1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
% Copyright 2018 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.
\section{Transformations}
\pgfname\ has a powerful transformation mechanism that is similar to the
transformation capabilities of \textsc{metafont}. The present section explains
how you can access it in \tikzname.
\subsection{The Different Coordinate Systems}
It is a long process from a coordinate like, say, $(1,2)$ or
$(1\mathrm{cm},5\mathrm{pt})$, to the position a point is finally placed on the
display or paper. In order to find out where the point should go, it is
constantly ``transformed'', which means that it is mostly shifted around and
possibly rotated, slanted, scaled, and otherwise mutilated.
In detail, (at least) the following transformations are applied to a coordinate
like $(1,2)$ before a point on the screen is chosen:
%
\begin{enumerate}
\item \pgfname\ interprets a coordinate like $(1,2)$ in its
$xy$-coordinate system as ``add the current $x$-vector once and the
current $y$-vector twice to obtain the new point''.
\item \pgfname\ applies its coordinate transformation matrix to the
resulting coordinate. This yields the final position of the point
inside the picture.
\item The backend driver (like |dvips| or |pdftex|) adds transformation
commands such that the coordinate is shifted to the correct position in
\TeX's page coordinate system.
\item \textsc{pdf} (or PostScript) apply the canvas transformation matrix
to the point, which can once more change the position on the page.
\item The viewer application or the printer applies the device
transformation matrix to transform the coordinate to its final pixel
coordinate on the screen or paper.
\end{enumerate}
In reality, the process is even more involved, but the above should give the
idea: A point is constantly transformed by changes of the coordinate system.
In \tikzname, you only have access to the first two coordinate systems: The
$xy$-coordinate system and the coordinate transformation matrix (these will be
explained later). \pgfname\ also allows you to change the canvas transformation
matrix, but you have to use commands of the core layer directly to do so and
you ``better know what you are doing'' when you do this. The moment you start
modifying the canvas matrix, \pgfname\ immediately loses track of all
coordinates and shapes, anchors, and bounding box computations will no longer
work.
\subsection{The XY- and XYZ-Coordinate Systems}
\label{section-xyz}
The first and easiest coordinate systems are \pgfname's $xy$- and
$xyz$-coordinate systems. The idea is very simple: Whenever you specify a
coordinate like |(2,3)| this means $2v_x + 3v_y$, where $v_x$ is the current
\emph{$x$-vector} and $v_y$ is the current \emph{$y$-vector}. Similarly, the
coordinate |(1,2,3)| means $v_x + 2v_y + 3v_z$.
Unlike other packages, \pgfname\ does not insist that $v_x$ actually has a
$y$-component of $0$, that is, that it is a horizontal vector. Instead, the
$x$-vector can point anywhere you want. Naturally, \emph{normally} you will
want the $x$-vector to point horizontally.
One undesirable effect of this flexibility is that it is not possible to
provide mixed coordinates as in $(1,2\mathrm{pt})$. Life is hard.
To change the $x$-, $y$-, and $z$-vectors, you can use the following options:
\begin{key}{/tikz/x=\meta{value} (initially 1cm)}
If \meta{value} is a dimension, the $x$-vector of \pgfname's
$xyz$-coordinate system is set up to point \meta{value} to the right, that
is, to $(\meta{value},0pt)$.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- +(1,0);
\draw[x=2cm,color=red] (0,0.1) -- +(1,0);
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\tikz \draw[x=1.5cm] (0,0) grid (2,2);
\end{codeexample}
The last example shows that the size of steppings in grids, just like all
other dimensions, are not affected by the $x$-vector. After all, the
$x$-vector is only used to determine the coordinate of the upper right
corner of the grid.
If \meta{value} is a coordinate, the $x$-vector of \pgfname's
$xyz$-coordinate system is set to the specified coordinate. If \meta{value}
contains a comma, it must be put in braces.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw[x={(2cm,0.5cm)},color=red] (0,0) -- (1,0);
\end{tikzpicture}
\end{codeexample}
You can use this, for example, to exchange the meaning of the $x$- and
$y$-coordinate.
%
\begin{codeexample}[]
\begin{tikzpicture}[smooth]
\draw plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
\draw[x={(0cm,1cm)},y={(1cm,0cm)},color=red]
plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/y=\meta{value} (initially 1cm)}
Works like the |x=| option, only if \meta{value} is a dimension, the
resulting vector points to $(0,\meta{value})$.
\end{key}
\begin{key}{/tikz/z=\meta{value} (initially \normalfont$-3.85$mm)}
Works like the |y=| option, but now a dimension is the point
$(\meta{value},\meta{value})$.
%
\begin{codeexample}[]
\begin{tikzpicture}[z=-1cm,->,thick]
\draw[color=red] (0,0,0) -- (1,0,0);
\draw[color=blue] (0,0,0) -- (0,1,0);
\draw[color=orange] (0,0,0) -- (0,0,1);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\subsection{Coordinate Transformations}
\pgfname\ and \tikzname\ allow you to specify \emph{coordinate
transformations}. Whenever you specify a coordinate as in |(1,0)| or
|(1cm,1pt)| or |(30:2cm)|, this coordinate is first ``reduced'' to a position
of the form ``$x$ points to the right and $y$ points upwards''. For example,
|(1in,5pt)| is reduced to ``$72\frac{72}{100}$ points to the right and 5 points
upwards'' and |(90:100pt)| means ``0pt to the right and 100 points upwards''.
The next step is to apply the current \emph{coordinate transformation matrix}
to the coordinate. For example, the coordinate transformation matrix might
currently be set such that it adds a certain constant to the $x$ value. Also,
it might be set up such that it, say, exchanges the $x$ and $y$ value. In
general, any ``standard'' transformation like translation, rotation, slanting,
or scaling or any combination thereof is possible. (Internally, \pgfname\ keeps
track of a coordinate transformation matrix very much like the concatenation
matrix used by \textsc{pdf} or PostScript.)
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) rectangle (1,0.5);
\begin{scope}[xshift=1cm]
\draw [red] (0,0) rectangle (1,0.5);
\draw[yshift=1cm] [blue] (0,0) rectangle (1,0.5);
\draw[rotate=30] [orange] (0,0) rectangle (1,0.5);
\end{scope}
\end{tikzpicture}
\end{codeexample}
The most important aspect of the coordinate transformation matrix is \emph{that
it applies to coordinates only!} In particular, the coordinate transformation
has no effect on things like the line width or the dash pattern or the shading
angle. In certain cases, it is not immediately clear whether the coordinate
transformation matrix \emph{should} apply to a certain dimension. For example,
should the coordinate transformation matrix apply to grids? (It does.) And what
about the size of arced corners? (It does not.) The general rule is: ``If there
is no `coordinate' involved, even `indirectly', the matrix is not applied.''.
However, sometimes, you simply have to try or look it up in the documentation
whether the matrix will be applied.
Setting the matrix cannot be done directly. Rather, all you can do is to
``add'' another transformation to the current matrix. However, all
transformations are local to the current \TeX-group. All transformations are
added using graphic options, which are described below.
Transformations apply immediately when they are encountered ``in the middle of
a path'' and they apply only to the coordinates on the path following the
transformation option.
%
\begin{codeexample}[]
\tikz \draw (0,0) rectangle (1,0.5) [xshift=2cm] (0,0) rectangle (1,0.5);
\end{codeexample}
A final word of warning: You should refrain from using ``aggressive''
transformations like a scaling of a factor of 10\,000. The reason is that all
transformations are done using \TeX, which has a fairly low accuracy.
Furthermore, in certain situations it is necessary that \tikzname\
\emph{inverts} the current transformation matrix and this will fail if the
transformation matrix is badly conditioned or even singular (if you do not know
what singular matrices are, you are blessed).
\begin{key}{/tikz/shift={\ttfamily\char`\{}\meta{coordinate}{\ttfamily\char`\}}}
Adds the \meta{coordinate} to all coordinates.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[shift={(1,1)},blue] (0,0) -- (1,1) -- (1,0);
\draw[shift={(30:1cm)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/shift only}
This option does not take any parameter. Its effect is to cancel all
current transformations except for the shifting. This means that the origin
will remain where it is, but any rotation around the origin or scaling
relative to the origin or skewing will no longer have an effect.
This option is useful in situations where a complicated transformation is
used to ``get to a position'', but you then wish to draw something
``normal'' at this position.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[rotate=30,xshift=2cm,blue] (0,0) -- (1,1) -- (1,0);
\draw[rotate=30,xshift=2cm,shift only,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/xshift=\meta{dimension}}
Adds \meta{dimension} to the $x$ value of all coordinates.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[xshift=2cm,blue] (0,0) -- (1,1) -- (1,0);
\draw[xshift=-10pt,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/yshift=\meta{dimension}}
Adds \meta{dimension} to the $y$ value of all coordinates.
\end{key}
\begin{key}{/tikz/scale=\meta{factor}}
Multiplies all coordinates by the given \meta{factor}. The \meta{factor}
should not be excessively large in absolute terms or very close to zero.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[scale=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[scale=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/scale around={\ttfamily\char`\{}\meta{factor}|:|\meta{coordinate}{\ttfamily\char`\}}}
Scales the coordinate system by \meta{factor}, with the ``origin of
scaling'' centered on \meta{coordinate} rather than the origin.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[scale=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[scale around={2:(1,1)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/xscale=\meta{factor}}
Multiplies only the $x$-value of all coordinates by the given
\meta{factor}.
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[xscale=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[xscale=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/yscale=\meta{factor}}
Multiplies only the $y$-value of all coordinates by \meta{factor}.
\end{key}
\begin{key}{/tikz/xslant=\meta{factor}}
Slants the coordinate horizontally by the given \meta{factor}:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[xslant=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[xslant=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/yslant=\meta{factor}}
Slants the coordinate vertically by the given \meta{factor}:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[yslant=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[yslant=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/rotate=\meta{degree}}
Rotates the coordinate system by \meta{degree}:
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[rotate=40,blue] (0,0) -- (1,1) -- (1,0);
\draw[rotate=-20,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/rotate around={\ttfamily\char`\{}\meta{degree}|:|\meta{coordinate}{\ttfamily\char`\}}}
Rotates the coordinate system by \meta{degree} around the point
\meta{coordinate}.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[rotate around={40:(1,1)},blue] (0,0) -- (1,1) -- (1,0);
\draw[rotate around={-20:(1,1)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/rotate around x=\meta{angle}}
This key sets the $x$, $y$ and $z$ vectors of the \pgfname\
$xyz$-coordinate system so that they are rotated by \meta{angle} around the
axis corresponding to the $x$-vector. The rotation is applied so that when
looking towards the origin along this axis, positive angles result in an
anticlockwise rotation.
%
\begin{codeexample}[]
\begin{tikzpicture}[>=stealth]
\draw [->] (0,0,0) -- (2,0,0) node [at end, right] {$x$};
\draw [->] (0,0,0) -- (0,2,0) node [at end, left] {$y$};
\draw [->] (0,0,0) -- (0,0,2) node [at end, left] {$z$};
\draw [red, rotate around x=0] (0,0,0) -- (1,1,0) -- (1,0,0);
\draw [green, rotate around x=45] (0,0,0) -- (1,1,0) -- (1,0,0);
\draw [blue, rotate around x=90] (0,0,0) -- (1,1,0) -- (1,0,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/rotate around y=\meta{angle}}
This key sets the $x$, $y$ and $z$ vectors of the \pgfname\
$xyz$-coordinate system so that they are rotated by \meta{angle} around
the axis corresponding to the $y$-vector. The rotation is applied so that
when looking towards the origin along this axis, positive angles result in
an anticlockwise rotation.
%
\begin{codeexample}[]
\begin{tikzpicture}[>=stealth]
\draw [->] (0,0,0) -- (2,0,0) node [at end, right] {$x$};
\draw [->] (0,0,0) -- (0,2,0) node [at end, left] {$y$};
\draw [->] (0,0,0) -- (0,0,2) node [at end, left] {$z$};
\draw [red, rotate around y=0] (0,0,0) -- (1,1,0) -- (1,0,0);
\draw [green, rotate around y=-45] (0,0,0) -- (1,1,0) -- (1,0,0);
\draw [blue, rotate around y=-90] (0,0,0) -- (1,1,0) -- (1,0,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/rotate around z=\meta{angle}}
This key sets the $x$, $y$ and $z$ vectors of the \pgfname\
$xyz$-coordinate system so that they are rotated by \meta{angle} around the
axis corresponding to the $z$-vector. The rotation is applied so that when
looking towards the origin along this axis, positive angles result in an
anticlockwise rotation.
%
\begin{codeexample}[]
\begin{tikzpicture}[>=stealth]
\draw [->] (0,0,0) -- (2,0,0) node [at end, right] {$x$};
\draw [->] (0,0,0) -- (0,2,0) node [at end, left] {$y$};
\draw [->] (0,0,0) -- (0,0,2) node [at end, left] {$z$};
\draw [red, rotate around z=0] (0,0) -- (1,1) -- (1,0);
\draw [green, rotate around z=45] (0,0) -- (1,1) -- (1,0);
\draw [blue, rotate around z=90] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/cm={\ttfamily\char`\{}\meta{$a$}|,|\meta{$b$}|,|\meta{$c$}|,|\meta{$d$}|,|\meta{coordinate}{\ttfamily\char`\}}}
applies the following transformation to all coordinates: Let $(x,y)$ be the
coordinate to be transformed and let \meta{coordinate} specify the point
$(t_x,t_y)$. Then the new coordinate is given by
$\left(\begin{smallmatrix} a & c \\ b & d\end{smallmatrix}\right)
\left(\begin{smallmatrix} x \\ y \end{smallmatrix}\right) +
\left(\begin{smallmatrix} t_x \\ t_y \end{smallmatrix}\right)$.
Usually, you do not use this option directly.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[cm={1,1,0,1,(0,0)},blue] (0,0) -- (1,1) -- (1,0);
\draw[cm={0,1,1,0,(1cm,1cm)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
\begin{key}{/tikz/reset cm}
Completely resets the coordinate transformation matrix to the identity
matrix. This will destroy not only the transformations applied in the
current scope, but also all transformations inherited from surrounding
scopes. Do not use this option, unless you really, really know what you are
doing.
\end{key}
\subsection{Canvas Transformations}
A \emph{canvas transformation}, see
Section~\ref{section-design-transformations} for details, is best thought of as
a transformation in which the drawing canvas is stretched or rotated. Imaging
writing something on a balloon (the canvas) and then blowing air into the
balloon: Not only does the text become larger, the thin lines also become
larger. In particular, if you scale the canvas by a factor of two, all lines
are twice as thick.
Canvas transformations should be used with great care. In most circumstances
you do \emph{not} want line widths to change in a picture as this creates
visual inconsistency.
Just as important, when you use canvas transformations \emph{\pgfname\ loses
track of positions of nodes and of picture sizes} since it does not take the
effect of canvas transformations into account when it computes coordinates of
nodes (do not, however, rely on this; it may change in the future).
Finally, note that a canvas transformation always applies to a path as a whole,
it is not possible (as for coordinate transformations) to use different
transformations in different parts of a path.
In short, you should not use canvas transformations unless you really know what
you are doing.
\begin{key}{/tikz/transform canvas=\meta{options}}
The \meta{options} should contain coordinate transformations options like
|scale| or |xshift|. Multiple options can be given, their effects
accumulate in the usual manner. The effect of these \meta{options}
(immediately) changes the current canvas transformation matrix. The
coordinate transformation matrix is not changed. Tracking of the picture
size is (locally) switched off and the node coordinate will no longer be
correct.
%
\begin{codeexample}[]
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[transform canvas={scale=2},blue] (0,0) -- (1,1) -- (1,0);
\draw[transform canvas={rotate=180},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
\end{codeexample}
%
\end{key}
|