1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
|
% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\section{Specifying Coordinates}
\subsection{Overview}
A \emph{coordinate} is a position on the canvas on which your picture is drawn.
\tikzname\ uses a special syntax for specifying coordinates. Coordinates are
always put in round brackets. The general syntax is
\declare{|(|\opt{|[|\meta{options}|]|}\meta{coordinate specification}|)|}.
The \meta{coordinate specification} specifies coordinates using one of many
different possible \emph{coordinate systems}. Examples are the Cartesian
coordinate system or polar coordinates or spherical coordinates. No matter
which coordinate system is used, in the end, a specific point on the canvas is
represented by the coordinate.
There are two ways of specifying which coordinate system should be used:
%
\begin{description}
\item[Explicitly] You can specify the coordinate system explicitly. To do
so, you give the name of the coordinate system at the beginning,
followed by |cs:|, which stands for ``coordinate system'', followed by
a specification of the coordinate using the key--value syntax. Thus,
the general syntax for \meta{coordinate specification} in the explicit
case is |(|\meta{coordinate system}| cs:|\meta{list of key--value pairs
specific to the coordinate system}|)|.
\item[Implicitly] The explicit specification is often too verbose when
numerous coordinates should be given. Because of this, for the
coordinate systems that you are likely to use often a special syntax
is provided. \tikzname\ will notice when you use a coordinate
specified in a special syntax and will choose the correct coordinate
system automatically.
\end{description}
Here is an example in which explicit the coordinate systems are specified
explicitly:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (canvas cs:x=0cm,y=2mm)
-- (canvas polar cs:radius=2cm,angle=30);
\end{tikzpicture}
\end{codeexample}
%
In the next example, the coordinate systems are implicit:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0cm,2mm) -- (30:2cm);
\end{tikzpicture}
\end{codeexample}
It is possible to give options that apply only to a single coordinate, although
this makes sense for transformation options only. To give transformation
options for a single coordinate, give these options at the beginning in
brackets:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1);
\draw[red] (0,0) -- ([xshift=3pt] 1,1);
\draw (1,0) -- +(30:2cm);
\draw[red] (1,0) -- +([shift=(135:5pt)] 30:2cm);
\end{tikzpicture}
\end{codeexample}
\subsection{Coordinate Systems}
\subsubsection{Canvas, XYZ, and Polar Coordinate Systems}
Let us start with the basic coordinate systems.
\begin{coordinatesystem}{canvas}
The simplest way of specifying a coordinate is to use the |canvas|
coordinate system. You provide a dimension $d_x$ using the |x=| option and
another dimension $d_y$ using the |y=| option. The position on the canvas
is located at the position that is $d_x$ to the right and $d_y$ above the
origin.
\begin{key}{/tikz/cs/x=\meta{dimension} (initially 0pt)}
Distance by which the coordinate is to the right of the origin. You can
also write things like |1cm+2pt| since the mathematical engine is used
to evaluate the \meta{dimension}.
\end{key}
\begin{key}{/tikz/cs/y=\meta{dimension} (initially 0pt)}
Distance by which the coordinate is above the origin.
\end{key}
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\fill (canvas cs:x=1cm,y=1.5cm) circle (2pt);
\fill (canvas cs:x=2cm,y=-5mm+2pt) circle (2pt);
\end{tikzpicture}
\end{codeexample}
To specify a coordinate in the coordinate system implicitly, you use two
dimensions that are separated by a comma as in |(0cm,3pt)| or
|(2cm,\textheight)|.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\fill (1cm,1.5cm) circle (2pt);
\fill (2cm,-5mm+2pt) circle (2pt);
\end{tikzpicture}
\end{codeexample}
%
\end{coordinatesystem}
\begin{coordinatesystem}{xyz}
The |xyz| coordinate system allows you to specify a point as a multiple of
three vectors called the $x$-, $y$-, and $z$-vectors. By default, the
$x$-vector points 1cm to the right, the $y$-vector points 1cm upwards, but
this can be changed arbitrarily as explained in Section~\ref{section-xyz}.
The default $z$-vector points to
$\bigl(-3.85\textrm{mm},-3.85\textrm{mm}\bigr)$.
To specify the factors by which the vectors should be multiplied before
being added, you use the following three options:
%
\begin{key}{/tikz/cs/x=\meta{factor} (initially 0)}
Factor by which the $x$-vector is multiplied.
\end{key}
%
\begin{key}{/tikz/cs/y=\meta{factor} (initially 0)}
Works like |x|.
\end{key}
%
\begin{key}{/tikz/cs/z=\meta{factor} (initially 0)}
Works like |x|.
\end{key}
\begin{codeexample}[]
\begin{tikzpicture}[->]
\draw (0,0) -- (xyz cs:x=1);
\draw (0,0) -- (xyz cs:y=1);
\draw (0,0) -- (xyz cs:z=1);
\end{tikzpicture}
\end{codeexample}
This coordinate system can also be selected implicitly. To do so, you just
provide two or three comma-separated factors (not dimensions).
%
\begin{codeexample}[]
\begin{tikzpicture}[->]
\draw (0,0) -- (1,0);
\draw (0,0) -- (0,1,0);
\draw (0,0) -- (0,0,1);
\end{tikzpicture}
\end{codeexample}
%
\end{coordinatesystem}
\emph{Note:} It is possible to use coordinates like |(1,2cm)|, which are
neither |canvas| coordinates nor |xyz| coordinates. The rule is the following:
If a coordinate is of the implicit form |(|\meta{x}|,|\meta{y}|)|, then
\meta{x} and \meta{y} are checked, independently, whether they have a dimension
or whether they are dimensionless. If both have a dimension, the |canvas|
coordinate system is used. If both lack a dimension, the |xyz| coordinate
system is used. If \meta{x} has a dimension and \meta{y} has not, then the sum
of two coordinate |(|\meta{x}|,0pt)| and |(0,|\meta{y}|)| is used. If \meta{y}
has a dimension and \meta{x} has not, then the sum of two coordinate
|(|\meta{x}|,0)| and |(0pt,|\meta{y}|)| is used.
\emph{Note furthermore:} An expression like |(2+3cm,0)| does \emph{not} mean
the same as |(2cm+3cm,0)|. Instead, if \meta{x} or \meta{y} internally uses a
mixture of dimensions and dimensionless values, then all dimensionless values
are ``upgraded'' to dimensions by interpreting them as |pt|. So, |2+3cm| is the
same dimension as |2pt+3cm|.
\begin{coordinatesystem}{canvas polar}
The |canvas polar| coordinate system allows you to specify polar
coordinates. You provide an angle using the |angle=| option and a radius
using the |radius=| option. This yields the point on the canvas that is at
the given radius distance from the origin at the given degree. An angle of
zero degrees to the right, a degree of 90 upward.
%
\begin{key}{/tikz/cs/angle=\meta{degrees}}
The angle of the coordinate. The angle must always be given in degrees.
\end{key}
%
\begin{key}{/tikz/cs/radius=\meta{dimension}}
The distance from the origin.
\end{key}
%
\begin{key}{/tikz/cs/x radius=\meta{dimension}}
A polar coordinate is, after all, just a point on a circle of the given
\meta{radius}. When you provide an $x$-radius and also a $y$-radius,
you specify an ellipse instead of a circle. The |radius| option has the
same effect as specifying identical |x radius| and |y radius| options.
\end{key}
%
\begin{key}{/tikz/cs/y radius=\meta{dimension}}
Works like |x radius|.
\end{key}
%
\begin{codeexample}[]
\tikz \draw (0,0) -- (canvas polar cs:angle=30,radius=1cm);
\end{codeexample}
The implicit form for canvas polar coordinates is the following: you
specify the angle and the distance, separated by a colon as in |(30:1cm)|.
%
\begin{codeexample}[]
\tikz \draw (0cm,0cm) -- (30:1cm) -- (60:1cm) -- (90:1cm)
-- (120:1cm) -- (150:1cm) -- (180:1cm);
\end{codeexample}
Two different radii are specified by writing |(30:1cm and 2cm)|.
For the implicit form, instead of an angle given as a number you can also
use certain words. For example, |up| is the same as |90|, so that you can
write |\tikz \draw (0,0) -- (2ex,0pt) -- +(up:1ex);| and get
\tikz \draw (0,0) -- (2ex,0pt) -- +(up:1ex);. Apart from |up| you can use
|down|, |left|, |right|, |north|, |south|, |west|, |east|, |north east|,
|north west|, |south east|, |south west|, all of which have their natural
meaning.
\end{coordinatesystem}
\begin{coordinatesystem}{xyz polar}
This coordinate system work similarly to the |canvas polar| system.
However, the radius and the angle are interpreted in the $xy$-coordinate
system, not in the canvas system. More detailed, consider the circle or
ellipse whose half axes are given by the current $x$-vector and the current
$y$-vector. Then, consider the point that lies at a given angle on this
ellipse, where an angle of zero is the same as the $x$-vector and an angle
of 90 is the $y$-vector. Finally, multiply the resulting vector by the
given radius factor. Voil\`a.
%
\begin{key}{/tikz/cs/angle=\meta{degrees}}
The angle of the coordinate interpreted in the ellipse whose axes are
the $x$-vector and the $y$-vector.
\end{key}
%
\begin{key}{/tikz/cs/radius=\meta{factor}}
A factor by which the $x$-vector and $y$-vector are multiplied prior to
forming the ellipse.
\end{key}
%
\begin{key}{/tikz/cs/x radius=\meta{dimension}}
A specific factor by which only the $x$-vector is multiplied.
\end{key}
%
\begin{key}{/tikz/cs/y radius=\meta{dimension}}
Works like |x radius|.
\end{key}
%
\begin{codeexample}[]
\begin{tikzpicture}[x=1.5cm,y=1cm]
\draw[help lines] (0cm,0cm) grid (3cm,2cm);
\draw (0,0) -- (xyz polar cs:angle=0,radius=1);
\draw (0,0) -- (xyz polar cs:angle=30,radius=1);
\draw (0,0) -- (xyz polar cs:angle=60,radius=1);
\draw (0,0) -- (xyz polar cs:angle=90,radius=1);
\draw (xyz polar cs:angle=0,radius=2)
-- (xyz polar cs:angle=30,radius=2)
-- (xyz polar cs:angle=60,radius=2)
-- (xyz polar cs:angle=90,radius=2);
\end{tikzpicture}
\end{codeexample}
The implicit version of this option is the same as the implicit version of
|canvas polar|, only you do not provide a unit.
\begin{codeexample}[]
\tikz[x={(0cm,1cm)},y={(-1cm,0cm)}]
\draw (0,0) -- (30:1) -- (60:1) -- (90:1)
-- (120:1) -- (150:1) -- (180:1);
\end{codeexample}
%
\end{coordinatesystem}
\begin{coordinatesystem}{xy polar}
This is just an alias for |xyz polar|, which some people might prefer as
there is no z-coordinate involved in the |xyz polar| coordinates.
\end{coordinatesystem}
\subsubsection{Barycentric Systems}
\label{section-barycentric-coordinates}
In the barycentric coordinate system a point is expressed as the linear
combination of multiple vectors. The idea is that you specify vectors $v_1$,
$v_2$, \dots, $v_n$ and numbers $\alpha_1$, $\alpha_2$, \dots, $\alpha_n$. Then
the barycentric coordinate specified by these vectors and numbers is
%
\begin{align*}
\frac{\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n}{\alpha_1
+ \alpha_2 + \cdots + \alpha_n}
\end{align*}
The |barycentric cs| allows you to specify such coordinates easily.
\begin{coordinatesystem}{barycentric}
For this coordinate system, the \meta{coordinate specification} should be a
comma-separated list of expressions of the form \meta{node
name}|=|\meta{number}. Note that (currently) the list should not contain
any spaces before or after the \meta{node name} (unlike normal key--value
pairs).
The specified coordinate is now computed as follows: Each pair provides one
vector and a number. The vector is the |center| anchor of the \meta{node
name}. The number is the \meta{number}. Note that (currently) you cannot
specify a different anchor, so that in order to use, say, the |north|
anchor of a node you first have to create a new coordinate at this north
anchor. (Using for instance \texttt{\string\coordinate (mynorth) at
(mynode.north);}.)
%
\begin{codeexample}[]
\begin{tikzpicture}
\coordinate (content) at (90:3cm);
\coordinate (structure) at (210:3cm);
\coordinate (form) at (-30:3cm);
\node [above] at (content) {content oriented};
\node [below left] at (structure) {structure oriented};
\node [below right] at (form) {form oriented};
\draw [thick,gray] (content.south) -- (structure.north east) -- (form.north west) -- cycle;
\small
\node at (barycentric cs:content=0.5,structure=0.1 ,form=1) {PostScript};
\node at (barycentric cs:content=1 ,structure=0 ,form=0.4) {DVI};
\node at (barycentric cs:content=0.5,structure=0.5 ,form=1) {PDF};
\node at (barycentric cs:content=0 ,structure=0.25,form=1) {CSS};
\node at (barycentric cs:content=0.5,structure=1 ,form=0) {XML};
\node at (barycentric cs:content=0.5,structure=1 ,form=0.4) {HTML};
\node at (barycentric cs:content=1 ,structure=0.2 ,form=0.8) {\TeX};
\node at (barycentric cs:content=1 ,structure=0.6 ,form=0.8) {\LaTeX};
\node at (barycentric cs:content=0.8,structure=0.8 ,form=1) {Word};
\node at (barycentric cs:content=1 ,structure=0.05,form=0.05) {ASCII};
\end{tikzpicture}
\end{codeexample}
%
\end{coordinatesystem}
\subsubsection{Node Coordinate System}
\label{section-node-coordinates}
In \pgfname\ and in \tikzname\ it is quite easy to define a node that you wish
to reference at a later point. Once you have defined a node, there are
different ways of referencing points of the node. To do so, you use the
following coordinate system:
\begin{coordinatesystem}{node}
This coordinate system is used to reference a specific point inside or on
the border of a previously defined node. It can be used in different ways,
so let us go over them one by one.
You can use three options to specify which coordinate you mean:
%
\begin{key}{/tikz/cs/name=\meta{node name}}
Specifies the node that you wish to use to specify a coordinate. The
\meta{node name} is the name that was previously used to name the node
using the |name=|\meta{node name} option or the special node name
syntax.
\end{key}
%
\begin{key}{/tikz/anchor=\meta{anchor}}
Specifies an anchor of the node. Here is an example:
%
\begin{codeexample}[preamble={\usetikzlibrary{arrows.meta}}]
\begin{tikzpicture}
\node (shape) at (0,2) [draw] {|class Shape|};
\node (rect) at (-2,0) [draw] {|class Rectangle|};
\node (circle) at (2,0) [draw] {|class Circle|};
\node (ellipse) at (6,0) [draw] {|class Ellipse|};
\draw (node cs:name=circle,anchor=north) |- (0,1);
\draw (node cs:name=ellipse,anchor=north) |- (0,1);
\draw [arrows = -{Triangle[open, angle=60:3mm]}]
(node cs:name=rect,anchor=north)
|- (0,1) -| (node cs:name=shape,anchor=south);
\end{tikzpicture}
\end{codeexample}
\end{key}
%
\begin{key}{/tikz/cs/angle=\meta{degrees}}
It is also possible to provide an angle \emph{instead} of an anchor.
This coordinate refers to a point of the node's border where a ray shot
from the center in the given angle hits the border. Here is an example:
%
\begin{codeexample}[preamble={\usetikzlibrary{shapes.geometric}}]
\begin{tikzpicture}
\node (start) [draw,shape=ellipse] {start};
\foreach \angle in {-90, -80, ..., 90}
\draw (node cs:name=start,angle=\angle)
.. controls +(\angle:1cm) and +(-1,0) .. (2.5,0);
\end{tikzpicture}
\end{codeexample}
\end{key}
It is possible to provide \emph{neither} the |anchor=| option nor the
|angle=| option. In this case, \tikzname\ will calculate an appropriate
border position for you. Here is an example:
%
\begin{codeexample}[preamble={\usetikzlibrary{shapes.geometric}}]
\begin{tikzpicture}
\path (0,0) node(a) [ellipse,rotate=10,draw] {An ellipse}
(3,-1) node(b) [circle,draw] {A circle};
\draw[thick] (node cs:name=a) -- (node cs:name=b);
\end{tikzpicture}
\end{codeexample}
\tikzname\ will be reasonably clever at determining the border points that
you ``mean'', but, naturally, this may fail in some situations. If
\tikzname\ fails to determine an appropriate border point, the center will
be used instead.
Automatic computation of anchors works only with the line-to operations
|--|, the vertical/horizontal versions \verb!|-! and \verb!-|!, and with
the curve-to operation |..|. For other path commands, such as |parabola| or
|plot|, the center will be used. If this is not desired, you should give a
named anchor or an angle anchor.
Note that if you use an automatic coordinate for both the start and the end
of a line-to, as in |--(node cs:name=b)--|, then \emph{two} border
coordinates are computed with a move-to between them. This is usually
exactly what you want.
If you use relative coordinates together with automatic anchor coordinates,
the relative coordinates are computed relative to the node's center, not
relative to the border point. Here is an example:
%
\begin{codeexample}[]
\tikz \draw (0,0) node(x) [draw] {Text}
rectangle (1,1)
(node cs:name=x) -- +(1,1);
\end{codeexample}
Similarly, in the following examples both control points are $(1,1)$:
%
\begin{codeexample}[]
\tikz \draw (0,0) node(x) [draw] {X}
(2,0) node(y) {Y}
(node cs:name=x) .. controls +(1,1) and +(-1,1) ..
(node cs:name=y);
\end{codeexample}
The implicit way of specifying the node coordinate system is to simply use
the name of the node in parentheses as in |(a)| or to specify a name
together with an anchor or an angle separated by a dot as in |(a.north)| or
|(a.10)|.
Here is a more complete example:
%
\begin{codeexample}[preamble={\usetikzlibrary{shapes.geometric}}]
\begin{tikzpicture}[fill=blue!20]
\draw[help lines] (-1,-2) grid (6,3);
\path (0,0) node(a) [ellipse,rotate=10,draw,fill] {An ellipse}
(3,-1) node(b) [circle,draw,fill] {A circle}
(2,2) node(c) [rectangle,rotate=20,draw,fill] {A rectangle}
(5,2) node(d) [rectangle,rotate=-30,draw,fill] {Another rectangle};
\draw[thick] (a.south) -- (b) -- (c) -- (d);
\draw[thick,red,->] (a) |- +(1,3) -| (c) |- (b);
\draw[thick,blue,<->] (b) .. controls +(right:2cm) and +(down:1cm) .. (d);
\end{tikzpicture}
\end{codeexample}
%
\end{coordinatesystem}
% -----------------------------------------------------------------------------
% Deprecated:
% -----------------------------------------------------------------------------
%
% \subsubsection{Intersection Coordinate Systems}
%
% Often you wish to specify a point that is on the
% intersection of two lines or shapes. For this, the following
% coordinate system is useful:
%
% \begin{coordinatesystem}{intersection}
% First, you must specify two objects that should be
% intersected. These ``objects'' can either be lines or the shapes of
% nodes. There are two option to specify the first object:
% \begin{key}{/tikz/cs/first line={\ttfamily\char`\{}|(|\meta{first
% coordinate}|)--(|\meta{second coordinate}|)|{\ttfamily\char`\}}}
% Specifies that the first object is a line that goes from
% \meta{first coordinate} to meta{second coordinate}.
% \end{key}
% Note that you have to write |--| between the coordinate, but this
% does not mean that anything is added to the path. This is simply a
% special syntax.
% \begin{key}{/tikz/cs/first node=\meta{node}}
% Specifies that the first object is a previously defined node named
% \meta{node}.
% \end{key}
%
% To specify the second object, you use one of the following keys:
% \begin{key}{/tikz/cs/second line={\ttfamily\char`\{}|(|\meta{first
% coordinate}|)--(|\meta{second coordinate}|)|{\ttfamily\char`\}}}
% As above.
% \end{key}
% \begin{key}{/tikz/cs/second node=\meta{node}}
% Specifies that the second object is a previously defined node
% named \meta{node}.
% \end{key}
%
% Since it is possible that two objects have multiple intersections,
% you may need to specify which solution you want:
% \begin{key}{/tikz/cs/solution=\meta{number} (initially 1)}
% Specifies which solution should be used. Numbering starts with 1.
% \end{key}
% The coordinate specified in this way is the \meta{number}th
% intersection of the two objects. If the objects do not intersect,
% an error may occur.
%
% \begin{codeexample}[]
% \begin{tikzpicture}
% \draw[help lines] (0,0) grid (3,2);
% \draw (0,0) coordinate (A) -- (3,2) coordinate (B)
% (1,2) -- (3,0);
%
% \fill[red] (intersection cs:
% first line={(A)--(B)},
% second line={(1,2)--(3,0)}) circle (2pt);
% \end{tikzpicture}
% \end{codeexample}
%
% The implicit way of specifying this coordinate system is to write
% \declare{|(intersection |\opt{\meta{number}}| of |\meta{first
% object}%
% | and |\meta{second object}|)|}. Here, \meta{first object} either
% has the form \meta{$p_1$}|--|\meta{$p_2$} or it is just a node
% name. Likewise for \meta{second object}. Note that there are \emph{no}
% parentheses around the $p_i$. Thus, you would write
% |(intersection of A--B and 1,2--3,0)| for the intersection of the
% line through the coordinates |A| and |B| and the line through the
% points $(1,2)$ and $(3,0)$. You would write
% |(intersection 2 of c_1 and c_2)| for the second
% intersection of the node named |c_1| and the node named
% |c_2|.
%
% \tikzname\ needs an explicit algorithm for computing the
% intersection of two shapes and such an algorithm is available only
% for few shapes. Currently, the following intersection will be
% computed correctly:
% \begin{itemize}
% \item a line and a line
% \item a |circle| node and a line (in any order)
% \item a |circle| and a |circle|
% \end{itemize}
% \begin{codeexample}[]
% \begin{tikzpicture}[scale=.25]
% \coordinate [label=-135:$a$] (a) at ($ (0,0) + (rand,rand) $);
% \coordinate [label=45:$b$] (b) at ($ (3,2) + (rand,rand) $);
%
% \coordinate [label=-135:$u$] (u) at (-1,1);
% \coordinate [label=45:$v$] (v) at (6,0);
%
% \draw (a) -- (b)
% (u) -- (v);
%
% \node (c1) at (a) [draw,circle through=(b)] {};
% \node (c2) at (b) [draw,circle through=(a)] {};
%
% \coordinate [label=135:$c$] (c) at (intersection 2 of c1 and c2);
% \coordinate [label=-45:$d$] (d) at (intersection of u--v and c2);
% \coordinate [label=135:$e$] (e) at (intersection of u--v and a--b);
%
% \foreach \p in {a,b,c,d,e,u,v}
% \fill [opacity=.5] (\p) circle (8pt);
% \end{tikzpicture}
% \end{codeexample}
% \end{coordinatesystem}
% -----------------------------------------------------------------------------
\subsubsection{Tangent Coordinate Systems}
\begin{coordinatesystem}{tangent}
This coordinate system, which is available only when the \tikzname\ library
|calc| is loaded, allows you to compute the point that lies tangent to a
shape. In detail, consider a \meta{node} and a \meta{point}. Now, draw a
straight line from the \meta{point} so that it ``touches'' the \meta{node}
(more formally, so that it is \emph{tangent} to this \meta{node}). The
point where the line touches the shape is the point referred to by the
|tangent| coordinate system.
The following options may be given:
%
\begin{key}{/tikz/cs/node=\meta{node}}
This key specifies the node on whose border the tangent should lie.
\end{key}
%
\begin{key}{/tikz/cs/point=\meta{point}}
This key specifies the point through which the tangent should go.
\end{key}
%
\begin{key}{/tikz/cs/solution=\meta{number}}
Specifies which solution should be used if there are more than one.
\end{key}
A special algorithm is needed in order to compute the tangent for a given
shape. Currently, tangents can be computed for nodes whose shape is one of
the following:
%
\begin{itemize}
\item |coordinate|
\item |circle|
\end{itemize}
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\coordinate (a) at (3,2);
\node [circle,draw] (c) at (1,1) [minimum size=40pt] {$c$};
\draw[red] (a) -- (tangent cs:node=c,point={(a)},solution=1) --
(c.center) -- (tangent cs:node=c,point={(a)},solution=2) -- cycle;
\end{tikzpicture}
\end{codeexample}
There is no implicit syntax for this coordinate system.
\end{coordinatesystem}
\subsubsection{Defining New Coordinate Systems}
While the set of coordinate systems that \tikzname\ can parse via their special
syntax is fixed, it is possible and quite easy to define new explicitly named
coordinate systems. For this, the following commands are used:
\begin{command}{\tikzdeclarecoordinatesystem\marg{name}\marg{code}}
This command declares a new coordinate system named \meta{name} that can
later on be used by writing |(|\meta{name}| cs:|\meta{arguments}|)|. When
\tikzname\ encounters a coordinate specified in this way, the
\meta{arguments} are passed to \meta{code} as argument |#1|.
It is now the job of \meta{code} to make sense of the \meta{arguments}. At
the end of \meta{code}, the two \TeX\ dimensions |\pgf@x| and |\pgf@y|
should be have the $x$- and $y$-canvas coordinate of the coordinate.
It is not necessary, but customary, to parse \meta{arguments} using the
key--value syntax. However, you can also parse it in any way you like.
In the following example, a coordinate system |cylindrical| is defined.
%
\begin{codeexample}[]
\makeatletter
\define@key{cylindricalkeys}{angle}{\def\myangle{#1}}
\define@key{cylindricalkeys}{radius}{\def\myradius{#1}}
\define@key{cylindricalkeys}{z}{\def\myz{#1}}
\tikzdeclarecoordinatesystem{cylindrical}%
{%
\setkeys{cylindricalkeys}{#1}%
\pgfpointadd{\pgfpointxyz{0}{0}{\myz}}{\pgfpointpolarxy{\myangle}{\myradius}}
}
\begin{tikzpicture}[z=0.2pt]
\draw [->] (0,0,0) -- (0,0,350);
\foreach \num in {0,10,...,350}
\fill (cylindrical cs:angle=\num,radius=1,z=\num) circle (1pt);
\end{tikzpicture}
\end{codeexample}
%
\end{command}
\begin{command}{\tikzaliascoordinatesystem\marg{new name}\marg{old name}}
Creates an alias of \meta{old name}.
\end{command}
\subsection{Coordinates at Intersections}
\label{section-intersection-coordinates}
You will wish to compute the intersection of two paths. For the special and
frequent case of two perpendicular lines, a special coordinate system called
|perpendicular| is available. For more general cases, the |intersections|
library can be used.
\subsubsection{Intersections of Perpendicular Lines}
A frequent special case of path intersections is the intersection of a vertical
line going through a point $p$ and a horizontal line going through some other
point $q$. For this situation there is a useful coordinate system.
\begin{coordinatesystem}{perpendicular}
You can specify the two lines using the following keys:
\begin{key}{/tikz/cs/horizontal line through={\ttfamily\char`\{}|(|\meta{coordinate}|)|{\ttfamily\char`\}}}
Specifies that one line is a horizontal line that goes through the
given coordinate.
\end{key}
%
\begin{key}{/tikz/cs/vertical line through={\ttfamily\char`\{}|(|\meta{coordinate}|)|{\ttfamily\char`\}}}
Specifies that the other line is vertical and goes through the given
coordinate.
\end{key}
However, in almost all cases you should, instead, use the implicit syntax.
Here, you write \declare{|(|\meta{p}\verb! |- !\meta{q}|)|} or
\declare{|(|\meta{q}\verb! -| !\meta{p}|)|}.
For example, \verb!(2,1 |- 3,4)! and \verb!(3,4 -| 2,1)! both yield the
same as \verb!(2,4)! (provided the $xy$-co\-or\-di\-nate system has not
been modified).
The most useful application of the syntax is to draw a line up to some
point on a vertical or horizontal line. Here is an example:
%
\begin{codeexample}[]
\begin{tikzpicture}
\path (30:1cm) node(p1) {$p_1$} (75:1cm) node(p2) {$p_2$};
\draw (-0.2,0) -- (1.2,0) node(xline)[right] {$q_1$};
\draw (2,-0.2) -- (2,1.2) node(yline)[above] {$q_2$};
\draw[->] (p1) -- (p1 |- xline);
\draw[->] (p2) -- (p2 |- xline);
\draw[->] (p1) -- (p1 -| yline);
\draw[->] (p2) -- (p2 -| yline);
\end{tikzpicture}
\end{codeexample}
Note that in \declare{|(|\meta{c}\verb! |- !\meta{d}|)|} the coordinates
\meta{c} and \meta{d} are \emph{not} surrounded by parentheses. If they
need to be complicated expressions (like a computation using the
|$|-syntax), you must surround them with braces; parentheses will then be %$
added around them.
As an example, let us specify a point that lies horizontally at the middle
of the line from $A$ to~$B$ and vertically at the middle of the line from
$C$ to~$D$:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\node (A) at (0,1) {A};
\node (B) at (1,1.5) {B};
\node (C) at (2,0) {C};
\node (D) at (2.5,-2) {D};
\draw (A) -- (B) node [midway] {x};
\draw (C) -- (D) node [midway] {x};
\node at ({$(A)!.5!(B)$} -| {$(C)!.5!(D)$}) {X};
\end{tikzpicture}
\end{codeexample}
%
\end{coordinatesystem}
\subsubsection{Intersections of Arbitrary Paths}
\begin{tikzlibrary}{intersections}
This library enables the calculation of intersections of two arbitrary
paths. However, due to the low accuracy of \TeX, the paths should not be
``too complicated''. In particular, you should not try to intersect paths
consisting of lots of very small segments such as plots or decorated paths.
\end{tikzlibrary}
To find the intersections of two paths in \tikzname, they must be ``named''. A
``named path'' is, quite simply, a path that has been named using the following
key (note that this is a \emph{different} key from the |name| key, which only
attaches a hyperlink target to a path, but does not store the path in a way the
is useful for the intersection computation):
\begin{keylist}{%
/tikz/name path=\meta{name},
/tikz/name path global=\meta{name}%
}
The effect of this key is that, after the path has been constructed, just
before it is used, it is associated with \meta{name}. For |name path|, this
association survives beyond the final semi-colon of the path but not the
end of the surrounding scope. For |name path global|, the association will
survive beyond any scope as well. Handle with care.
Any paths created by nodes on the (main) path are ignored, unless this key
is explicitly used. If the same \meta{name} is used for the main path and
the node path(s), then the paths will be added together and then associated
with \meta{name}.
\end{keylist}
To find the intersection of named paths, the following key is used:
\begin{key}{/tikz/name intersections=\marg{options}}
This key changes the key path to |/tikz/intersection| and processes
\meta{options}. These options determine, among other things, which paths to
use for the intersection. Having processed the options, any intersections
are then found. A coordinate is created at each intersection, which by
default, will be named |intersection-1|, |intersection-2|, and so on.
Optionally, the prefix |intersection| can be changed, and the total number
of intersections stored in a \TeX-macro.
%
\begin{codeexample}[preamble={\usetikzlibrary{intersections}}]
\begin{tikzpicture}[every node/.style={opacity=1, black, above left}]
\draw [help lines] grid (3,2);
\draw [name path=ellipse] (2,0.5) ellipse (0.75cm and 1cm);
\draw [name path=rectangle, rotate=10] (0.5,0.5) rectangle +(2,1);
\fill [red, opacity=0.5, name intersections={of=ellipse and rectangle}]
(intersection-1) circle (2pt) node {1}
(intersection-2) circle (2pt) node {2};
\end{tikzpicture}
\end{codeexample}
The following keys can be used in \meta{options}:
\begin{key}{/tikz/intersection/of=\meta{name path 1}| and |\meta{name path 2}}
This key is used to specify the names of the paths to use for the
intersection.
\end{key}
\begin{key}{/tikz/intersection/name=\meta{prefix} (initially intersection)}
This key specifies the prefix name for the coordinate nodes placed at
each intersection.
\end{key}
\begin{key}{/tikz/intersection/total=\meta{macro}}
This key means that the total number of intersections found will be
stored in \meta{macro}.
\end{key}
\begin{codeexample}[preamble={\usetikzlibrary{intersections}}]
\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);
\fill [name intersections={of=curve 1 and curve 2, name=i, total=\t}]
[red, opacity=0.5, every node/.style={above left, black, opacity=1}]
\foreach \s in {1,...,\t}{(i-\s) circle (2pt) node {\footnotesize\s}};
\end{tikzpicture}
\end{codeexample}
\begin{key}{/tikz/intersection/by=\meta{comma-separated list}}
This key allows you to specify a list of names for the intersection
coordinates. The intersection coordinates will still be named
\meta{prefix}|-|\meta{number}, but additionally the first coordinate
will also be named by the first element of the \meta{comma-separated
list}. What happens is that the \meta{comma-separated list} is passed
to the |\foreach| statement and for \meta{list member} a coordinate is
created at the already-named intersection.
%
\begin{codeexample}[preamble={\usetikzlibrary{intersections}}]
\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);
\fill [name intersections={of=curve 1 and curve 2, by={a,b}}]
(a) circle (2pt)
(b) circle (2pt);
\end{tikzpicture}
\end{codeexample}
You can also use the |...| notation of the |\foreach| statement inside
the \meta{comma-separated list}.
In case an element of the \meta{comma-separated list} starts with
options in square brackets, these options are used when the coordinate
is created. A coordinate name can still, but need not, follow the
options. This makes it easy to add labels to intersections:
%
\begin{codeexample}[preamble={\usetikzlibrary{intersections}}]
\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);
\fill [name intersections={
of=curve 1 and curve 2,
by={[label=center:a],[label=center:...],[label=center:i]}}];
\end{tikzpicture}
\end{codeexample}
\end{key}
\begin{key}{/tikz/intersection/sort by=\meta{path name}}
By default, the intersections are simply returned in the order that the
intersection algorithm finds them. Unfortunately, this is not
necessarily a ``helpful'' ordering. This key can be used to sort the
intersections along the path specified by \meta{path name}, which
should be one of the paths mentioned in the |/tikz/intersection/of|
key.
%
\begin{codeexample}[preamble={\usetikzlibrary{intersections}}]
\begin{tikzpicture}
\clip (-0.5,-0.75) rectangle (3.25,2.25);
\foreach \pathname/\shift in {line/0cm, curve/2cm}{
\tikzset{xshift=\shift}
\draw [->, name path=curve] (1,1.5) .. controls (-1,1) and (2,0.5) .. (0,0);
\draw [->, name path=line] (0,-.5) -- (1,2) ;
\fill [name intersections={of=line and curve,sort by=\pathname, name=i}]
[red, opacity=0.5, every node/.style={left=.25cm, black, opacity=1}]
\foreach \s in {1,2,3}{(i-\s) circle (2pt) node {\footnotesize\s}};
}
\end{tikzpicture}
\end{codeexample}
\end{key}
\end{key}
\subsection{Relative and Incremental Coordinates}
\subsubsection{Specifying Relative Coordinates}
You can prefix coordinates by |++| to make them ``relative''. A coordinate such
as |++(1cm,0pt)| means ``1cm to the right of the previous position, making this
the new current position''. Relative coordinates are often useful in ``local''
contexts:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (2,0) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (1.5,1.5) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\end{tikzpicture}
\end{codeexample}
Instead of |++| you can also use a single |+|. This also specifies a relative
coordinate, but it does not ``update'' the current point for subsequent usages
of relative coordinates. Thus, you can use this notation to specify numerous
points, all relative to the same ``initial'' point:
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\draw (2,0) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\draw (1.5,1.5) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\end{tikzpicture}
\end{codeexample}
There is a special situation, where relative coordinates are interpreted
differently. If you use a relative coordinate as a control point of a Bézier
curve, the following rule applies: First, a relative first control point is
taken relative to the beginning of the curve. Second, a relative second control
point is taken relative to the end of the curve. Third, a relative end point of
a curve is taken relative to the start of the curve.
This special behavior makes it easy to specify that a curve should ``leave or
arrive from a certain direction'' at the start or end. In the following
example, the curve ``leaves'' at $30^\circ$ and ``arrives'' at $60^\circ$:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw (1,0) .. controls +(30:1cm) and +(60:1cm) .. (3,-1);
\draw[gray,->] (1,0) -- +(30:1cm);
\draw[gray,<-] (3,-1) -- +(60:1cm);
\end{tikzpicture}
\end{codeexample}
\subsubsection{Rotational Relative Coordinates}
You may sometimes wish to specify points relative not only to the previous
point, but additionally relative to the tangent entering the previous point.
For this, the following key is useful:
\begin{key}{/tikz/turn}
This key can be given as an option to a \meta{coordinate} as in the
following example:
%
\begin{codeexample}[]
\tikz \draw (0,0) -- (1,1) -- ([turn]-45:1cm) -- ([turn]-30:1cm);
\end{codeexample}
%
The effect of this key is to locally shift the coordinate system so that
the last point reached is at the origin and the coordinate system is
``turned'' so that the $x$-axis points in the direction of a tangent
entering the last point. This means, in effect, that when you use polar
coordinates of the form \meta{relative angle}|:|\meta{distance} together
with the |turn| option, you specify a point that lies at \meta{distance}
from the last point in the direction of the last tangent entering the last
point, but with a rotation of \meta{relative angle}.
This key also works with curves \dots
%
\begin{codeexample}[]
\tikz [delta angle=30, radius=1cm]
\draw (0,0) arc [start angle=0] -- ([turn]0:1cm)
arc [start angle=30] -- ([turn]0:1cm)
arc [start angle=60] -- ([turn]30:1cm);
\end{codeexample}
\begin{codeexample}[]
\tikz \draw (0,0) to [bend left] (2,1) -- ([turn]0:1cm);
\end{codeexample}
%
\dots and with plots \dots
%
\begin{codeexample}[]
\tikz \draw plot coordinates {(0,0) (1,1) (2,0) (3,0) } -- ([turn]30:1cm);
\end{codeexample}
Although the above examples use polar coordinates with |turn|, you can also
use any normal coordinate. For instance, |([turn]1,1)| will append a line
of length $\sqrt 2$ that is turns by $45^\circ$ relative to the tangent to
the last point.
%
\begin{codeexample}[]
\tikz \draw (0.5,0.5) -| (2,1) -- ([turn]1,1)
.. controls ([turn]0:1cm) .. ([turn]-90:1cm);
\end{codeexample}
%
\end{key}
\subsubsection{Relative Coordinates and Scopes}
\label{section-scopes-relative}
An interesting question is, how do relative coordinates behave in the presence
of scopes? That is, suppose we use curly braces in a path to make part of it
``local'', how does that affect the current position? On the one hand, the
current position certainly changes since the scope only affects options, not
the path itself. On the other hand, it may be useful to ``temporarily escape''
from the updating of the current point.
Since both interpretations of how the current point and scopes should
``interact'' are useful, there is a (local!) option that allows you to decide
which you need.
\begin{key}{/tikz/current point is local=\opt{\meta{boolean}} (initially false)}
Normally, the scope path operation has no effect on the current point. That
is, curly braces on a path have no effect on the current position:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- ++(1,0) -- ++(0,1) -- ++(-1,0);
\draw[red] (2,0) -- ++(1,0) { -- ++(0,1) } -- ++(-1,0);
\end{tikzpicture}
\end{codeexample}
%
If you set this key to |true|, this behavior changes. In this case, at the
end of a group created on a path, the last current position reverts to
whatever value it had at the beginning of the scope. More precisely, when
\tikzname\ encounters |}| on a path, it checks whether at this particular
moment the key is set to |true|. If so, the current position reverts to the
value it had when the matching |{| was read.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- ++(1,0) -- ++(0,1) -- ++(-1,0);
\draw[red] (2,0) -- ++(1,0)
{ [current point is local] -- ++(0,1) } -- ++(-1,0);
\end{tikzpicture}
\end{codeexample}
%
In the above example, we could also have given the option outside the
scope, for instance as a parameter to the whole scope.
\end{key}
\subsection{Coordinate Calculations}
\label{tikz-lib-calc}
\begin{tikzlibrary}{calc}
You need to load this library in order to use the coordinate calculation
functions described in the present section.
\end{tikzlibrary}
It is possible to do some basic calculations that involve coordinates. In
essence, you can add and subtract coordinates, scale them, compute midpoints,
and do projections. For instance, |($(a) + 1/3*(1cm,0)$)| is the coordinate
that is $1/3 \text{cm}$ to the right of the point |a|:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\node (a) at (1,1) {A};
\fill [red] ($(a) + 1/3*(1cm,0)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}
\subsubsection{The General Syntax}
The general syntax is the following:
%
\begin{quote}
\declare{|(|\opt{|[|\meta{options}|]|}|$|\meta{coordinate computation}|$)|}.
\end{quote}
As you can see, the syntax uses the \TeX\ math symbol |$| to %$
indicate that a ``mathematical computation'' is involved. However, the |$| %$
has no other effect, in particular, no mathematical text is typeset.
The \meta{coordinate computation} has the following structure:
%
\begin{enumerate}
\item It starts with
%
\begin{quote}
\opt{\meta{factor}|*|}\meta{coordinate}\opt{\meta{modifiers}}
\end{quote}
\item This is optionally followed by |+| or |-| and then another
%
\begin{quote}
\opt{\meta{factor}|*|}\meta{coordinate}\opt{\meta{modifiers}}
\end{quote}
\item This is once more followed by |+| or |-| and another of the above
modified coordinate; and so on.
\end{enumerate}
In the following, the syntax of factors and of the different modifiers
is explained in detail.
\subsubsection{The Syntax of Factors}
The \meta{factor}s are optional and detected by checking whether the
\meta{coordinate computation} starts with a |(|. Also, after each $\pm$ a
\meta{factor} is present if, and only if, the |+| or |-| sign is not directly
followed by~|(|.
If a \meta{factor} is present, it is evaluated using the |\pgfmathparse| macro.
This means that you can use pretty complicated computations inside a factor. A
\meta{factor} may even contain opening parentheses, which creates a
complication: How does \tikzname\ know where a \meta{factor} ends and where a
coordinate starts? For instance, if the beginning of a \meta{coordinate
computation} is |2*(3+4|\dots, it is not clear whether |3+4| is part of a
\meta{coordinate} or part of a \meta{factor}. Because of this, the following
rule is used: Once it has been determined, that a \meta{factor} is present, in
principle, the \meta{factor} contains everything up to the next occurrence of
|*(|. Note that there is no space between the asterisk and the parenthesis.
It is permissible to put the \meta{factor} in curly braces. This can be used
whenever it is unclear where the \meta{factor} would end.
Here are some examples of coordinate specifications that consist of exactly one
\meta{factor} and one \meta{coordinate}:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\fill [red] ($2*(1,1)$) circle (2pt);
\fill [green] (${1+1}*(1,.5)$) circle (2pt);
\fill [blue] ($cos(0)*sin(90)*(1,1)$) circle (2pt);
\fill [black] (${3*(4-3)}*(1,0.5)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}
\subsubsection{The Syntax of Partway Modifiers}
A \meta{coordinate} can be followed by different \meta{modifiers}. The first
kind of modifier is the \emph{partway modifier}. The syntax (which is loosely
inspired by Uwe Kern's |xcolor| package) is the following:
%
\begin{quote}
\meta{coordinate}\declare{|!|\meta{number}|!|\opt{\meta{angle}|:|}\meta{second coordinate}}
\end{quote}
%
One could write for instance
%
\begin{codeexample}[code only]
(1,2)!.75!(3,4)
\end{codeexample}
%
The meaning of this is: ``Use the coordinate that is three quarters on the way
from |(1,2)| to |(3,4)|.'' In general, \meta{coordinate
x}|!|\meta{number}|!|\meta{coordinate y} yields the coordinate $(1 -
\meta{number})\meta{coordinate x} + \meta{number} \meta{coordinate y}$. Note
that this is a bit different from the way the \meta{number} is interpreted in
the |xcolor| package: First, you use a factor between $0$ and $1$, not a
percentage, and, second, as the \meta{number} approaches $1$, we approach the
second coordinate, not the first. It is permissible to use a \meta{number} that
is smaller than $0$ or larger than $1$. The \meta{number} is evaluated using
the |\pgfmathparse| command and, thus, it can involve complicated computations.
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\draw (1,0) -- (3,2);
\foreach \i in {0,0.2,0.5,0.9,1}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}
\end{codeexample}
The \meta{second coordinate} may be prefixed by an \meta{angle}, separated with
a colon, as in |(1,1)!.5!60:(2,2)|. The general meaning of
\meta{a}|!|\meta{factor}|!|\meta{angle}|:|\meta{b} is: ``First, consider the
line from \meta{a} to \meta{b}. Then rotate this line by \meta{angle}
\emph{around the point \meta{a}}. Then the two endpoints of this line will be
\meta{a} and some point \meta{c}. Use this point \meta{c} for the subsequent
computation, namely the partway computation.''
Here are two examples:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,3);
\coordinate (a) at (1,0);
\coordinate (b) at (3,2);
\draw[->] (a) -- (b);
\coordinate (c) at ($ (a)!1! 10:(b) $);
\draw[->,red] (a) -- (c);
\fill ($ (a)!.5! 10:(b) $) circle (2pt);
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (4,4);
\foreach \i in {0,0.125,...,2}
\fill ($(2,2) !\i! \i*180:(3,2)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}
You can repeatedly apply modifiers. That is, after any modifier you can add
another (possibly different) modifier.
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\draw (0,0) -- (3,2);
\draw[red] ($(0,0)!.3!(3,2)$) -- (3,0);
\fill[red] ($(0,0)!.3!(3,2)!.7!(3,0)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}
\subsubsection{The Syntax of Distance Modifiers}
A \emph{distance modifier} has nearly the same syntax as a partway modifier,
only you use a \meta{dimension} (something like |1cm|) instead of a
\meta{factor} (something like |0.5|):
%
\begin{quote}
\meta{coordinate}\declare{|!|\meta{dimension}|!|\opt{\meta{angle}|:|}\meta{second coordinate}}
\end{quote}
When you write \meta{a}|!|\meta{dimension}|!|\meta{b}, this means the
following: Use the point that is distanced \meta{dimension} from \meta{a} on
the straight line from \meta{a} to \meta{b}. Here is an example:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\draw (1,0) -- (3,2);
\foreach \i in {0cm,1cm,15mm}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}
\end{codeexample}
As before, if you use a \meta{angle}, the \meta{second coordinate} is rotated
by this much around the \meta{coordinate} before it is used.
The combination of an \meta{angle} of |90| degrees with a distance can be used
to ``offset'' a point relative to a line. Suppose, for instance, that you have
computed a point |(c)| that lies somewhere on a line from |(a)| to~|(b)| and
you now wish to offset this point by |1cm| so that the distance from this
offset point to the line is |1cm|. This can be achieved as follows:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\coordinate (a) at (1,0);
\coordinate (b) at (3,1);
\draw (a) -- (b);
\coordinate (c) at ($ (a)!.25!(b) $);
\coordinate (d) at ($ (c)!1cm!90:(b) $);
\draw [<->] (c) -- (d) node [sloped,midway,above] {1cm};
\end{tikzpicture}
\end{codeexample}
\subsubsection{The Syntax of Projection Modifiers}
The projection modifier is also similar to the above modifiers: It also gives a
point on a line from the \meta{coordinate} to the \meta{second coordinate}.
However, the \meta{number} or \meta{dimension} is replaced by a
\meta{projection coordinate}:
%
\begin{quote}
\meta{coordinate}\declare{|!|\meta{projection coordinate}|!|\opt{\meta{angle}|:|}\meta{second coordinate}}
\end{quote}
Here is an example:
%
\begin{codeexample}[code only]
(1,2)!(0,5)!(3,4)
\end{codeexample}
The effect is the following: We project the \meta{projection coordinate}
orthogonally onto the line from \meta{coordinate} to \meta{second coordinate}.
This makes it easy to compute projected points:
%
\begin{codeexample}[preamble={\usetikzlibrary{calc}}]
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\coordinate (a) at (0,1);
\coordinate (b) at (3,2);
\coordinate (c) at (2.5,0);
\draw (a) -- (b) -- (c) -- cycle;
\draw[red] (a) -- ($(b)!(a)!(c)$);
\draw[orange] (b) -- ($(a)!(b)!(c)$);
\draw[blue] (c) -- ($(a)!(c)!(b)$);
\end{tikzpicture}
\end{codeexample}
|