation is used to change this).
\item The \meta{options} passed to the |resistor| key are passed on to
the node.
\item The \meta{options} are pre-parsed to identify a |pos| key or a
key like |at start| or |midway|. These keys are used to determine
where on the |to| path the node will lie.
\end{enumerate}
Since the \meta{options} of the |resistor| key are passed on to the
resistor node on the path, you can use it to add labels to the node. Here
is a simple example:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\draw (0,0) to [resistor=red] (3,0)
to [resistor={ohm=2\mu}] (3,2);
\end{codeexample}
You can add multiple labels to a resistor and you can have multiple
resistors (or other elements) on a single path.
\medskip\textbf{Inputs, Outputs, and Anchors.}
Like the logical gates, all ee-symbols have an |input| and an |output|
anchor. Special-purpose-nodes may have even more anchors of this type.
Furthermore, the ee-symbols-nodes also have four standard compass direction
anchors.
\medskip\textbf{Changing the Appearance.}
To configure the appearance of all |resistor|s, see
Section~\ref{section-theming-symbols}. You can use the \meta{options} to
locally change the appearance of a single resistor.
\end{key}
Let us now have a look at an example of a unit: the Ohm unit. The other
predefined units are listed in Section~\ref{section-circuits-units}.
\begin{key}{/tikz/ohm=\meta{value}}
This key is used to add an |info| label to a node with a special text:
|$\mathrm{|\meta{value}|\Omega}$|. In other words, the |ohm| key can only
be used with the options of a node and, when used, it will cause the
\meta{value} to be placed next to the node, followed by $\Omega$. Since the
\meta{value} is typeset inside a |\mathrm| command, when you write |ohm=5k|
you get $\mathrm{5k\Omega}$, |ohm=5p| yields $\mathrm{5p\Omega}$, and
|ohm=5.6\cdot 10^{2}\mu| yields $\mathrm{5.6\cdot 10^{2}\mu\Omega}$.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \draw (0,0) to [resistor={ohm=5M}] (0,2);
\end{codeexample}
Instead of |ohm| you can also use |ohm'|, which places the label on the
other side.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \draw (0,0) to [resistor={ohm'=5M}] (0,2);
\end{codeexample}
Finally, there are also keys |ohm sloped| and |ohm' sloped| for having the
info label rotate together with the main node.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
\draw (0,0) to [resistor={ohm sloped=5M}] (0,2)
(2,0) to [resistor={ohm' sloped=6f}] (2,2);
\end{codeexample}
You can configure the appearance of an Ohm info label using the key
|every ohm|.
\end{key}
Finally, let us have a look at an annotation: the |light emitting| annotation.
The other predefined units are listed in
Section~\ref{section-circuits-annotations}.
\begin{key}{/tikz/light emitting=\opt{\meta{options}}}
Like a unit, an annotation should be given as an additional option to a
node. It causes some drawings (in this case, two parallel lines) to be
placed next to the node.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC] \draw (0,0) to [diode=light emitting] (2,0);
\end{codeexample}
The \meta{options} can be used for three different things:
%
\begin{enumerate}
\item You can use keys like |red| to change the appearance of this
annotation, locally.
\item You can use keys like |<-| or |-latex| to change the direction
and kinds of arrows used in the annotation.
\item You can use info labels like |ohm=5| or |info=foo| inside the
\meta{options}. These info labels will be added to the main node
(not to the annotation itself), but the label distance will have
been changed to accommodate for the space taken up by the
annotation.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz [circuit ee IEC]
{
\draw (0,2) to [diode={light emitting,info=not good}] (2,2);
\draw (0,0) to [diode={light emitting={info=better},
info'=also good}] (2,0);
}
\end{codeexample}
\end{enumerate}
In addition to |light emitting| there is also a key called
|light emitting'|, which simply places the annotation on the other side of
the node.
You can configure the appearance of annotations in three ways:
%
\begin{itemize}
\item You can set the |every circuit annotation| style.
\item You can set the |every light emitting| style.
\item You can set the following key:
%
\begin{stylekey}{/tikz/annotation arrow}
This style should set the default |>| arrow to some nice value.
\end{stylekey}
\end{itemize}
\end{key}
\def\eelineexample#1#2{%
\texttt{#1}\indexkey{#1}
&
\tikz[baseline=-.5ex,circuit ee IEC] \draw (0,0) to [#1] (3,0);
&
\relax\def\temp{#2}
\ifx\temp\empty\else
{\tikz[baseline=-.5ex,circuit ee IEC,set #2 graphic=var #2 IEC graphic]
\draw (0,0) to [#2] (3,0);}
\fi \\[.2em]
}
\def\eeendexample#1#2{%
\texttt{#1}\indexkey{#1}
&
\tikz[baseline=-.5ex,circuit ee IEC] \draw (0,0) to [#1={at end}] (1.5,0)(3,0);
&
\relax\def\temp{#2}
\ifx\temp\empty\else
{\tikz[baseline=-.5ex,circuit ee IEC,set #2 graphic=var #2 IEC graphic]
\draw (0,0) to [#2={at end}] (1.5,0)(3,0);}
\fi \\[.2em]
}
\def\unitexample#1{%
\texttt{#1}\indexkey{#1}
&
\tikz [baseline,inner sep=0pt] \node[#1=1] {};\\
}
\def\annotationexample#1{%
\texttt{#1}\indexkey{#1}
&
\tikz[baseline=-.5ex,circuit ee IEC]
\draw (0,0) to [resistor={#1}] (2,0)
to [diode ={#1'}] (4,0);\\
}
\def\empty{}
\subsubsection{Symbols: Indicating Current Directions}
\label{section-ee-symbols}
\label{section-circuits-ee-symbols}
There \todosp{why two labels? The first doesn't seem to be used.} are two
symbols for indicating current directions. These symbols are defined directly
inside |circuit ee|.
\medskip
\noindent
\begin{tabular}{p{5cm}ll}
\emph{Key} & \emph{Appearance}\\[.25em]
\eelineexample{/tikz/current direction}{}
\eelineexample{/tikz/current direction'}{}
\end{tabular}
\medskip
The examples have been produced by (in essence)
|\draw (0,0) to[|\meta{symbol name}|] (3,0);|.
\subsubsection{Symbols: Basic Elements}
The following table show basic symbols as they are depicted inside the
|circuit ee IEC| environment. To install one of alternate graphics, you have to
say |set| \meta{symbol name} |graphic=var| \meta{symbol name} |IEC graphic|.
\medskip
\noindent
\begin{tabular}{p{5cm}ll}
\emph{Key} & \emph{Appearance} & \emph{Alternate appearance} \\[.25em]
\eelineexample{/tikz/resistor}{resistor}
\eelineexample{/tikz/inductor}{inductor}
\eelineexample{/tikz/capacitor}{}
\eelineexample{/tikz/battery}{}
\eelineexample{/tikz/bulb}{}
\eelineexample{/tikz/current source}{}
\eelineexample{/tikz/voltage source}{}
\eelineexample{/tikz/ac source}{}
\eelineexample{/tikz/dc source}{}
\eeendexample{/tikz/ground}{}
\end{tabular}
\subsubsection{Symbols: Diodes}
The following table shows diodes as they are depicted inside the
|circuit ee IEC| environment.
\medskip
\noindent
\begin{tabular}{p{5cm}ll}
\emph{Key} & \emph{Appearance} & \emph{Alternate appearance} \\[.25em]
\eelineexample{/tikz/diode}{diode}
\eelineexample{/tikz/Zener diode}{Zener diode}
\eelineexample{/tikz/Schottky diode}{Schottky diode}
\eelineexample{/tikz/tunnel diode}{tunnel diode}
\eelineexample{/tikz/backward diode}{backward diode}
\eelineexample{/tikz/breakdown diode}{breakdown diode}
\end{tabular}
\subsubsection{Symbols: Contacts}
The following table shows contacts as they are depicted inside the
|circuit ee IEC| environment.
\medskip
\noindent
\begin{tabular}{p{5cm}ll}
\emph{Key} & \emph{Appearance} & \emph{Alternate appearance} \\[.25em]
\eelineexample{/tikz/contact}{}
\eelineexample{/tikz/make contact}{make contact}
\eelineexample{/tikz/break contact}{}
\end{tabular}
\subsubsection{Symbols: Measurement devices}
The following table shows measurement devices as they are depicted inside the
|circuit ee IEC| environment.
\medskip
\noindent
\begin{tabular}{p{5cm}ll}
\emph{Key} & \emph{Appearance} \\[.25em]
\eelineexample{/tikz/amperemeter}{}
\eelineexample{/tikz/voltmeter}{}
\eelineexample{/tikz/ohmmeter}{}
\end{tabular}
\subsubsection{Units}
\label{section-circuits-units}
The |circuits.ee| library predefines the following unit keys:
\medskip
\noindent
\begin{tabular}{p{5cm}c}
\emph{Key} & \emph{Appearance of $1$ unit} \\[.25em]
\unitexample{/tikz/ampere}
\unitexample{/tikz/volt}
\unitexample{/tikz/ohm}
\unitexample{/tikz/siemens}
\unitexample{/tikz/henry}
\unitexample{/tikz/farad}
\unitexample{/tikz/coulomb}
\unitexample{/tikz/voltampere}
\unitexample{/tikz/watt}
\unitexample{/tikz/hertz}
\end{tabular}
\subsubsection{Annotations}
\label{section-circuits-annotations}
The |circuits.ee.IEC| library defines the following annotations:
\medskip
\noindent
\begin{tabular}{p{5cm}ll}
\emph{Key} & \emph{Appearance} \\[.25em]
\annotationexample{/tikz/light emitting}
\annotationexample{/tikz/light dependent}
\annotationexample{/tikz/direction info}
\annotationexample{/tikz/adjustable}
\end{tabular}
\medskip
The lines have been produced using, in essence,
%
\begin{codeexample}[code only]
\draw (0,0) to [resistor=light emitting] (2,0) to [diode=light emitting'] (4,0);
\end{codeexample}
%
and similarly for the other annotations.
\subsubsection{Implementation: The EE-Symbols Shape Library}
The \tikzname\ libraries depend on two shape libraries, which are included
automatically. Usually, you will not need to use these shapes directly.
\begin{pgflibrary}{shapes.gates.ee}
This library defines basic shapes that can be used by all ee-circuit
libraries. Currently, it defines the following shapes:
%
\begin{itemize}
\item |rectangle ee|
\item |circle ee|
\item |direction ee|
\end{itemize}
%
Additionally, the library defines the following arrow tip: The
|direction ee| arrow tip is basically the same as a |triangle 45| arrow tip
with rounded joins.
\begin{tabular}{ll}
\symarrow{direction ee}
\end{tabular}
However, unlike normal arrow tips, its size does \emph{not} depend on the
current line width. Rather, it depends on the value of its arrow options,
which should be set to the desired size. Thus, you should say something
like |\pgfsetarrowoptions{direction ee}{5pt}| to set the size of the arrow.
\end{pgflibrary}
\begin{shape}{rectangle ee}
This shape is completely identical to a normal |rectangle|, only there are
two additional anchors: The |input| anchor is an alias for the |west|
anchor, while the |output| anchor is an alias for the |east| anchor.
\end{shape}
\begin{shape}{circle ee}
Like the |rectangle ee| shape, only for circles.
\end{shape}
\begin{shape}{direction ee}
This shape is rather special. It is intended to be used to ``turn an arrow
tip into a shape''. First, you should set the following key to the name of
an arrow tip:
%
\begin{key}{/pgf/direction ee arrow=\meta{right arrow tip name}}
The value of this key will be used for the arrow tip depicted in an
|direction ee| shape.
\end{key}
%
When a node of shape |direction ee| is created, several things happen:
%
\begin{enumerate}
\item The size of the shape is computed according to the following
rules: The width of the shape is set up so that the left border of
the shape is at the left end of the arrow tip and the right border
is at the right end of the arrow tip. These left and right ``ends''
of the arrow are the tip end and the back end specified by the
arrow itself (see Section~\ref{section-arrow-terminology} for
details). You usually need not worry about this width setting.
By comparison, the height of the arrow is given by the current
setting of |minimum height|. Thus, this key must have been set up
correctly to reflect the ``real'' height of the arrow tip. The
reason is that the height of an arrow is not specified when arrows
are declared and is, thus, not available, here.
Possibly, the height computation will change in the future to
reflect the real height of the arrow, so you should generally set
up the |minimum height| to be the same as the real height.
\item A straight line from left to right inside the shape's boundaries
is added to the background path.
\item The arrow tip, pointing right, is drawn before the background
path.
\end{enumerate}
%
The anchors of this shape are just the compass anchors, which lie on a
rectangle whose width and height are the above-computed height and width.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\pgfsetarrowoptions{direction ee}{6cm}
\node[name=s,shape=direction ee,shape example,minimum height=0.7654*6cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}[direction ee arrow=angle 45]
\node[name=s,shape=direction ee,shape example,minimum height=1.75cm] {};
\foreach \anchor/\placement in {north/above, south/below,
output/right, input/left}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
%
\end{shape}
\subsubsection{Implementation: The IEC-Style EE-Symbols Shape Library}
\begin{pgflibrary}{shapes.gates.ee.IEC}
This library defines shapes for depicting ee symbols according to the IEC
recommendations. These shapes will typically be used in conjunction with
the graphic mechanism detailed earlier, but you can also used them
directly.
\end{pgflibrary}
\begin{shape}{generic circle IEC}
This shape inherits from |circle ee|, which in turn is just a normal
|circle| with additional |input| and |output| anchors at the left and right
ends. However, additionally, this shape allows you to specify a path that
should be added before the background path using the following key:
%
\begin{key}{/pgf/generic circle IEC/before background=\meta{code}}
When a node of shape |generic circle IEC| is created, the current
setting of this key is used as the ``before background path''. This
means that after the circle's background has been
drawn/filled/whatever, the \meta{code} is executed.
When the \meta{code} is executed, the coordinate system will have been
transformed in such a way that the point $(1\mathrm{pt},0\mathrm{pt})$
lies at the right end of the circle and $(0\mathrm{pt},1\mathrm{pt})$
lies at the top of the circle. (More precisely, these points will lie
exactly on the middle of the radial line.)
\end{key}
%
Here is an examples of how to use this shape:
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz \node [generic circle IEC,
/pgf/generic circle IEC/before background={
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpoint{1pt}{0pt}}
\pgfpathlineto{\pgfpoint{0pt}{1pt}}
\pgfpathlineto{\pgfpoint{-0.5pt}{-0.5pt}}
\pgfusepathqstroke
},
draw] {Hello world};
\end{codeexample}
%
\end{shape}
\begin{shape}{generic diode IEC}
This shape is used to depict diodes. The main shape is taken up by a
``right pointing'' triangle. The anchors are positioned on the border of a
rectangle around the diode, see the below example. The diode's size is
based on the current settings of |minimum width| and |minimum height|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\node[name=s,shape=generic diode IEC,shape example,minimum size=6cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
This shape, like the |generic circle IEC| shape, is generic in the sense
that there is a special key that is used for the before background
drawings:
%
\begin{key}{/pgf/generic diode IEC/before background=\meta{code}}
Similarly to the |generic circle IEC| shape, when a node of shape
|generic diode IEC| is created, the current setting of this key is used
as the ``before background path''. When the \meta{code} is executed,
the coordinate system will have been transformed in such a way that the
origin is at the ``tip'' of the diode's triangle, the point
$(0\mathrm{pt},1\mathrm{pt})$ is exactly half the diode's height above
this origin, and the point $(1\mathrm{pt},0\mathrm{pt})$ is half the
diode's height to the right of the origin.
The idea is that you use this key to draw different kinds of diode
endings.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz \node [minimum size=1cm,generic diode IEC,
/pgf/generic diode IEC/before background={
\pgfpathmoveto{\pgfqpoint{-.5pt}{-1pt}}
\pgfpathlineto{\pgfqpoint{.5pt}{-1pt}}
\pgfpathmoveto{\pgfqpoint{0pt}{-1pt}}
\pgfpathlineto{\pgfqpoint{0pt}{1pt}}
\pgfpathmoveto{\pgfqpoint{-.5pt}{1pt}}
\pgfpathlineto{\pgfqpoint{.5pt}{1pt}}
\pgfusepathqstroke
},
draw] {};
\end{codeexample}
\end{key}
\end{shape}
\begin{shape}{breakdown diode IEC}
This shape is used to depict a bidirectional breakdown diode. The diode's
size is based on the current settings of |minimum width| and
|minimum height|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\node[name=s,shape=breakdown diode IEC,shape example,minimum width=6cm,minimum height=4cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
%
\end{shape}
\begin{shape}{var resistor IEC}
This shape is used to depict a variant version of a resistor. Its size is
computed as for a rectangle (thus, its size depends things like the
|minimum height|). Then, inside this rectangle, a background path is set up
according to the following rule: Starting from the left end, zigzag
segments are added to the path. Each segment consists of a line at a 45
degree angle going up to the top of the rectangle, then going down to the
bottom, then going up to mid height of the node. As many segments as
possible are put inside as possible. The last segment is then connected to
the output anchor via a straight line.
All of this means that, in general, the shape should be much wider than
high.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\node[name=s,shape=var resistor IEC,shape example,minimum width=7cm,minimum height=1cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
%
\end{shape}
\begin{shape}{inductor IEC}
This shape is used to depict an inductor, using a bumpy line. Its size is
computed as follows: Any text and |inner sep| are ignored (and should
normally not be given). The |minimum height| plus (twice) the |outer ysep|
specify the distance between the |north| and |south| anchors, similarly for
the |minimum width| plus the |outer xsep| for the |east| and |west|. The
bumpy line is drawn starting from the lower left corner to the lower right
corner with bumps being half-circles whose height is exactly the
|minimum height|. The |center| of the shape is just above the |south|
anchor, at a distance of the |outer ysep|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\node[name=s,shape=inductor IEC,shape example,minimum width=7cm,minimum height=1cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
%
Just as for a |var resistor IEC|, as many bumps as possible are added and
the last bump is connected to the output anchor via a straight line.
\end{shape}
\begin{shape}{capacitor IEC}
This shape is based on a |rectangle ee|. However, instead of a rectangle as
the background path, only the ``left and right lines'' that make up the
rectangle are drawn.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\node[name=s,shape=capacitor IEC,shape example,
minimum width=2cm,minimum height=3cm,inner sep=0pt] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
%
\end{shape}
\begin{shape}{battery IEC}
This shape is similar to a |capacitor IEC|, however, the right line is only
half the height of the left line.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz \node[shape=battery IEC,shape example,minimum size=2cm,
inner sep=0pt] {};
\end{codeexample}
%
\end{shape}
\begin{shape}{ground IEC}
This shape is similar to a |batter IEC|, only three lines of different
heights are drawn.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz \node[shape=ground IEC,shape example,minimum size=2cm,
inner sep=0pt] {};
\end{codeexample}
%
\end{shape}
\begin{shape}{make contact IEC}
This shape consists of a line going from the lower left corner to the upper
right corner. The size and anchors of this shape are computed in the same
way as for an |inductor IEC|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\begin{tikzpicture}
\node[name=s,shape=make contact IEC,shape example,minimum width=3cm,minimum height=1cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
\end{codeexample}
%
\end{shape}
\begin{shape}{var make contact IEC}
This shape works like |make contact IEC|, only a little circle is added to
the path at the lower left corner. The radius of this circle is one twelfth
of the width of the node.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz \node[shape=var make contact IEC,shape example,
minimum height=1cm,minimum width=3cm,inner sep=0pt] {};
\end{codeexample}
%
\end{shape}
\begin{shape}{break contact IEC}
This shape depicts a contact that can be broken. It works like
|make contact IEC|.
%
\begin{codeexample}[preamble={\usetikzlibrary{circuits.ee.IEC}}]
\tikz \node[shape=break contact IEC,shape example,
minimum height=1cm,minimum width=3cm,inner sep=0pt] {};
\end{codeexample}
%
\end{shape}
|