| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 
 | # dpictools.pic
# General-purpose pic macros. Input this file using the Circuit_macros
# m4 macro NeedDpicTools or the pic statement copy "HOMELIB_/dpictools.pic"
# when HOMELIB_ is defined or, generically, copy "<path>dpictools.pic"
# Circuit_macros Version 10.1, copyright (c) 2022 J. D. Aplevich under     #
# the LaTeX Project Public Licence in file Licence.txt. The files of       #
# this distribution may be redistributed or modified provided that this    #
# copyright notice is included and provided that modifications are clearly #
# marked to distinguish them from this distribution.  There is no warranty #
# whatsoever for these files.                                              #
#                   findroot(function,left bound,right bound,tolerance,var name)
#                   Solve function(x)=0 by the method of bisection
#                   e.g. define parabola { $2 = ($1)^2 - 1 }
#                   findroot( parabola, 0, 2, 1e-8, x )
define findroot {$5 = 0; [ x_m = $2; x_M = $3
  loop( $1(x_m,f_m);, abs(x_M-x_m)>$4,,
    x_c = (x_m+x_M)/2
    $1(x_c,f_c)
    if sign(f_c)==sign(f_m) then {x_m=x_c} else {x_M=x_c};)
  $5 := (x_m+x_M)/2 ] ; }
#                   bisect(function,left bound,right bound, tolerance, var name)
#                   Like findroot but uses recursion and without a [] box
define bisect { x_m_$1 = $2; x_M_$1 = $3
  x_c_$1 = (x_m_$1+x_M_$1)/2
  if (abs(x_m_$1-x_M_$1) <= $4) then { $5 = x_c_$1 } else {
     $1(x_m_$1,f_m_$1)
     $1(x_c_$1,f_c_$1)
     if (sign(f_c_$1)==sign(f_m_$1)) then { bisect($1,x_c_$1,x_M_$1,$4,$5) } \
     else { bisect($1,x_m_$1,x_c_$1,$4,$5) } } }
#                               case(i, alt1, alt2, ... ),
#                               Case statement: execute alternative i
#                               e.g., case(2, x=5, x=10, x=15) sets x to 10
define case { exec sprintf("$%g",floor($1+0.5)+1); }
#                               testexpr(i, expr1, expr2, ... )
#                               Set i to index of the first true alternative
#                               in a sequence of logical expressions, e.g.,
#                               testexpr(i, 1>2, 1<2 ) sets i to 2; to 0
#                               if no test is true.
define testexpr { $1 = 0; [for i_testexpr=2 to $+ do {
  exec sprintf("if $%g then {$1 := i_testexpr-1; i_testexpr=$+}",i_testexpr)
  }] ; }
#                               loop(initial,test,loopend,statements)
#                               C-like loop.  Commas in arg3 and arg4 must
#                               be in quotes or parentheses, e.g.,
#                               loop(i=1, i<=3, i+=1, print i) prints 1, 2, 3
define loop {ld__+=1
 $1
 for lx__[ld__]=0 to 1 do {
    if $2 then { lx__[ld__]=0; $4; $3; } else { lx__[ld__]=1 }}
 ld__-=1; }
#                               array(var,expr1,expr2,...)
#                               var[1]=expr1; var[2]=expr2,...
define array {
 for i_array=2 to $+ do { exec sprintf("$1[%g] = $%g",i_array-1,i_array); }}
#                               array2(var,expr1,expr2,...)
#                               var[expr1,1]=expr2; var[expr1,2]=expr3,...
define array2 { for i_array=3 to $+ do {
  exec sprintf("$1[%g,%g]=$%g",$2,i_array-2,i_array);}}
#                               posarray(Var,Position1,Position2,...)
#                               Var[1]:Position1; Var[2]:Position2,...
define posarray {
 for i_array=2 to $+ do { exec sprintf("$1[%g] : $%g",i_array-1,i_array); }}
#                               posarray2(Var,expr,position1,position2,...)
#                               Var[expr,1]:position1; Var[expr,2]:Position2,...
define posarray2 { for i_array=3 to $+ do {
  exec sprintf("$1[%g,%g] : $%g",$2,i_array-2,i_array); }}
#                               Operations on 3-d vectors (could be generalized
#                               except for cross):
#                               $3 = $1 + $2
define sum3 {
 $3[1]=$1[1]+$2[1]
 $3[2]=$1[2]+$2[2]
 $3[3]=$1[3]+$2[3]}
#                               $3 = $1 - $2
define diff3 {
 $3[1]=$1[1]-$2[1]
 $3[2]=$1[2]-$2[2]
 $3[3]=$1[3]-$2[3]}
#                               $3 = $1 X $2
define cross3 {
 $3[1]=$1[2]*$2[3]-$1[3]*$2[2]
 $3[2]=$1[3]*$2[1]-$1[1]*$2[3]
 $3[3]=$1[1]*$2[2]-$1[2]*$2[1]}
#                               $1 . $2
define dot3 {($1[1]*$2[1]+$1[2]*$2[2]+$1[3]*$2[3])}
#                               $3 = $1 * $2
define sprod3 {
 $3[1]=($1)*$2[1]
 $3[2]=($1)*$2[2]
 $3[3]=($1)*$2[3]}
#                               |$1|
define length3 { sqrt($1[1]^2+$1[2]^2+$1[3]^2) }
#                               Expand a vector
define vec3 {$1[1],$1[2],$1[3]}
#                               $2 = $1
define copy3 {
  $2[1] = $1[1]
  $2[2] = $1[2]
  $2[3] = $1[3] }
#                               slantbox(wid,ht,xslant,yslant,attributes)
define slantbox { [
  if "$1"=="" then { w = boxwid } else { w = $1 }
  if "$2"=="" then { h = boxht } else { h = $2 }
  if "$3"=="" then { xs = 0 } else { xs = $3 }
  if "$4"=="" then { ys = 0 } else { ys = $4 }
  NE: (w+xs,h+ys)/2 ; SE: (w-xs,-h+ys)/2
  SW: (-w-xs,-h-ys)/2 ; NW: (-w+xs,h-ys)/2
  N: 0.5 between NW and NE ; E: 0.5 between NE and SE
  S: 0.5 between SE and SW ; W: 0.5 between SW and NW
  C: 0.5 between SW and NE
  line from N to NE then to SE then to SW then to NW then to N $5
  ] }
#                               arraymax( data array, n, index name, value)
#                               Find the index in array[1:n] of the first
#                               occurrence of the max value.  The value is
#                               assigned if arg4 is non-blank.  eg.,
#                               array(x,4,9,8,6); arraymax( x,4,i )
#                               assigns 2 to i, and arraymax( x,4,i,m )
#                               assigns 2 to i and 9 to m
define arraymax { { $3 = -1; if "$4" != "" then { $4 = 0 }; m_arrm = -1e25
 for i_arrm=1 to $2 do { if $1[i_arrm] > m_arrm then {
   $3 := i_arrm; m_arrm = $1[i_arrm] }}
 if "$4" != "" then { $4 := m_arrm } } }
#                               arraymin( data array, n, index name, value)
#                               Like arraymax
define arraymin { { $3 = -1; if "$4" != "" then { $4 = 0 }; m_arrm = 1e25
 for i_arrm=1 to $2 do { if $1[i_arrm] < m_arrm then {
   $3 := i_arrm; m_arrm = $1[i_arrm] }}
 if "$4" != "" then { $4 := m_arrm } } }
#                               copythru(macro_name,"datafile")
#                               See the GNU pic manual
#                               Implements "copy datafile thru macro_name"
#                               for data separated by comma, spaces, or tabs
define copythru {
 sh "sed -e 's/^[ 	]*/$1(/' -e 's/[ 	]*$/)/' -e 's/[, 	][ 	]*/,/g' $2 \
   > copythru_tmp__"
 copy "copythru_tmp__"
 sh "rm -f copythru_tmp__";}
#                               randn(array_name,n,mean,stddev)
#                               Assign n Gaussian random numbers
#                               in array_name[1] ... array_name[n]
define randn {
  if "$2"=="" then { n_randn = 1 } else { n_randn = $2 }
  if "$3"=="" then { m_randn = 0 } else { m_randn = $3 }
  if "$4"=="" then { s_randn = 1 } else { s_randn = $4 }
  for i_randn=1 to n_randn by 2 do {
    for done=0 to 1 do { u_randn=2*rand()-1; v_randn=2*rand()-1
      t_randn = u_randn^2+v_randn^2; done=(t_randn<1) }
    t_randn = sqrt( -2*loge(t_randn)/t_randn )
    $1[i_randn] = u_randn*t_randn*s_randn+m_randn
    if i_randn < n_randn then {
      $1[i_randn+1] = v_randn*t_randn*s_randn+m_randn }
    }
  }
#                               dfitpoints(V,n,m,P,mP) 
#                               Compute the controls in P[mP], P[mP+1]... for
#                               the spline passing throught points V[m]...V[n]
define dfitpoints {
  if "$3"=="" then { m_dfit=0 } else { m_dfit=$3 }
  if "$5"=="" then { mP_dfit=0 } else { mP_dfit=$5 }
  n_dfit = $2; np_dfit = n_dfit-m_dfit
  $4[mP_dfit]: $1[m_dfit]
  for i_dfit=m_dfit+1 to n_dfit-1 do {
    $4[mP_dfit+i_dfit-m_dfit]: $1[i_dfit]*(4/3) }
  $4[mP_dfit+np_dfit]: $1[n_dfit]
  $4[mP_dfit+1]: $4[mP_dfit+1]-$4[mP_dfit+0]/6    # forward substitution
  d_dfit[1] = 1
  for i_dfit = 2 to np_dfit-1 do { $4[mP_dfit+i_dfit]: \
    $4[mP_dfit+i_dfit]-$4[mP_dfit+i_dfit-1]/d_dfit[i_dfit-1]/6
    d_dfit[i_dfit] = 1-1/d_dfit[i_dfit-1]/36 }
  for i_dfit= np_dfit-1 to 1 by -1 do {    # backward substitution
    $4[mP_dfit+i_dfit]: \
    ($4[mP_dfit+i_dfit]-$4[mP_dfit+i_dfit+1]/6)/d_dfit[i_dfit] } }
#                               dfitcurve(V,n,linetype,m (default 0))
#                               Draw a spline through V[m],...V[n]
#                               linetype=eg dotted.  Works only with dpic.
#                               The calculated control points P[i] satisfy
#                               approximately:
#                               P[0] = V[0]
#                               P[i-1]/8 + P[i]*3/4 + P[i+1]/8 = V[i]
#                               P[n] = V[n]
#                               Like m4 macro fitcurve
define dfitcurve { if "$4"=="" then { m_dfit=0 } else { m_dfit=$4 }
  n_dfit = $2; np_dfit = n_dfit-m_dfit
  M4P_[0]: $1[m_dfit]
  case( min(max(np_dfit,-1),3)+1,
    spline 0.551784 $3 from M4P_[0] to M4P_[0],
    spline 0.551784 $3 from M4P_[0] to $1[n_dfit],
    M4P_[3]: $1[n_dfit]; Q_dfit: (M4P_[3]-M4P_[0])/4 
    M4P_[1]: $1[m_dfit+1]-Q_dfit; M4P_[2]: $1[m_dfit+1]+Q_dfit
    spline 0.551784 $3 from M4P_[0] to M4P_[1] then to M4P_[2] then to M4P_[3],
    dfitpoints($1,$2,$4,M4P_,0)  # draw using computed control points
    spline 0.551784 $3 from M4P_[0] to 11/32 between M4P_[0] and M4P_[1] \
       then to 5/32 between M4P_[1] and M4P_[2]
    for i_dfit=2 to np_dfit-2 do { continue to M4P_[i_dfit] }
    continue to 27/32 between M4P_[np_dfit-2] and M4P_[np_dfit-1] \
      then to 21/32 between M4P_[np_dfit-1] and M4P_[np_dfit] \
      then to M4P_[np_dfit]) } 
#                               histbins { data array name, n, [min], [max],
#                                          nbins, bin array name )
#                               Generate the distribution of n values in
#                               dataarray. If given, arg3 and arg4 specify
#                               maximum and minimum data values, otherwise they
#                               are calculated. Bins have index 0 to arg5-1
define histbins { # dataarray, n, [min], [max], nbins, binarray
{ if "$3" == "" then { arraymin($1,$2,mn_histb,n_histb)} else { n_histb = $3 }
  if "$4" == "" then { arraymax($1,$2,mx_histb,m_histb)} else { m_histb = $4 }
  f_histb = ($5-0.001)/(m_histb-n_histb)
  for i_histb=0 to $5-1 do { $6[i_histb] = 0 }
  for i_histb=1 to $2 do {
   x_histb = floor(($1[i_histb]-n_histb)*f_histb)
   if (x_histb >= 0) && (x_histb < $5) then { $6[x_histb] += 1 } }
} }
#                               dpquicksort(a,lo,hi,ix)
#                               Given array a[lo:hi] and index
#                               array ix[lo:hi] = lo,lo+1,lo+2,...hi,
#                               sort a[lo:hi] and do identical exchanges on ix
define dpquicksort { [ if $3 > $2 then {
  pivot = $1[($2+($3))/2]
  loop(lo = $2; hi = $3, lo <= hi,
    loop(,$1[lo] < pivot, lo += 1 )
    loop(,$1[hi] > pivot, hi -= 1 )
    if lo < hi then {
      tmp = $1[lo]; $1[lo] := $1[hi]; $1[hi] := tmp
      tmp = $4[lo]; $4[lo] := $4[hi]; $4[hi] := tmp }
    if lo <= hi then { lo += 1; hi -= 1 } )
  if hi > $2 then { exec sprintf("dpquicksort($1,%g,%g,$4)",$2,hi) }
  if lo < $3 then { exec sprintf("dpquicksort($1,%g,%g,$4)",lo,$3) }
  } ] }
#                               dprot(radians,x,y)
#                               Evaluates to a rotated pair (like m4 rot_ )
define dprot { cos($1)*($2)-sin($1)*($3),sin($1)*($2)+cos($1)*($3) }
#                               dprtext(degrees,text)
#                               Rotated pstricks or pgf text in a [] box
define dprtext {[ if "$1"=="" then { a = 90 } else { a = $1 }
  if dpicopt==optPSTricks then {
    sprintf("\rput[c]{%g}(0,0)",a)+"{$2}"} else {
  if dpicopt==optPGF then {
    sprintf("\pgftext[rotate=%g]",a)+"{$2}" } else { "$2" }}
    ]}
#                               rgbtohsv(r,g,b,h,s,v)
#                               rgb color triple to hsv with h range 0 to 360
define rgbtohsv { $4 = 0; $5 = 0; $6 = 0
 [r = $1; g = $2; b = $3
  maxc = max(max(r,g),b)
  minc = min(min(r,g),b)
  if maxc==minc then { $4 := 0 } \
  else {if maxc == r then {
    $4 := pmod(60*((g-b)/(maxc-minc)),360) } \
  else {if maxc == g then {
    $4 := 60*((b-r)/(maxc-minc)) + 120 } \
  else { $4 := 60*((r-g)/(maxc-minc)) + 240 }}}
  if maxc == 0 then { $5 := 0 } else { $5 := 1 - (minc/maxc) }
  $6 := maxc
  ] }
#                               hsvtorgb(h,s,v,r,g,b)
#                               hsv color triple to rgb, h has range 0 to 360
define hsvtorgb { $4 = 0; $5 = 0; $6 = 0
 [h = pmod($1,360)/60; s = $2; v = $3
  i = floor(h)
  f = h-i
  m = v*(1-s)
  n = v*(1-s*f)
  k = v*(1-s*(1-f))
  case(i+1,
    $4 := v; $5 := k; $6 := m,
    $4 := n; $5 := v; $6 := m,
    $4 := m; $5 := v; $6 := k,
    $4 := m; $5 := n; $6 := v,
    $4 := k; $5 := m; $6 := v,
    $4 := v; $5 := m; $6 := n)
  ] }
#                               cmyktorgb(c,m,y,k,r,g,b)
#                               cmyk colors in percent to rgb
define cmyktorgb {
  $5 = 1-min(1,($1+$4)/100)
  $6 = 1-min(1,($2+$4)/100)
  $7 = 1-min(1,($3+$4)/100)
  }
#                               rgbtocmyk(r,g,b,c,m,y,k)
#                               rgb to cmyk colors out of 100
define rgbtocmyk {
  $7 = min(1-$1,min(1-$2,1-$3))*100
  $4 = (1-$7-$1)/(1-$7)*100
  $5 = (1-$7-$2)/(1-$7)*100
  $6 = (1-$7-$3)/(1-$7)*100 }
#                               DefineRGBColor(colorname,r,g,b)
#                               Arguments are in the range 0 to 1
#                               Define dpic macro colorname according to the
#                               postprocessor specified by dpic command-line
#                               option; colorname then evaluates to a string
define DefineRGBColor {
case(dpicopt,  # The order of the following is defined in dpic source:
# MFpic:
  command sprintf("\mfpdefinecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
  define $1 {"_$1__"} ,
# Mpost:
  define $1 {sprintf("(%g,%g,%g)",$2,$3,$4)} ,
# PDF:
  define $1 {sprintf("%g %g %g",$2,$3,$4)} ,
# PGF:
  command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
  define $1 {"_$1__"} ,
# Pict2e:
  command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
  define $1 {"_$1__"} ,
# PS:
  define $1 {sprintf("%g %g %g",$2,$3,$4)} ,
# PSfrag:
  define $1 {sprintf("%g %g %g",$2,$3,$4)} ,
# PSTricks:
  command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
  define $1 {"_$1__"} ,
# SVG:
  define $1 {sprintf("rgb(%g,%g,%g)",int($2*255),int($3*255),int($4*255))} ,
# TeX:
  command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
  define $1 {"_$1__"} ,
# tTeX:
  command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
  define $1 {"_$1__"} ,
# xfig:
  define $1 {"black"}
  ) }
#                               DefineHSVColor(colorname,h,s,v)
#                               Like DefineRGBColor but takes arguments
#                               h in [0,360], s in [0,1], and v in [0,1]
define DefineHSVColor { hsvtorgb($2,$3,$4,r_HSVRGB,g_HSVRGB,b_HSVRGB)
  DefineRGBColor($1,r_HSVRGB,g_HSVRGB,b_HSVRGB) }
#                               DefineCMYKColor(colorname,c,m,y,k)
#                               Like DefineRGBColor but arguments in percent
define DefineCMYKColor { cmyktorgb($2,$3,$4,r_CMYKRGB,g_CMYKRGB,b_CMYKRGB)
  DefineRGBColor($1,r_CMYKRGB,g_CMYKRGB,b_CMYKRGB) }
#                               ShadeObject(DrawRoutineName, n, colorseq)
#                               colorseq = 0,r0,g0,b0,
#                                      frac1,r1,g1,b1,
#                                      frac2,r2,g2,b2,
#                                          ...
#                                          1,rn,gn,bn
#                                 with 0 < frac1 < frac2 < ... < 1
#
#                               calls DrawRoutineName(frac,r,g,b)
#                                 n+1 times for frac = 0, 1/n, 2/n, ... 1
#                                 with rgb args interpolated (in hsv space)
#                                 between colorseq points
#
# eg B: box; define HorizShade { line right B.wid thick B.ht/100/(1bp__) \
#         from (0,-($1)*B.ht) outlined rgbstring($2,$3,$4) }
# ShadeObject(HorizShade, 100, 0,1,0,0, 1,0,0,1) at B
#
define ShadeObject { [ Origin: Here; nSteps = abs($2)
  nextP = $3; nextR = $4; nextG = $5; nextB = $6
  nextarg = 7
  thisP = nextP
#                               Creates [] wid 0 ht 0 at (0,0):
  if $2 < 0 then { rgbtohsv(nextR,nextG,nextB,nextH,nextS,nextV) } \
  else { rgbtohsv(nextR^2,nextG^2,nextB^2,nextH,nextS,nextV) }
  if nextP*nSteps >= 1 then { nextP = 0 }
  $1(nextP,nextR,nextG,nextB)
  for stepnum = 1 to nSteps do {
    if stepnum > nextP*nSteps then {
      thisP = nextP; thisH = nextH; thisS = nextS; thisV = nextV
      exec sprintf("nextP = $%g; nextR = $%g; nextG = $%g; nextB = $%g",\
        nextarg,nextarg+1,nextarg+2,nextarg+3);
      nextarg +=4 }
    if nextP != thisP then {
      rgbtohsv(nextR^2,nextG^2,nextB^2,nextH,nextS,nextV)
      if thisS == 0 then { thisH = nextH }
      if nextS == 0 then { nextH = thisH }
      if thisH-nextH > 180 then { nextH += 360 } \
      else { if nextH-thisH > 180 then { thisH +=360 } } }
    if nextP > thisP then {
      x = (stepnum/nSteps-thisP)/(nextP-thisP)
      currP = thisP*(1-x) + nextP*x
      currH = thisH*(1-x) + nextH*x
      currS = thisS*(1-x) + nextS*x
      currV = thisV*(1-x) + nextV*x
      hsvtorgb(currH,currS,currV,cRsq,cGsq,cBsq)
      if $2 < 0 then { $1(currP,cRsq,cGsq,cBsq) } \
      else { $1(currP,sqrt(cRsq),sqrt(cGsq),sqrt(cBsq)) } }
    }
  exec sprintf("$%g",nextarg)
  ] }
#                               Useful for debugging:
#                               Print Pos:(Pos.x,Pos.y)
define prpos { { print sprintf("$1:(%g,%g)",($1).x,($1).y) } }
define prval { print sprintf("$1=%g",$1) }
define prval2 { print sprintf("$1=%g, $2=%g",$1,$2) }
define prval3 { print sprintf("$1=%g, $2=%g, $3=%g",$1,$2,$3) }
#                               prow(array name,rowno,lo,hi)
#                               print array[rowno,lo:hi] as a row
#                               rowno can be omitted, e.g.,
#                               array(x,6,4,5); prow(x,1,3)
define prow {
  sh "echo -n \"print \\"\" > $1_prow"
  if ($+ < 4) || ("$2"=="") then {
    for i_prow=$2 to $3-1 do {
      sh sprintf("echo -n \"%g \" >> $1_prow", $1[i_prow]) }
    sh sprintf("echo \"%g\\"\" >> $1_prow", $1[$3])
    } \
  else {
    for i_prow=$2 to $3-1 do {
      sh sprintf("echo -n \"%g \" >> $1_prow", $1[($4,i_prow)]) }
    sh sprintf("echo \"%g\\"\" >> $1_prow", $1[($4,$3)])
    }
  copy "$1_prow"
  sh "rm $1_prow"
  }
define rnd {int($1+sign($1)/2)} # round function
#                               Operations on complex numbers (x,y)
define Zsum {($1+($2))}
define Zdiff{($1-($2))}
define Zprod {($1.x*$2.x-$1.y*$2.y,$1.y*$2.x+$1.x*$2.y)}
define Zinv {($1.x/($1.x^2+$1.y^2),-$1.y/($1.x^2+$1.y^2))}
define Zexp {((cos($1.y),sin($1.y))*expe($1.x))}
define Zcos {(cos($1.x)*cosh($1.y),-sin($1.x)*sinh($1.y))}
define Zsin {(sin($1.x)*cosh($1.y), cos(%1.x)*sinh($1.y))}
define zabs {sqrt($1.x^2+$1.y^2)}
define zarg {atan2($1.y,$1.x)}
#                               Trig functions if undefined
if "cosh"=="co"+"sh" then {
  define cosh {((expe($1) + expe(-($1)))/2)}
  define sinh {((expe($1) - expe(-($1)))/2)}
}
## dpic equivalents or almost equivalents to libgen.m4 routines ########
## Including them here has to be regarded as experimental for now ######
define cosd {cos(($1)*dtor_)}
define sind {sin(($1)*dtor_)}
define ceiling {(-floor(-($1)))}
define round_ {int($1+sign($1)/2)}
define bp__ {*(scale/72)}       # Absolute Adobe point
define pt__ {*(scale/72.27)}    # Absolute TeX point
define pc__ {*(12*scale/72.27)} # Absolute Pica
define in__ {*scale}            # Absolute inch
define cm__ {*(scale/2.54)}     # Absolute cm
define mm__ {*(scale/25.4)}     # Absolute mm
define lthick {(linethick bp__)}
if dpicopt==optSVG then { define px__ {*(scale/dpPPI)} } \
else { define px__ {*(scale/96)} } # Absolute pixels
define assign_dpicvars {
 ld__ = 0
 rtod_ = 57.295779513082323
 dtor_ = 0.017453292519943295
 twopi_ = 6.2831853071795862
 pi_ = twopi_/2
 $1
 }
#                               Polar to rectangular conversion
define Rect_ {($1)*cos(($2)*dtor_),($1)*sin(($2)*dtor_)}
#                               intersect_(Start1,End1,Start2,End2)
#                               Intersection of lines joining named positions
define intersect_ {((($3.x-$1.x)*($3.y-$4.y)-($3.y-$1.y)*($3.x-$4.x))/\
 (($2.x-$1.x)*($3.y-$4.y)-($2.y-$1.y)*($3.x-$4.x)) \
 between $1 and $2) }
#                               Intersect_(Name1,Name2)
#                               Intersection of named lines
define Intersect_ {intersect_($1.start,$1.end,$2.start,$2.end)}
#                               drawdir_(degrees)
#                               Nearest multiple of 90
define drawdir_ {(int(pmod($1+45,360)/90)*90)}
#                               vlength(x,y) 2-D vector length
define vlength {sqrt(abs(($1)^2+($2)^2))}
#                               distance(Pos1,Pos2) distance between positions
define distance {vlength(($1).x-($2).x,($1).y-($2).y)}
# For PGF, PSTricks, or SVG only:
define dpshade { beginshade($1); $2; endshade } # like libgen shade()
# beginshade
if dpicopt==optPGF then {
 define beginshade { if "$1"!="" then { dpshade_=$1 } else { dpshade_=0.5 }
  command "\global\let\dpicshdraw=\dpicdraw\global\def\dpicdraw{}"
  command "\global\def\dpicstop{--}"
  command sprintf("\dpicshdraw[fill=white!%g!black]",dpshade_*100) } } \
else { if dpicopt==optPSTricks then {
 define beginshade { if "$1"!="" then { dpshade_=$1 } else { dpshade_=0.5 }
  command sprintf("\newgray{m4fillv}{%g}",dpshade_)
  command sprintf("\pscustom[fillstyle=solid,fillcolor=m4fillv]{%%") } } \
else { if dpicopt==optSVG then {
 define beginshade { if "$1"!="" then { dpshade_=$1 } else { dpshade_=0.5 }
  command sprintf("<g fill=\"rgb(%g,%g,%g)\">",int(dpshade_*255+0.5),\
   int(dpshade_*255+0.5),int(dpshade_*255+0.5))} } }}
# endshade
if dpicopt==optPGF then {
 define endshade {command "cycle; \
  \global\let\dpicdraw=\dpicshdraw\global\def\dpicstop{;}"} } \
else { if dpicopt==optPSTricks then {
  define endshade {command "}%"} } \
else { if dpicopt==optSVG then {
 define endshade { command "</g>"} } }}
# rgbstring
if dpicopt==optPGF then {
 define rgbstring \
  {sprintf("{rgb,1:red,%7.5f;green,%7.5f;blue,%7.5f}",$1,$2,$3)} } \
else { if dpicopt==optPSTricks then {
 define rgbstring \
  {sprintf("{rgb,1:red,%7.5f;green,%7.5f;blue,%7.5f}",$1,$2,$3)} } \
else { if dpicopt==optSVG then {
 define rgbstring {sprintf("rgb(%g,%g,%g)",\
  int(($1)*255+0.5),int(($2)*255+0.5),int(($3)*255+0.5))} } }}
#######################################################################
assign_dpicvars()
# print " *** dpic: dpictools.pic processed"
define dpictools_ {1}
  case(abs(dpicopt),
    optMFpic := -abs(optMFpic),
    optMpost := -abs(optMFpic),
    optPDF := -abs(optPDF),
    optPGF := -abs(optPGF),
    optPict2e := -abs(optPict2e),
    optPS := -abs(optPS),
    optPSfrag := -abs(optPSfrag),
    optPSTricks := -abs(optPSTricks),
    optSVG := -abs(optSVG),
    optTeX := -abs(optTeX),
    opttTeX := -abs(opttTeX),
    optxfig := -abs(optxfig) )
  dpicopt := -abs(dpicopt)
# dpictools end
 |