1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
% Copyright 2018 by Mark Wibrow
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\section{Additional Mathematical Commands}
\label{pgfmath-commands}
Instead of parsing and evaluating complex expressions, you can also use the
mathematical engine to evaluate a single mathematical operation. The macros
used for many of these computations are listed above in
Section~\ref{pgfmath-functions}. \pgfname{} also provides some additional
commands which are shown below:
\subsection{Basic arithmetic functions}
\label{pgfmath-commands-basic}
In addition to the commands described in Section~\ref{pgfmath-functions-basic},
the following command is provided:
\begin{command}{\pgfmathreciprocal\marg{x}}
Defines |\pgfmathresult| as $1\div\meta{x}$. This provides greatest
accuracy when \mvar{x} is small.
\end{command}
\subsection{Comparison and logical functions}
In addition to the commands described in
Section~\ref{pgfmath-functions-comparison}, the following command was provided
by Christian Feuers\"anger:
\begin{command}{\pgfmathapproxequalto\marg{x}\marg{y}}
Defines |\pgfmathresult| 1.0 if $ \rvert \meta{x} - \meta{y} \lvert <
0.0001$, but 0.0 otherwise. As a side-effect, the global boolean
|\ifpgfmathcomparison| will be set accordingly.
\end{command}
\subsection{Pseudo-Random Numbers}
\label{pgfmath-random}
In addition to the commands described in
Section~\ref{pgfmath-functions-random}, the following commands are provided:
\begin{command}{\pgfmathgeneratepseudorandomnumber}
Defines |\pgfmathresult| as a pseudo-random integer between 1 and
$2^{31}-1$. This uses a linear congruency generator, based on ideas of
Erich Janka.
\end{command}
\begin{command}{\pgfmathrandominteger\marg{macro}\marg{minimum}\marg{maximum}}
This defines \meta{macro} as a pseudo-randomly generated integer from the
range \meta{minimum} to \meta{maximum} (inclusive).
%
\begin{codeexample}[]
\begin{pgfpicture}
\foreach \x in {1,...,50}{
\pgfmathrandominteger{\a}{1}{50}
\pgfmathrandominteger{\b}{1}{50}
\pgfpathcircle{\pgfpoint{+\a pt}{+\b pt}}{+2pt}
\color{blue!40!white}
\pgfsetstrokecolor{blue!80!black}
\pgfusepath{stroke, fill}
}
\end{pgfpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathdeclarerandomlist\marg{list name}{\ttfamily\{}\marg{item-1}\marg{item-2}...{\ttfamily\}}}
This creates a list of items with the name \meta{list name}.
\end{command}
\begin{command}{\pgfmathrandomitem\marg{macro}\marg{list name}}
Select an item from a random list \meta{list name}. The
selected item is placed in \meta{macro}.
\end{command}
\begin{codeexample}[]
\begin{pgfpicture}
\pgfmathdeclarerandomlist{color}{{red}{blue}{green}{yellow}{white}}
\foreach \a in {1,...,50}{
\pgfmathrandominteger{\x}{1}{85}
\pgfmathrandominteger{\y}{1}{85}
\pgfmathrandominteger{\r}{5}{10}
\pgfmathrandomitem{\c}{color}
\pgfpathcircle{\pgfpoint{+\x pt}{+\y pt}}{+\r pt}
\color{\c!40!white}
\pgfsetstrokecolor{\c!80!black}
\pgfusepath{stroke, fill}
}
\end{pgfpicture}
\end{codeexample}
\begin{command}{\pgfmathsetseed\marg{integer}}
Explicitly sets the seed for the pseudo-random number generator. By default
it is set to the value of |\time|$\times$|\year|.
\end{command}
\subsection{Base Conversion}
\label{pgfmath-bases}
\pgfname{} provides limited support for conversion between
\emph{representations} of numbers. Currently the numbers must be positive
integers in the range $0$ to $2^{31}-1$, and the bases in the range $2$ to
$36$. All digits representing numbers greater than 9 (in base ten), are
alphabetic, but may be upper or lower case.
In addition to the commands described in Section~\ref{pgfmath-functions-base},
the following commands are provided:
\begin{command}{\pgfmathbasetodec\marg{macro}\marg{number}\marg{base}}
Defines \meta{macro} as the result of converting \meta{number} from base
\meta{base} to base 10. Alphabetic digits can be upper or lower case.
\medskip{\def\medskip{}
\begin{codeexample}[]
\pgfmathbasetodec\mynumber{107f}{16} \mynumber
\end{codeexample}
\noindent Note that, as usual in \TeX, the braces around an argument can be
omitted if the argument is just a single token (a macro name is a single
token).
%
\begin{codeexample}[]
\pgfmathbasetodec\mynumber{33FC}{20} \mynumber
\end{codeexample}
}\medskip
%
\end{command}
\begin{command}{\pgfmathdectobase\marg{macro}\marg{number}\marg{base}}
Defines \meta{macro} as the result of converting \meta{number} from base 10
to base \meta{base}. Any resulting alphabetic digits are in \emph{lower
case}.
%
\begin{codeexample}[]
\pgfmathdectobase\mynumber{65535}{16} \mynumber
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathdectoBase\marg{macro}\marg{number}\marg{base}}
Defines \meta{macro} as the result of converting \meta{number} from base 10
to base \meta{base}. Any resulting alphabetic digits are in \emph{upper
case}.
%
\begin{codeexample}[]
\pgfmathdectoBase\mynumber{65535}{16} \mynumber
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathbasetobase\marg{macro}\marg{number}\marg{base-1}\marg{base-2}}
Defines \meta{macro} as the result of converting \meta{number} from base
\meta{base-1} to base \meta{base-2}. Alphabetic digits in \meta{number} can
be upper or lower case, but any resulting alphabetic digits are in
\emph{lower case}.
%
\begin{codeexample}[]
\pgfmathbasetobase\mynumber{11011011}{2}{16} \mynumber
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathbasetoBase\marg{macro}\marg{number}\marg{base-1}\marg{base-2}}
Defines \meta{macro} as the result of converting \meta{number} from base
\meta{base-1} to base \meta{base-2}. Alphabetic digits in \meta{number} can
be upper or lower case, but any resulting alphabetic digits are in
\emph{upper case}.
%
\begin{codeexample}[]
\pgfmathbasetoBase\mynumber{121212}{3}{12} \mynumber
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathsetbasenumberlength\marg{integer}}
Sets the number of digits in the result of a base conversion to
\meta{integer}. If the result of a conversion has less digits than this
number, it is prefixed with zeros.
%
\begin{codeexample}[]
\pgfmathsetbasenumberlength{8}
\pgfmathdectobase\mynumber{15}{2} \mynumber
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathtodigitlist\marg{macro}\marg{number}}
This command converts \meta{number} into a comma-separated list of digits
and stores the result in \meta{macro}. The \marg{number} is \emph{not}
parsed before processing.
%
\begin{codeexample}[]
\pgfmathsetbasenumberlength{8}
\begin{tikzpicture}[x=0.25cm, y=0.25cm]
\foreach \n [count=\y] in {0, 60, 102, 102, 126, 102, 102, 102, 0}{
\pgfmathdectobase{\binary}{\n}{2}
\pgfmathtodigitlist{\digitlist}{\binary}
\foreach \digit [count=\x, evaluate={\c=\digit*50+15;}] in \digitlist
\fill [fill=black!\c] (\x, -\y) rectangle ++(1,1);
}
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\subsection{Angle Computations}
Unlike the rest of the math engine, which is a ``standalone'' package, the
following commands only work in conjunction with the core of \pgfname.
\begin{command}{\pgfmathanglebetweenpoints\marg{p}\marg{q}}
Returns the angle of a line from \meta{p} to \meta{q} relative to a line
going straight right from \meta{p}.
%
\begin{codeexample}[]
\pgfmathanglebetweenpoints{\pgfpoint{1cm}{3cm}}{\pgfpoint{2cm}{4cm}}
\pgfmathresult
\end{codeexample}
%
\end{command}
\begin{command}{\pgfmathanglebetweenlines\marg{$p_1$}\marg{$q_1$}\marg{$p_2$}\marg{$q_2$}}
Returns the clockwise angle between a line going through $p_1$ and $q_1$
and a line going through $p_2$ and $q_2$.
%
\begin{codeexample}[]
\pgfmathanglebetweenlines{\pgfpoint{1cm}{3cm}}{\pgfpoint{2cm}{4cm}}
{\pgfpoint{0cm}{1cm}}{\pgfpoint{1cm}{0cm}}
\pgfmathresult
\end{codeexample}
%
\end{command}
|