1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
|
% -*-texinfo-*-
% $Id: texdraw.texi 2.11 2019/04/18 TeXdraw-v2r3 $
% To produce a TeX version of this manual, you must have the following
% files accessible to TeX.
% texdraw.texi - this file, the TeXdraw manual, part of the TeXdraw
% distribution
% texdraw.tex - the TeXdraw macros, part of the TeXdraw distribution
% txdtools.tex - extra macros for TeXdraw, part of the TeXdraw
% distribution
% texinfo.tex - texinfo manual macros (distributed by FSF, for instance
% with the GNUemacs editor). This version of the manual has
% been tested with version 2.145 of texinfo.tex. The file
% texinfo.tex is available by anonymous ftp as
% pub/gnu/texinfo-3.6.tar.Z on prep.ai.mit.edu.
%
\input texdraw % bring in TeXdraw before texinfo changes "\" to "@"
\input txdtools
\input texinfo @c -*-texinfo-*-
@comment %**start of header
@setfilename texdraw.info
@settitle @TeX{}draw
@comment %**end of header
@copying
This manual (edition 2.3) documents @TeX{}draw, a system for
producing PostScript drawings from @TeX{}.
Copyright @copyright{} 1993--2019 Peter Kabal
This work is licensed under the Creative Commons Attribution (CC-BY)
License, any version. To view the licenses, visit
@w{@url{creativecommons.org/licenses/by}} or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
@end copying
@dircategory TeX
@direntry
* TeXdraw: (texdraw). Drawing PostScript diagrams within TeX.
@end direntry
@titlepage
@title @TeX{}draw
@subtitle PostScript Drawings from @TeX{}
@subtitle Edition 2.3
@subtitle April 2019
@author Peter Kabal
@page
@vskip 0pt plus 1filll
@insertcopying
Peter Kabal @*
Department of Electrical @& Computer Engineering @*
McGill University @*
@code{peter dot kabal at mcgill dot ca} @*
@code{http://www-mmsp.ece.mcgill.ca/MMSP/Documents/Software/}
@end titlepage
@contents
@ifnottex
@node Top, Introduction, (dir), (dir)
@top TeXdraw
@TeX{}draw is a collection of macros that allow drawings to be created
from @emph{within} @TeX{}.
This is edition 2.3 of the @TeX{}draw documentation.
@end ifnottex
@menu
* Introduction::
* TeXdraw Commands::
* Drawing Segments and Scaling::
* Using TeXdraw with LaTeX::
* More Details::
* PostScript Commands::
* TeXdraw Toolbox::
* Examples::
* Command Listing::
Indices
* Concept Index::
* Command Index::
--- The Detailed Node Listing ---
Introduction
* Distribution::
TeXdraw Commands
* Accessing TeXdraw::
* Command syntax::
* TeXdraw coordinates::
* Coordinate specification::
* Line vectors::
* TeX text::
* Circles and arcs::
* Bezier curves::
* Fill commands::
Drawing Segments and Scaling
* Drawing segments::
* Drawing paths::
* Saving positions::
* Scaling coordinates::
* Drawing size::
* Initial current position::
Using TeXdraw with LaTeX
* PostScript printer drivers::
More Details
* Errors while using TeXdraw::
* Extending TeXdraw::
* How TeXdraw merges graphics and text::
Extending TeXdraw
* Scaling::
* Resolution::
* Text placement::
* Intermediate PostScript file::
PostScript Commands
TeXdraw Toolbox
* Coordinate parsing::
* Real arithmetic::
* Arrow curve::
Examples
* Block diagram::
* Filter response graph::
* Geometric construction::
Command Listing
Command Index
Concept Index
@end menu
@node Introduction, TeXdraw Commands, Top, Top
@chapter Introduction
@TeX{} is a powerful typesetting program which allows for complex text
layouts but by itself lacks a general graphics capability. However,
when coupled with an appropriate printer driver program, external
graphics files can be inserted into the printed document. In this mode,
@TeX{} is instructed to leave space for a drawing. The drawing is
inserted by the printer driver program. The @TeX{}draw macros described
here generate the external graphics file from within @TeX{} and generate
the instructions to the the print driver program to position the
graphics at the appropriate position on the page.
@TeX{}draw consists of a set of @TeX{} macros that create line drawings
and other figures. The drawing primitives include solid lines,
patterned lines, Bezier curves, circles and arrows. Other commands
allow for the filling of a region with a gray level. The drawing
commands generate PostScript code. This limits @TeX{}draw to systems
which use PostScript printers. @TeX{}draw also provides commands to
position @TeX{} text, including mathematics, on the drawing. The final
drawing, with text and graphics, can be positioned on the page like any
other @TeX{} box.
@cindex @code{dvips} printer driver
@cindex La@TeX{}
@cindex @code{graphics} package
The basic @TeX{}draw macros for @TeX{} use the @code{\special} syntax
recognized by the printer driver program @code{dvips}. However, when
invoked as a La@TeX{}2e package, the @TeX{}draw macros can be used with
any of the PostScript printer driver programs supported by the standard
@code{graphics} package for La@TeX{}2e.
The basic @TeX{}draw macros provide only simple drawing commands.
However, @TeX{}draw provides a drawing segment environment which allows
parameter changes and coordinate scaling changes to be kept local to the
drawing segment. This facility, together with @TeX{}'s macro
capabilities allows one to modularize drawing units and extend
@TeX{}draw by building more complex graphics entities from simpler
elements.
@menu
* Distribution::
@end menu
@node Distribution, , , Introduction
@section Distribution information
@cindex distribution
The entire @TeX{}draw package, both code and documentation, is
released under Creative Commons Attribution (CC-BY) license, any
version.
@node TeXdraw Commands, Drawing Segments and Scaling, Introduction, Top
@chapter Using the @TeX{}draw Commands
The main @TeX{}draw macros (commands) are defined in the file
@file{texdraw.tex}. These macros may be used directly in @TeX{}. The
file @file{texdraw.sty} provides an interface for use with La@TeX{}2e.
The following sections describe the basic commands for @TeX{}draw.
@menu
* Accessing TeXdraw::
* Command syntax::
* TeXdraw coordinates::
* Coordinate specification::
* Line vectors::
* TeX text::
* Circles and arcs::
* Bezier curves::
* Fill commands::
@end menu
@node Accessing TeXdraw, Command syntax, , TeXdraw Commands
@section Accessing @TeX{}draw
@cindex accessing @TeX{}draw
@cindex invoking @TeX{}draw
@cindex plain @TeX{}
@cindex La@TeX{}
The form of the user command to run the @TeX{} program depends on which
version of @TeX{} is being used, and which other macro packages are
preloaded as format files. Typically, installations have at least two
versions of @TeX{} --- plain @TeX{} which includes basic typesetting
macros (usually invoked as @file{tex}) and La@TeX{}2e which includes the
La@TeX{}2e typesetting macros (usually invoked as @file{latex}). An
older version of La@TeX{}, version 2.09, may also be available. The
@TeX{}draw macros can be used with plain @TeX{} and with either version
of La@TeX{}.
For use with plain @TeX{}, the user must read in the @TeX{}draw macros
from the file @file{texdraw.tex}.
@example
@group
\input texdraw % Read in the TeXdraw macros
...
\btexdraw
... % TeXdraw commands to generate a drawing
\etexdraw
@end group
@end example
For use with La@TeX{} version 2.09, the user reads in the @TeX{}draw
macros from the file @file{texdraw.tex} and optionally defines the
@code{\begin@{texdraw@}} / @code{\end@{texdraw@}} environment.
@example
@group
\documentstyle[11pt]@{article@} % Article style at 11pt size
...
\input texdraw % Read in the TeXdraw macros
\newenvironment@{texdraw@}@{\leavevmode\btexdraw@}@{\etexdraw@}
...
\begin@{texdraw@}
... % TeXdraw commands to generate a drawing
\end@{texdraw@}
...
\end@{document@}
@end group
@end example
@cindex @code{texdraw} package
@cindex @code{graphics} package
For use with La@TeX{}2e, the user must load the @code{texdraw} package
(file @file{texdraw.sty}). This package file defines the
@code{\begin@{texdraw@}} / @code{\end@{texdraw@}} environment, brings in
the standard @code{graphics} package and reads in the file
@file{texdraw.tex} containing the definitions of the @TeX{}draw macros.
@example
@group
\documentclass[11pt]@{article@} % Article class at 11pt size
\usepackage@{texdraw@} % TeXdraw commands
\begin@{document@}
...
\begin@{texdraw@}
... % TeXdraw commands to generate a drawing
\end@{texdraw@}
...
\end@{document@}
@end group
@end example
As the @TeX{}draw commands are processed by @TeX{}, an intermediate
PostScript file is generated. The intermediate PostScript has a name of
the form @file{@var{name}.ps1}. The name part is derived from the name
of the main @TeX{} file being processed. If more than one drawing is
produced, the digit in the file name extension is
incremented.@footnote{After the ninth PostScript file, the name of the
intermediate PostScript file takes the form @file{@var{name}.p10}, with
the number increasing from 10 with each file.}
The @TeX{}draw commands to produce a drawing are inserted between
@code{\btexdraw} and @code{\etexdraw} commands, or for La@TeX{}, between
@code{\begin@{texdraw@}} and @code{\end@{texdraw@}} commands. This
results in a @TeX{} box of appropriate size containing the drawing
generated by the @TeX{}draw commands. The @TeX{}draw box can be
positioned in a document like any other @TeX{} box.
The @code{\centertexdraw@{...@}} macro centers the box generated by
@TeX{}draw. The vertical space taken up is equal to the vertical size
of the drawing. The @code{\centertexdraw} macro is normally used in
vertical mode (between paragraphs). A @code{\par} command (a blank line
will do also) before a @code{\centertexdraw} command will terminate
horizontal mode and return to vertical mode. For La@TeX{}, a structured
equivalent to the @code{\centertexdraw@{...@}} command is shown below.
@example
@group
\begin@{center@}
\begin@{texdraw@}
...
\end@{texdraw@}
\end@{center@}
@end group
@end example
The @code{\everytexdraw} command can be used to define a set of
@TeX{}draw commands that will be executed at the beginning of every
@TeX{}draw drawing. It is invoked as @code{\everytexdraw@{ ...@}},
with the desired @TeX{}draw commands as arguments.
@table @code
@findex \btexdraw
@item \btexdraw
Start a @TeX{}draw drawing. The drawing is terminated with an
@code{\etexdraw} command.
@findex \etexdraw
@item \etexdraw
End a @TeX{}draw drawing started with a @code{\btexdraw} command. The
resulting @TeX{}draw drawing is placed in a box with height equal to the
height of the drawing and width equal to the width of the drawing. The
depth of the box is zero.
@findex \begin@{texdraw@}
@item \begin@{texdraw@}
Start a @TeX{}draw drawing. The drawing is terminated with an
@code{\end@{texdraw@}} command. This command is for use with La@TeX{}.
@findex \end@{texdraw@}
@item \end@{texdraw@}
End a @TeX{}draw drawing started with a @code{\begin@{texdraw@}}
command. The resulting @TeX{}draw drawing is placed in a box with
height equal to the height of the drawing and width equal to the width
of the drawing. The depth of the box is zero. This command is for use
with La@TeX{}.
@findex \centertexdraw
@item \centertexdraw@{ ... @}
Center a @TeX{}draw box horizontally. The argument contains @TeX{}draw
commands. The resulting box has the horizontal size @code{\hsize} and
height equal to the height of the drawing.
@findex \everytexdraw
@item \everytexdraw@{ ... @}
Specify @TeX{}draw commands to be executed at the beginning of every
@TeX{}draw drawing.
@end table
@node Command syntax, TeXdraw coordinates, Accessing TeXdraw, TeXdraw Commands
@section Command syntax
@cindex command syntax
@cindex syntax of commands
Generally @TeX{}draw commands that take a single argument need a
terminating blank or newline after the argument. Arguments that are
self-delimiting, such as coordinates within parentheses and text within
braces, do not need the terminating blank. However, even when not
needed by the defining syntax of the command, blanks following command
arguments are allowed and ignored within the @TeX{}draw environment.
On entering the @TeX{}draw environment, @TeX{} is in internal vertical
mode (vertical mode inside a @code{\vbox}). In this mode, spaces can be
placed freely between commands. However, any other extraneous input
that generates output that is not part of the @TeX{}draw environment is
disallowed.
Blank lines are interpreted as paragraph breaks, equivalent to a
@code{\par} command. The @TeX{}draw macro @code{\centertexdraw} is
defined with the @code{\long} attribute to allow @code{\par} commands
and blank lines to be interspersed between @TeX{}draw commands. The
@code{\btexdraw} and @code{\etexdraw} commands also allow @code{\par}
command and blank lines to be included.
@node TeXdraw coordinates, Coordinate specification, Command syntax, TeXdraw Commands
@section @TeX{}draw coordinates
@cindex coordinates
The @TeX{}draw coordinate system has increasing @var{x} to the right and
increasing @var{y} upward. The coordinates (without the unit) are
floating point numbers. Integer values can be written without a decimal
point. The size of the drawing is determined by the maximum excursions
of the coordinates specified in @TeX{}draw commands.
@tex
\bigskip
\centertexdraw{
\avec (0 0.8) \textref h:C v:B \htext (0 0.9){\sl y}
\move (0 0) \avec (0.8 0) \textref h:L v:C \htext(0.9 0){\sl x}
\move (0 1.0)}
@end tex
Consider the following example of @TeX{}draw commands to draw a simple
figure.
@example
@group
\centertexdraw@{
\drawdim cm \linewd 0.02
\move(2 2) \lvec(3 3) \lvec(2 4) \lvec(1 3) \lvec(2 2)
\textref h:C v:C \htext(2 3)@{$\sum \rho_n$@}
@}
@end group
@end example
@tex
\bigskip
\centertexdraw{
\drawdim{cm} \linewd 0.02
\move(2 2) \lvec(3 3) \lvec(2 4) \lvec(1 3) \lvec(2 2)
\textref h:C v:C \htext(2 3){$\sum \rho_n$}
}
@end tex
This drawing uses units of centimetres, with a line width of 0.02 cm.
The @var{x} coordinate ranges between 1 and 3 while the @var{y}
coordinate ranges between 2 and 4. When included into a document, the
size of the drawing is 2 cm by 2 cm. The drawing is placed in a @TeX{}
box, with the lower lefthand corner of the box corresponding to
@TeX{}draw coordinate @code{(1 2)} and the upper righthand corner at
@code{(3 4)}. The @code{\centertexdraw} command centers the drawing
horizontally. The @code{\textref} command controls the centering of the
text. The text in this drawing is centered (both horizontally and
vertically) at the coordinate @code{(2 3)}.
@node Coordinate specification, Line vectors, TeXdraw coordinates, TeXdraw Commands
@section Coordinate specification
@cindex coordinate specification
@cindex position specification
Coordinates are specified within parentheses, with blanks (but no comma)
between the values. Leading blanks and trailing blanks are permitted
within the parentheses. The coordinates refer to units, which are
specified by the @code{\drawdim} command. The default is inches, but
any valid @TeX{} dimension unit can be specified. Symbolic
specification of saved coordinate values will be discused later
(@pxref{Saving positions}).
@table @code
@findex \drawdim
@item \drawdim @var{dim}
Set the units to @var{dim}. The argument @var{dim} can be any valid
@TeX{} dimension unit. The units are used to interpret coordinate
values. Examples of valid units: @code{cm}, @code{mm}, @code{in},
@code{pt}, and @code{bp}.
@end table
Examples of coordinate and scaling specifications:
@table @code
@item \drawdim @{cm@} \move(2 2)
Set the units to centimetres, move to a position 2 cm to the right and 2
cm up from the origin of the drawing coordinate system.
@item \drawdim bp
Set the units to big points.
@item \lvec ( 2.2 +5.5) \lvec(2.3 -2) \lvec(2.2 5.4 )
Examples of acceptable coordinate specifications.
@end table
@node Line vectors, TeX text, Coordinate specification, TeXdraw Commands
@section Line vectors
@cindex lines
@cindex vectors
@cindex arrows
@cindex moves
@cindex current position
@TeX{}draw implements moves, line vectors and arrow vectors. There are
both absolute and relative motion versions of these vector commands.
@TeX{}draw maintains a current position. Lines are drawn from the
current position to a new coordinate, with the new coordinate becoming
the new current position. An explicit move can be used to establish a
new current position. The position @code{(0 0)} is used if there is no
move to an initial current position.
The @code{\move} and @code{\rmove} commands establish a new current
position without drawing a line. The @code{\lvec} and @code{\rlvec}
commands draw a line from the current position to a new position, which
then becomes the new current position. The @code{\avec} and
@code{\ravec} commands draw a line with an arrowhead from the current
position to a new coordinate, which then becomes the new current
position. The tip of the arrow is at the new current position. The
direction of the arrow follows the direction of the line. Since this
direction is undefined for zero length vectors, these are not allowed
for @code{\avec} or @code{\ravec}. Zero length arrow vectors will
generate a PostScript print error: @code{undefinedresult}. For any
non-zero length vector, the full size arrowhead is drawn, even if that
arrowhead is longer than the line length.
The absolute motion versions of these commands specify the coordinate of
the final position.
@table @code
@findex \move
@item \move (@var{x} @var{y})
Move to coordinate @code{(@var{x} @var{y})}. The new current position
is @code{(@var{x} @var{y})}.
@findex \lvec
@item \lvec (@var{x} @var{y})
Draw a line from the current position to coordinate @code{(@var{x}
@var{y})}. The new current position is @code{(@var{x} @var{y})}.
@findex \avec
@item \avec (@var{x} @var{y})
Draw a line with an arrowhead from the current position to
@code{(@var{x} @var{y})}. The new current position is @code{(@var{x}
@var{y})}. The arrowhead is aligned with the line, with the tip at
@code{(@var{x} @var{y})}.
@end table
@cindex relative positioning
The relative motion versions of these commands interpret the coordinates
as displacements relative to the current position. Given the
displacements @code{(@var{dx} @var{dy})} as a parameter, each of the
relative motion commands moves @var{dx} units in the @var{x} direction
and @var{dy} units in the @var{y} direction.
@table @code
@findex \rmove
@item \rmove (@var{dx} @var{dy})
Move from the current position, @var{dx} units in the @var{x} direction
and @var{dy} units in the @var{y} direction. The final position becomes
the new current position.
@findex \rlvec
@item \rlvec (@var{dx} @var{dy})
Draw a line from the current position, @var{dx} units in the @var{x}
direction and @var{dy} units in the @var{y} direction. The final
position becomes the new current position.
@findex \ravec
@item \ravec (@var{dx} @var{dy})
Draw a line with an arrowhead from the current position, @var{dx} units
in the @var{x} direction and @var{y} units in the @var{y} direction.
The final position becomes the new current position. The arrowhead is
aligned with the line, with the tip at the new current position.
@end table
Lines can be customized with commands to change the line width, line
pattern and line gray level rendition. In addition, commands for
changing the type and size of the arrowhead are available.
@cindex line width
@cindex width of lines
@cindex dashed lines
@cindex dotted lines
@cindex gray levels for lines
@cindex arrowhead parameters
@table @code
@findex \linewd
@item \linewd @var{width}
Set the line width to @var{width} units. Initially @var{width} is 0.01
inches (corresponding to 3 pixels at 300 pixels to the inch).
@item \lpatt (@var{pattern})
Set lines to have the pattern @code{(@var{pattern})}. A pattern is a
sequence of on/off lengths separated by blanks and enclosed in parentheses.
The lengths alternately specify the length of a dash and the length of a
gap between dashes. Each length is interpreted using the current
scaling and drawing units. The pattern is used cyclically. The empty
pattern signifies a solid line. The initial line pattern is a solid
line, corresponding to the empty pattern @code{\lpatt ()}.
@findex \setgray
@item \setgray @var{level}
Set the gray level of lines. Gray levels are real values from 0 (black)
through intermediate values (gray) to 1 (white). The initial gray level
is 0 corresponding to black.
@findex \arrowheadtype
@item \arrowheadtype t:@var{type}
Set the arrowhead type to @var{type}, where @var{type} is one of
@code{F}, @code{T}, @code{W}, @code{V}, or @code{H}. There are two
kinds of arrowheads. The first kind is a triangle. There are 3
variants: type @code{T} is an empty triangle, type @code{F} is a filled
triangle (using the current gray level for lines), type @code{W} is a
triangle filled with white. The second kind of arrowhead is an open
ended Vee. There are 2 variants: type @code{V} has the stem continue to
the tip, type @code{H} has the stem stop at the base of the arrowhead.
The initial arrowhead type is @code{T}.
@findex \arrowheadsize
@item \arrowheadsize l:@var{length} w:@var{width}
Set the arrowhead size to be @var{length} units long and @var{width}
units wide. The width is measured across the ``base'' of the arrowhead.
The initial arrowhead size has a @var{length} of 0.16 inches and a
@var{width} of 0.08 inches.
@end table
Note that the lines which outline the arrowhead will be drawn with the
same line pattern used for the stem. Normally, arrow vectors are drawn
with the line pattern set for a solid line. Note that the fill level
used for the @code{F} variant of the arrowhead uses the same gray level
as used for lines. The difference between the @code{T} variant and the
@code{W} variant only shows up if the arrowhead is placed over non-white
areas of the drawing. The @code{W} variant obliterates the area under
the arrowhead.
Examples of line parameter and arrowhead settings are shown in the
following code.
@example
@group
\centertexdraw@{
\drawdim in
\linewd 0.03 \setgray 0.6 \arrowheadtype t:F \avec(0 0.5)
\linewd 0.01 \setgray 0 \arrowheadtype t:V \avec(0.5 0.5)
\linewd 0.015 \lpatt(0.067 0.1) \lvec (1 0)
\linewd 0.02 \lpatt() \arrowheadtype t:T \avec(1.5 0.5)
\arrowheadtype t:H \avec(2.0 0.5)
\setgray 0.4 \arrowheadtype t:W \avec(3.0 0)
@}
@end group
@end example
@tex
\bigskip
\centertexdraw{
\drawdim in
\linewd 0.03 \setgray 0.6 \arrowheadtype t:F \avec(0.5 0.5)
\linewd 0.01 \setgray 0 \arrowheadtype t:V \avec(1.0 0.5)
\linewd 0.015 \lpatt(0.067 0.1) \lvec (1.5 0)
\linewd 0.02 \lpatt() \arrowheadtype t:T \avec(2.0 0.5)
\arrowheadtype t:H \avec(2.5 0.5)
\setgray 0.4 \arrowheadtype t:W \avec(3.0 0)
\textref h:R v:T \htext (0.35 0.50){\tt t:F}
\textref h:R v:T \htext (1.0 0.43){\tt t:V}
\textref h:R v:T \htext (1.82 0.50){\tt t:T}
\textref h:R v:T \htext (2.5 0.43){\tt t:H}
\textref h:R v:B \htext (2.8 0){\tt t:W}
}
@end tex
@node TeX text, Circles and arcs, Line vectors, TeXdraw Commands
@section @TeX{} text
@cindex text commands
Text may be superimposed on the drawing. The text argument of the
@code{\htext} command is in horizontal mode. This text can be ordinary
text, math mode expressions, or even more complicated boxes consisting
of tables and the like. The resulting @TeX{} text is placed in a box.
The reference point of the box can be chosen to be one of nine
locations: horizontally left, center or right; vertically top, center or
bottom. The @code{\htext} command takes one of two forms.
@table @code
@findex \htext
@item \htext (@var{x} @var{y})@{@var{text}@}
@itemx \htext @{@var{text}@}
The first form of this command places the @TeX{} text @var{text}
horizontally with the text reference point at the coordinate
@code{(@var{x} @var{y})}. The new current position is @code{(@var{x}
@var{y})}. The second form of this command places the @TeX{} text
@var{text} horizontally with the text reference point at the current
position. The text reference point is set with the @code{\textref}
command.
@end table
@cindex vertical text
@cindex rotated text
@cindex text rotation
Text can be placed vertically using the @code{\vtext} command. The text
argument is in horizontal mode. The @TeX{} text is placed in a box and
then rotated counterclockwise. The reference point is the point in the
box, @emph{before} rotation of the text. Not all PostScript printer
drivers support vertical text.
@table @code
@findex \vtext
@item \vtext (x y)@{@var{text}@}
@itemx \vtext @{@var{text}@}
The first form of this command places the @TeX{} text @var{text}
vertically with the text reference point at the coordinate
@code{(@var{x} @var{y})}. The new current position is @code{(@var{x}
@var{y})}. The second form of this command places the @TeX{} text
@var{text} vertically with the text reference point at the current
position. In both cases, the @TeX{} text is placed in a box and the box
is rotated counterclockwise by 90 degrees about the text reference
point. The text reference point is set with the @code{\textref}
command.
@end table
@cindex rotated text
@cindex text rotation
Text can be placed at an arbitrary angle using the @code{\rtext}
command. The text argument is in horizontal mode. The @TeX{} text is
placed in a box and then rotated counterclockwise. The reference point
is the point in the box, @emph{before} rotation of the text. Not all
PostScript printer drivers support rotated text.
@table @code
@findex \rtext
@item \rtext td:@var{angle} (x y)@{@var{text}@}
@itemx \rtext td:@var{angle} @{@var{text}@}
The first form of this command places the @TeX{} text @var{text} at an
angle with the text reference point at the coordinate @code{(@var{x}
@var{y})}. The new current position is @code{(@var{x} @var{y})}. The
second form of this command places the @TeX{} text @var{text} at an
angle with the text reference point at the current position. In both
cases, the @TeX{} text is placed in a box and the box is rotated
counterclockwise by @var{angle} degrees about the text reference point.
The text reference point is set with the @code{\textref} command.
@end table
The reference point for subsequent @TeX{} text in a @code{\htext},
@code{\vtext} or @code{\rtext} command is set with the @code{\textref}
command.
@table @code
@findex \textref
@item \textref h:@var{h-ref} v:@var{v-ref}
Set the text reference point for subsequent text commands. The
horizontal reference point @var{h-ref} is one of @code{L}, @code{C} or
@code{R} (left, center or right). The vertical reference point
@var{v-ref} is one of @code{T}, @code{C} or @code{B} (top, center or
bottom). For rotated text, the reference point is determined before
rotation. The initial text reference point corresponds to
@code{\textref h:L v:B}.
@end table
@noindent
@tex
\centertexdraw{
\def\bdot {\bsegment
\fcir f:0 r:0.02
\esegment}
\def\Ttext #1{\bsegment
\textref h:C v:B \htext (0 +0.06){#1}
\esegment}
\def\Btext #1{\bsegment
\textref h:C v:T \htext (0 -0.06){#1}
\esegment}
\def\Ltext #1{\bsegment
\textref h:R v:C \htext (-0.08 0){#1}
\esegment}
\def\Rtext #1{\bsegment
\textref h:L v:C \htext (+0.08 0){#1}
\esegment}
\move (-1.5 0)
\bsegment
\move (+1.55 +0.45) \move (-1.55 -0.45) \move (0 0)
\Ttext{Horizontal Text}
\bdot \Btext{\tt h:C v:C}
\move (-0.9 0) \bdot \Ltext{\tt h:L v:C}
\move (+0.9 0) \bdot \Rtext{\tt h:R v:C}
\move (0 +0.3) \bdot \Ttext{\tt h:C v:T}
\move (0 -0.3) \bdot \Btext{\tt h:C v:B}
\move (-0.9 -0.3) \bdot \Ltext{\tt h:L v:B}
\lvec (-0.9 +0.3) \bdot \Ltext{\tt h:L v:T}
\lvec (+0.9 +0.3) \bdot \Rtext{\tt h:R v:T}
\lvec (+0.9 -0.3) \bdot \Rtext{\tt h:R v:B}
\lvec (-0.9 -0.3)
\esegment
\def\atext {\rtext td:45 }
\def\ATtext #1{\bsegment
\setsegscale 0.707
\textref h:C v:B \atext (-0.06 +0.06){#1}
\esegment}
\def\ABtext #1{\bsegment
\setsegscale 0.707
\textref h:C v:T \atext (+0.060 -0.06){#1}
\esegment}
\def\ALtext #1{\bsegment
\setsegscale 0.707
\textref h:R v:C \atext (-0.08 -0.08){#1}
\esegment}
\def\ARtext #1{\bsegment
\setsegscale 0.707
\textref h:L v:C \atext (+0.08 +0.08){#1}
\esegment}
\move (+1.5 0)
\bsegment
\move (+1.33 +1.33) \move (-1.33 -1.33) \move (0 0)
\setsegscale 0.707
\ATtext{Rotated Text}
\bdot \ABtext{\tt h:C v:C}
\move (-0.9 -0.9) \bdot \ALtext{\tt h:L v:C}
\move (+0.9 +0.9) \bdot \ARtext{\tt h:R v:C}
\move (-0.3 +0.3) \bdot \ATtext{\tt h:C v:T}
\move (+0.3 -0.3) \bdot \ABtext{\tt h:C v:B}
\move (-0.6 -1.2) \bdot \ALtext{\tt h:L v:B}
\lvec (-1.2 -0.6) \bdot \ALtext{\tt h:L v:T}
\lvec (+0.6 +1.2) \bdot \ARtext{\tt h:R v:T}
\lvec (+1.2 +0.6) \bdot \ARtext{\tt h:R v:B}
\lvec (-0.6 -1.2)
\esegment
}
@end tex
The font used to render the text is determined as for any other @TeX{}
text. Normally the font used outside of @TeX{}draw is in effect. If
desired, other fonts can be specified as part of the text. Any font
changes within a @TeX{}draw text command remain local to that command.
Only the coordinate of the text reference point in a @code{\htext},
@code{\vtext} or @code{\rtext} command is used in calculating the size
of the drawing. This means that text itself can spill outside of the
drawing area determined by @TeX{}draw. The area of the drawing can be
increased to include the text by issuing additional @code{\move}
commands.
@example
@group
\centertexdraw@{
\avec(-0.75 -0.25) \textref h:R v:C \htext@{H-text@}
\move(0 0) \avec(-0.75 +0.25) \textref h:R v:B \htext@{H-text@}
\move(0 0) \avec(0 +0.5) \textref h:L v:T \vtext@{V-text@}
\move(0 0) \avec(+0.75 +0.25) \textref h:L v:B \htext@{H-text@}
\move(0 0) \avec(+0.75 -0.25) \textref h:L v:C \htext@{H-text@}
@}
@end group
@end example
@iftex
Superimposed on this example is a shaded region showing the limits of
the @TeX{}draw box as determined by the coordinates specified.
@tex
\bigskip
\centertexdraw{
\move(-0.75 -0.25) \lvec (-0.75 +0.5) \lvec (+0.75 +0.5)
\lvec(+0.75 -0.25) \ifill f:0.9 % fill the region
\move(0 0)
\avec(-0.75 -0.25) \textref h:R v:C \htext{H-text}
\move(0 0) \avec(-0.75 +0.25) \textref h:R v:B \htext{H-text}
\move(0 0) \avec(0 +0.5) \textref h:L v:T \vtext{V-text}
\move(0 0) \avec(+0.75 +0.25) \textref h:L v:B \htext{H-text}
\move(0 0) \avec(+0.75 -0.25) \textref h:L v:C \htext{H-text}
\move (-1.15 -0.3) \move (+1.15 +0.92) % increase the size of the drawing
}
@end tex
@end iftex
@node Circles and arcs, Bezier curves, TeX text, TeXdraw Commands
@section Circles, ellipses and arcs
@cindex circles
@cindex filled circles
@cindex ellipses
@cindex arcs
@TeX{}draw supplies commands to generate circles, ellipses and arcs.
There are two forms of the circle command. The @code{\lcir} command
draws a circle of given radius. The @code{\fcir} command draws a filled
circle. In the latter case, the circle is filled by a specified gray
level. For the filled circle, the line defining the circumference of
the circle is not drawn. Note that the gray level area filled in by the
@code{\fcir} command is opaque, even if the fill is chosen to be white.
For either form of the circle command, the drawing size is increased if
necessary to contain the circle.
The @code{\lellip} command generates an ellipse specified by the radius
of the ellipse in the @var{x} direction and the radius of the ellipse in
the @var{y} direction. The ellipse is symmetrical about horizontal and
vertical lines drawn through the current point. The @code{\fellip}
command draws a filled ellipse. In the latter case, the ellipse is
filled by a specified gray level. For the filled ellipse, the line
defining the boundary of the ellipse is not drawn. For either form of
the ellipse command, the drawing size is increased if necessary to
contain the ellipse.
The @code{\larc} command generates a counterclockwise arc specified by a
start angle in degrees and an end angle in degrees. The center of the
arc is the current position. Only the arc is drawn, not the line
joining the center to the beginning of the arc. Note that the
@code{\larc} command does not affect the size of the drawing.
@table @code
@findex \lcir
@item \lcir r:@var{radius}
Draw a circle with center at the current position. The radius is
specified by @var{radius}. This command draws a line along the
circumference of the circle. The drawing size is increased if necessary
to contain the circle.
@findex \fcir
@item \fcir f:@var{level} r:@var{radius}
Draw a filled circle with center at the current position. The radius is
specified by @var{radius}. The circle is painted with the gray level
specified by @var{level}. A gray level of 1 corresponds to white, with
decreasing values getting darker. The level 0 is full black. This
command does not draw a line along the circumference. The drawing size
is increased if necessary to contain the circle.
@findex \lellip
@item \lellip rx:@var{x-radius} ry:@var{y-radius}
Draw an ellipse with center at the current position. The radius in the
@var{x} direction is specified by @var{x-radius}. The radius in the
@var{y} direction is specified by @var{y-radius}. The drawing size is
increased if necessary to contain the ellipse.
@findex \fellip
@item \fellip f:@var{level} rx:@var{x-radius} ry:@var{y-radius}
Draw a filled ellipse with center at the current position. The radius
in the @var{x} direction is specified by @var{x-radius}. The radius in
the @var{y} direction is specified by @var{y-radius}. The ellipse is
painted with the gray level specified by @var{level}. A gray level of 1
corresponds to white, with decreasing values getting darker. The level
0 is full black. This command does not draw a line along the boundary
of the ellipse. The drawing size is increased if necessary to contain
the ellipse.
@findex \arc
@item \larc r:@var{radius} sd:@var{start-angle} ed:@var{end-angle}
Draw a counterclockwise arc. The center of the arc is at the current
position. The radius is specified by @var{radius}. The start and end
angles (in degrees) are specified by @var{start-angle} and
@var{end-angle}. This command does not affect the limits (size) of the
drawing.
@end table
As an example, the following commands draw a filled circle, and
superimpose an arc.
@example
@group
\centertexdraw@{
\linewd 0.02
\fcir f:0.7 r:1
\larc r:1 sd:45 ed:135
\lvec (+0.707 +0.707) \move (0 0) \lvec (-0.707 +0.707)
@}
@end group
@end example
@tex
\bigskip
\centertexdraw{
\linewd 0.02
\fcir f:0.7 r:1
\larc r:1 sd:45 ed:135
\lvec ( 0.707 0.707) \move (0 0) \lvec (-0.707 +0.707)
}
@end tex
Note that for the arc command, the resulting figure can spill outside of
the @TeX{}draw box as determined by the maximum excursions of the
coordinates. Extra moves can be used to compensate for the size of the
arc.
@node Bezier curves, Fill commands, Circles and arcs, TeXdraw Commands
@section Bezier curves
@cindex Bezier curves
@cindex curves
Bezier curves in @TeX{}draw use 4 reference coordinates, two as the end
points and two others to control the shape of the curve. Let the 4
points be @code{(@var{x0} @var{y0})}, @code{(@var{x1} @var{y1})},
@code{(@var{x2} @var{y2})} and @code{(@var{x3} @var{y3})}. The curve
starts out tangent to the line joining the first two points and ends up
tangent to the line joining the second two points. The control points
``pull'' at the curve to control the curvature. The amount of pull
increases with the distance of the control point from the endpoint.
@tex
As the parameter $\mu$ varies from 0 to 1, the coordinates of the Bezier
curve are given by a pair of parametric cubic equations,
$$
\def\x #1{\hbox{\sl x#1}}
\def\y #1{\hbox{\sl y#1}}
\eqalign{
\x{}(\mu) &= (1-\mu)^3 \x0 + 3\mu(1-\mu)^2 \x1 + 3\mu^2(1-\mu) \x2 + \mu^3 \x3 \cr
\y{}(\mu) &= (1-\mu)^3 \y0 + 3\mu(1-\mu)^2 \y1 + 3\mu^2(1-\mu) \y2 + \mu^3 \y3\ . \cr}
$$
@end tex
@ifinfo
As the parameter u varies from 0 to 1, the coordinates of the Bezier
curve are given by a pair of parametric cubic equations,
@noindent
x(u) = (1-u)^3 x0 + 3u (1-u)^2 x1 + 3u^2 (1-u) x2 + u^3 x3
@noindent
y(u) = (1-u)^3 y0 + 3u (1-u)^2 y1 + 3u^2 (1-u) y2 + u^3 y3 .
@end ifinfo
@table @code
@findex \clvec
@item \clvec (@var{x1} @var{y1})(@var{x2} @var{y2})(@var{x3} @var{y3})
Draw a Bezier curve from the current position to the coordinate
@code{(@var{x3} @var{y3})} which becomes the new current position. The
coordinates @code{(@var{x1} @var{y1})} and @code{(@var{x2} @var{y2})}
serve as control points for the curve. Only the last coordinate given
is used to update the size of the drawing.
@end table
@noindent
Note that only 3 coordinate pairs are specified. The other point is the
current position before the @code{\clvec} command is executed. Only the
last coordinate specified in the @code{\clvec} command is used to
determine the extent of the drawing. While the Bezier curve passes
through the old current position and the new current position, in
general the curve will not reach the intermediate control points. The
curve is always entirely enclosed by the convex quadrilateral defined by
the two end points and the two control points. Note that the curve may
pass outside the limits of the drawing as determined by the end point of
the curve.
A simple Bezier curve is produced by the following example.
@example
@group
\btexdraw
\move (0 0)
\clvec (0 1)(1 0)(1 1)
\etexdraw
@end group
@end example
@iftex
This example is the rightmost of the following Bezier curves. The
drawings also show the end points and the control points for each curve.
@tex
\bigskip
\centertexdraw{
\def\Ltext #1{\bsegment
\textref h:R v:C \htext (-0.08 0){#1}
\esegment}
\def\Rtext #1{\bsegment
\textref h:L v:C \htext (+0.08 0){#1}
\esegment}
\def\bdot {\fcir f:0 r:0.02 }
\def\Ldot #1{\bdot \Ltext{#1}}
\def\Rdot #1{\bdot \Rtext{#1}}
\move (-2 0)
\bsegment
\lpatt (0.033)
\move (0 0) \Ldot{0} \lvec (0 1) \Ldot{1}
\lvec (1 1) \Rdot{2} \lvec (1 0) \Rdot{3}
\lpatt ()
\move (0 0) \clvec (0 1)(1 1)(1 0)
\esegment
\move (0 0)
\bsegment
\lpatt (0.033)
\move (0 0) \Ldot{0} \lvec (0.5 0.8) \Ldot{1}
\lvec (1.5 0.8) \Rdot{2} \lvec (1 0) \Rdot{3}
\lpatt ()
\move (0 0) \clvec (0.5 1)(1.5 1)(1 0)
\esegment
\move ( 2 0)
\bsegment
\lpatt (0.033)
\move (0 0) \Ldot{0} \lvec (0 1) \Ldot{1}
\lvec (1 0) \Rdot{2} \lvec (1 1) \Rdot{3}
\lpatt ()
\move (0 0) \clvec (0 1)(1 0)(1 1)
\esegment
}
@end tex
@end iftex
@node Fill commands, , Bezier curves, TeXdraw Commands
@section Fill commands
@cindex filling regions
@cindex painting regions
@cindex paths
PostScript deals with paths consisting of line segments. The paths can
be closed and the interior of the closed region filled. From
@TeX{}draw, paths start with a @code{\move} or @code{\rmove} command and
continue with @code{\lvec}, @code{\rlvec} or @code{\clvec} commands.
The @TeX{}draw fill commands close the path and fill the interior of the
closed region. Closing the path means that effectively another
@code{\lvec} line is drawn from the last point specified to the initial
point. @TeX{}draw provides two forms of the fill command. The
@code{\ifill} fills the interior of the region with the given gray
level. The lines defining the path are not drawn. The @code{\lfill}
command fills the region defined by the closed path and draws a line
along the enclosing path. Note for both forms of the fill command, the
gray level used for filling is opaque, even if the gray level is chosen
to be white.
@table @code
@findex \lfill
@item \lfill f:@var{level}
Close the current path, draw the line around the path using the current
grey level for lines and paint the interior of the region with specified
gray level @var{level}. Gray levels are real values from 0 (black)
through intermediate values (grays) to 1 (white).
@findex \ifill
@item \ifill f:@var{level}
Close the current path and paint the interior of the region with gray
level @var{level}. The line around the path is not drawn. Gray levels
are real values from 0 (black) through intermediate values (grays) to 1
(white).
@end table
The following example draws a ``flag'' with the interior filled in. The
path around the boundary is given in a clockwise order to define a
closed path. We could take advantage of the fact that the fill command
will close an open path to eliminate one of the @code{\lvec} commands.
@example
@group
\centertexdraw@{
\move (0.5 0)
\lvec (0 0.5) \clvec (0.5 0.85)(1 0.65)(1.5 1)
\lvec (2 0.5) \clvec (1.5 0.15)(1 0.35)(0.5 0)
\lfill f:0.8
@}
@end group
@end example
@tex
\bigskip
\centertexdraw{
\move (0.5 0)
\lvec (0 0.5) \clvec (0.5 0.85)(1 0.65)(1.5 1)
\lvec (2 0.5) \clvec (1.5 0.15)(1 0.35)(0.5 0)
\lfill f:0.8
}
@end tex
In @TeX{}draw, the @code{\move} command always terminates any previous
paths and starts a new path. Commands that change line parameters
(e.g@. @code{\setgray} or @code{\lpatt}) also terminate paths and start
new paths. The circle, ellipse and arc commands do not affect the
definition of the current path. The @code{\avec} command is not
appropriate for defining a path to be filled. It ends a subpath at its
tail and begins a new subpath at its tip. Filling a region defined by a
path with subpaths is more complicated in that each subpath is closed
before filling.
@node Drawing Segments and Scaling, Using TeXdraw with LaTeX, TeXdraw Commands, Top
@chapter Drawing Segments and Scaling
@TeX{}draw provides individually scaled segments which can be used to
create relocatable drawing modules.
@menu
* Drawing segments::
* Drawing paths::
* Saving positions::
* Scaling coordinates::
* Drawing size::
* Initial current position::
@end menu
@node Drawing segments, Drawing paths, , Drawing Segments and Scaling
@section Drawing segments
@cindex segments
@cindex drawing segments
A @TeX{}draw drawing segment allows for local modifications of
parameters and relative positioning. A @TeX{}draw segment is delimited
by a @code{\bsegment} command and an @code{\esegment} command. Inside
the segment, the initial current position is @code{(0 0)}. Any changes
to parameters such as the gray level and the line width, remain local to
the segment. Segments are implemented in @TeX{} using a
@code{\begingroup} and @code{\endgroup}. Segments can be nested.
@table @code
@findex \bsegment
@item \bsegment
Start a drawing segment. The coordinate system is shifted such that the
current position corresponds to the coordinate @code{(0 0)}. Changes to
scaling, position and line parameters stay local to the drawing segment.
@findex \esegment
@item \esegment
End a drawing segment. The current position in effect before the
corresponding @code{\bsegment} command is restored. The scaling and
line parameter values revert to those in effect before the corresponding
@code{\bsegment} command was invoked.
@end table
@node Drawing paths, Saving positions, Drawing segments, Drawing Segments and Scaling
@section Drawing paths
@cindex fill operations, interaction with drawing segments
@cindex paths
@cindex stroking lines
Certain subtle interactions occur between drawing segments and fill
operations. In PostScript, lines are drawn by first defining a path,
then later stroking the path to draw the line. In @TeX{}draw, this
stroking occurs when the line is terminated, say by a @code{\move}
command. PostScript paths are interrupted by, but continue after a
drawing segment. This means that a path started before a segment may
not be stroked (drawn) until after the segment ends. Consider the
following example.
@example
@group
\move (0 0)
\lvec (1 1)
\bsegment
\move (-0.25 -0.25)
\fcir f:0.8 r:0.5
\esegment
\move (0 0)
@end group
@end example
A PostScript path is started at @code{(0 0)} and continues with a line
to @code{(1 1)}. This path is interrupted by the segment. The filled
circle is drawn next. After the segment, the path continues and is not
stroked until the @code{\move (0 0)} command after the end of the
segment. This means that the line appears on top of the filled region.
If the fill operation is to cover the line, the path must be stroked
before the fill operation. From @TeX{}draw, the move commands
@code{\move} and @code{\rmove}, and the end @TeX{}draw command
@code{\etexdraw} terminate a path and cause it to be stroked. Within a
segment, the end segment command @code{\esegment} also terminates and
strokes a path. In the example above, the line can be stroked by
inserting a move command (such as a @code{\rmove (0 0)} which does not
affect the position), before the start of the segment.
@node Saving positions, Scaling coordinates, Drawing paths, Drawing Segments and Scaling
@section Saving positions
@cindex saving positions
@cindex positions, saving
@cindex coordinate, symbolic
@cindex symbolic coordinate
The @code{\savecurrpos} command saves the current position. The saved
position is an absolute position, not one relative to a segment. The
position saving mechanism is global; the position can be saved within a
nested segment and then used outside of the segment. The @var{x} and
@var{y} coordinates of the position are saved separately as named
coordinates. The names are of the form @code{*@var{name}}, with the
leading @code{*} being obligatory. A companion command,
@code{\savepos}, saves a given coordinate (relative to the current
segment) as an absolute symbolic position.
@table @code
@findex \savecurrpos
@item \savecurrpos (*@var{px} *@var{py})
Save the current position as the absolute position referenced by
@code{(*@var{px} *@var{py})}.
@findex \savepos
@item \savepos (@var{x} @var{y})(*@var{px} *@var{py})
Save the coordinate position @code{(@var{x} @var{y})} as the absolute
position referenced by @code{(*@var{px} *@var{py})}. The coordinate
@code{(@var{x} @var{y})} is interpreted in the normal fashion as a
coordinate relative to the current segment, using the current scaling
factors and drawing unit.
@end table
The symbolic names used to specify a saved position can consist of any
characters that are not special to @TeX{}, but must start with a
@code{*} character. The symbolic names can be used as the @var{x}
and/or @var{y} coordinate in any command that needs a coordinate.
Symbolic coordinates are not normally used with relative motion commands
such as @code{\rlvec} or @code{\rmove}. If used with relative motion,
the corresponding displacement is equal to the symbolic coordinate
value.
On exit from a segment, the position and graphics state on entry is
restored. Any changes to line types, scaling and position are
discarded. However, it is sometimes useful alter the position on exit
from a segment. The @code{\savepos} command allows for the saving of a
position within the segment. This position can be restored after the
@code{\esegment} with a @code{\move} command using the saved symbolic
position. This approach can be used to build modules which operate in a
manner analogous to the basic relative motion line vector commands.
The following example defines a macro which draws a box 0.75 inches wide
by 0.5 inches high containing centered text. On leaving the macro the
position will be set at a point on the righthand side of the box.
@example
@group
\def\tbox #1@{\bsegment
\lvec (0 +0.25) \lvec (0.75 +0.25)
\lvec (0.75 -0.25) \lvec (0 -0.25) \lvec (0 0)
\textref h:C v:C \htext (0.375 0)@{#1@}
\savepos (0.75 0)(*ex *ey)
\esegment
\move (*ex *ey)@}
@end group
@end example
With this definition, we can treat @code{\tbox} in the same way as the
basic vector commands, stringing them together to form a block diagram
as in this example.
@example
@group
\centertexdraw@{
\ravec (1 0) \tbox@{$H(z)$@} \ravec (1 0)
@}
@end group
@end example
@tex
\def\tbox #1{\bsegment
\lvec (0 +0.25) \lvec (0.75 +0.25)
\lvec (0.75 -0.25) \lvec (0 -0.25) \lvec (0 0)
\textref h:C v:C \htext (0.375 0){#1}
\savepos (0.75 0)(*ex *ey)
\esegment
\move (*ex *ey)}
\bigskip
\centertexdraw{
\ravec (1 0) \tbox{$H(z)$} \ravec (1 0)
}
@end tex
@node Scaling coordinates, Drawing size, Saving positions, Drawing Segments and Scaling
@section Scaling coordinates
@cindex scaling coordinates
@cindex relative scaling
@cindex segment scale
@cindex unit scale
There are two scale factors available, the unit scale factor and the
segment scale factor. The overall scale factor is the product of these
two. There are absolute and relative versions of commands to change
these scale factors.
The unit scale factor is normally used to affect global scale changes.
Changes to the unit scale factor remains local to a segment, but
propagate to inferior segments. The default value is unity.
The segment scale factor is used for local scale changes. It remains
local to a segment. The segment scale factor is reset to unity on entry
into each segment. This means that changes to the segment scale factor
do not propagate to inferior segments.
@table @code
@findex \setunitscale
@item \setunitscale @var{scale}
Set the unit scaling to @var{scale}. The argument @var{scale} is a real
number which is used to scale coordinate values. The overall scaling
factor is the product of the unit scale factor and the segment scale
factor.
@findex \relunitscale
@item \relunitscale @var{value}
Adjust the unit scale factor by multiplying by @var{value}. This has
the effect of multiplying the overall scale factor by the same factor.
The overall scaling factor is the product of the unit scale factor and
the segment scale factor.
@findex \setsegscale
@item \setsegscale @var{scale}
Set the segment scale factor. The argument @var{scale} is a real number
which is used to scale coordinate values. The overall scale factor is
the product of the unit scale factor and the segment scale factor.
@findex \relsegscale
@item \relsegscale @var{value}
Adjust the segment scale factor by multiplying by @var{value}. This has
the effect of multiplying the current overall scale factor by the same
factor. The overall scaling factor is the product of the unit scale
factor and the segment scale factor.
@end table
In addition to the unit scale factor and the segment scale factor, the
scaling can be controlled by the choice of drawing units with the
command @code{\drawdim} (@pxref{Coordinate specification}).
@table @code
@item \drawdim cm \setunitscale 2.54
Set the units to centimetres scaled by 2.54. Together these commands
are effectively the same as @code{\drawdim in}.
@end table
The segment scale can be used to allow scale changes in segments so that
values are in more convenient units. For example suppose dimensions in
a segment are multiples of one third of an inch. The segment scale can
be set once to make 1 drawing unit equal 0.3333 inches. From that point
on, coordinates can be specified with integer values.
The following example defines a macro to draw a rectangular box which is
twice as wide as it is high. The width is specified as an argument.
@example
@group
\def\mybox #1@{\bsegment
\setsegscale #1
\lvec (0 +0.25) \lvec (1 +0.25) \lvec (1 -0.25)
\lvec (0 -0.25) \lvec (0 0)
\esegment@}
@end group
@end example
@node Drawing size, Initial current position, Scaling coordinates, Drawing Segments and Scaling
@section Drawing size
@cindex size of the drawing
The effective size of the drawing is determined by the maximum
excursions of the coordinates supplied to @TeX{}draw commands. The
minimum and maximum scaled @var{x} and @var{y} coordinates are tallied.
Note that @code{\move} commands contribute to the determination of the
calculated size of the drawing, even though they do not generate visible
lines. The circle and ellipse commands add a compensation for the radii
of circles and ellipses. The final @TeX{}draw drawing is placed in a
@TeX{} box with lower lefthand corner corresponding to
@code{(}@var{x}-min @var{y}-min@code{)} and upper righthand corner at
@code{(}@var{x}-max @var{y}-max@code{)}.
Text generated by @code{\htext}, @code{\vtext} or @code{\rtext} can
spill outside the box as determined above. Only the text reference
point is guaranteed to be in the drawing box. Arcs can also spill
outside the drawing box. Note also that the widths of lines, and the
sizes of arrowheads do not affect the size of the drawing. The
calculated size of the drawing will never be larger than the actual size
of the drawing. In extreme cases in which text or lines extend far
outside the drawing, extra @code{\move} commands should be used to
establish the size of the drawing so that the @TeX{}draw box includes
all of the drawing.
@TeX{}draw provides the @code{\drawbb} command to draw a box which
indicates the effective size of the drawing. Whenever @code{\drawbb} is
invoked, a ruled box is drawn around the drawing as it has been sized up
to that point. Normally @code{\drawbb} is invoked just before the end
of a drawing to indicate the effective size of the final drawing.
@table @code
@findex \drawbb
@item \drawbb
Draw a ruled box around the effective size of a drawing produced by
@TeX{}draw commands.
@end table
@node Initial current position, , Drawing size, Drawing Segments and Scaling
@section Initial current position
@cindex current position
@cindex initial current position
The first operation in a drawing should be a move to establish the
current position. The current position can be established explicitly
through a @code{\move} command or a text positioning command such as
@code{\htext} with a coordinate. However, if an attempt is made to use
a drawing command which needs a current position and none has been
established, @TeX{}draw implicitly sets the initial current position to
@code{(0 0)}. The size of the @TeX{}draw figure is normally determined
from the sequence of coordinates specified, but will include the
implicit initial position in case another initial position has not been
explicitly specified.
@node Using TeXdraw with LaTeX, More Details, Drawing Segments and Scaling, Top
@chapter Using @TeX{}draw with La@TeX{}
@cindex accessing @TeX{}draw
@cindex invoking @TeX{}draw
@cindex La@TeX{}
@cindex @code{texdraw} package
The La@TeX{} typesetting system uses a structured approach to declaring
typesetting environments. For La@TeX{}2e, the @code{texdraw} package
defines the @code{texdraw} environment. The @TeX{}draw environment is
started with a @code{\begin@{texdraw@}} command and terminated with an
@code{\end@{texdraw@}} command. All of the basic @TeX{}draw commands
can be used within the @code{texdraw} environment.
As an example, a La@TeX{}2e variant of an earlier example can be
constructed as follows.
@example
@group
\documentclass@{article@}
\usepackage@{texdraw@}
...
\begin@{document@}
...
\newcommand@{\tbox@}[1]@{%
\bsegment
\lvec (0 +0.25) \lvec (0.75 +0.25)
\lvec (0.75 -0.25) \lvec (0 -0.25) \lvec (0 0)
\textref h:C v:C \htext (0.375 0)@{#1@}
\savepos (0.75 0)(*ex *ey)
\esegment
\move (*ex *ey)@}
\begin@{center@}
\begin@{texdraw@}
\ravec (1 0) \tbox@{$H(z)$@} \ravec (1 0)
\end@{texdraw@}
\end@{center@}
...
\end@{document@}
@end group
@end example
This example illustrates the use of the La@TeX{} command
@code{\newcommand} as an alternative to the plain @TeX{} command
@code{\def}. Instead of the basic @TeX{}draw command
@code{\centertexdraw}, a nested combination of the La@TeX{} centering
environment and the @TeX{}draw environment is used.
@menu
* PostScript printer drivers::
@end menu
@node PostScript printer drivers, , , Using TeXdraw with LaTeX
@section PostScript printer drivers
@cindex printer drivers
@cindex PostScript printer drivers
@cindex @code{graphics} package
The @code{texdraw} package uses the printer driver interface provided by
the standard La@TeX{}2e @code{graphics} package. Any options to the
@code{texdraw} package are passed to the @code{graphics} package.
Specifically, the name of the PostScript driver to be used can be
specified as an option to the @code{texdraw} package. With no explicit
printer driver option, the default printer driver associated with the
@code{graphics} package is used.
@cindex @code{dvips} printer driver
@cindex @code{xdvi} driver
@cindex @code{dvi2ps} printer driver
@cindex @code{dvialw} printer driver
@cindex @code{dvilaser} printer driver
@cindex @code{dvipsone} printer driver
@cindex @code{dviwindo} printer driver
@cindex @code{dvitops} printer driver
@cindex @code{oztex} printer driver
@cindex @code{psprint} driver
@cindex @code{textures} printer driver
@cindex @code{pctexps} printer driver
@cindex @code{pctexwin} printer driver
@cindex rotated text
@cindex text rotation
The @code{texdraw} package can be used with any of the printer drivers
supported by the @code{graphics} package that allow for the importation
of PostScript graphics files, viz., @code{dvips}, @code{xdvi},
@code{dvi2ps}, @code{dvialw}, @code{dvilaser}, @code{dvipsone},
@code{dviwindo}, @code{dvitops}, @code{oztex}, @code{psprint},
@code{textures}, @code{pctexps}, and @code{pctexwin}. Not all of these
drivers support the text rotation needed for the @TeX{}draw commands
@code{\vtext} and @code{\rtext}. Of the drivers listed above, only the
following support support text rotation: @code{dvips}, @code{xdvi},
@code{dvi2ps}, @code{dvitops}, @code{textures}, and @code{pctexps}.
@node More Details, PostScript Commands, Using TeXdraw with LaTeX, Top
@chapter More Details
The first part of this chapter offers some suggestions for strategies to
isolate errors in @TeX{} and @TeX{}draw input. The second part of this
chapter discusses implementational issues. An awareness of these issues
is useful if @TeX{}draw is to be extended.
@menu
* Errors while using TeXdraw::
* Extending TeXdraw::
* How TeXdraw merges graphics and text::
@end menu
@node Errors while using TeXdraw, Extending TeXdraw, , More Details
@section Errors while using @TeX{}draw
@cindex problems while using @TeX{}draw
@cindex errors while using @TeX{}draw
@TeX{} input is notoriously difficult to debug. If @TeX{} reports
errors, so much the better. If the cause is not immediately obvious,
consider using a binary search strategy, removing sections of code with
the premature insertion of the @code{\bye} (or @code{\end@{document@}}
for La@TeX{}) command (with the appropriate closing of any open groups
and the like). Other strategies include the insertion of
@code{\message@{I am here@}} at appropriate places. Try using
@code{\tracingmacros=1}. Many problems turn out to be due to an
incorrect number of macro arguments or incorrectly delimited macro
arguments. The @code{\tracingmacros=1} option writes the macro
arguments and macro expansions to the @TeX{} log file.
Certain errors may not manifest themselves until well after the
offending command. For instance, if a closing parenthesis is missing
from a @TeX{}draw coordinate, @TeX{} continues searching for the
parenthesis. If one is found, perhaps many lines later, the @TeX{}draw
error message @code{invalid coordinate} will be printed at this later
point.
All input in the @TeX{}draw environment should be intended for
interpretation by @TeX{}draw commands. @TeX{}draw places text inside a
zero size box (the text itself extends outside the box). Extraneous
input manifests itself as a non-zero size @TeX{}draw text box. This
causes the @TeX{}draw text and the PostScript graphics to be displaced
from one another. An error message is issued if a non-zero width
@TeX{}draw text box is detected. If this error message appears, look
for unintended character sequences amongst the commands to @TeX{}draw.
Several @TeX{}draw commands pass their arguments ``raw'' to the
PostScript file. That means that invalid arguments can generate
PostScript errors when the document is printed. For instance the
argument of the @code{\setgray} command is passed straight through to
the PostScript file. If this argument is non-numeric, a PostScript
error results. Not all PostScript printers report errors back to the
user. The print may just stop prematurely. One approach to debugging
is to use a PostScript previewer on a workstation. That way, one can
determine at which point in the drawing the PostScript error occurs.
@node Extending TeXdraw, How TeXdraw merges graphics and text, Errors while using TeXdraw, More Details
@section Extending @TeX{}draw
@cindex implementation
@TeX{}draw is implemented using a combination of @TeX{} commands and
PostScript code. This section discusses some of the implementational
issues as they relate to extending @TeX{}draw.
@TeX{}draw as implemented, offers a basic set of drawing features.
These are adequate for certain tasks such as producing block diagrams.
There are different approaches to extending @TeX{}draw to include other
functions. In some cases, the desired functionality can be achieved by
writing a @TeX{} macro which builds on top of the existing @TeX{}draw
commands. As these extensions become more complex, the limitations of
@TeX{} for computations become increasingly evident. In other cases,
access to different features of PostScript is desired. The appropriate
approach would be to write new PostScript procedures which can be
accessed by @TeX{} macros.
Included with @TeX{}draw is a set of macros for directly accessing
PostScript functions. These are described in an appendix
(@pxref{PostScript Commands}).
@TeX{}draw also comes with a toolbox of routines for handling much of
the user interface, converting between different coordinate
representations and the like. The macros for coordinate decoding and
for computations involving coordinates are described in an appendix
(@pxref{TeXdraw Toolbox, , @TeX{}draw Toolbox}).
@menu
* Scaling::
* Resolution::
* Text placement::
* Intermediate PostScript file::
@end menu
@node Scaling, Resolution, , Extending TeXdraw
@subsection Scaling
@cindex scaling
The scaling commands provided in @TeX{}draw are designed to affect only
the coordinate values specified in commands. For instance, changing the
@code{\setunitscale} value changes the interpretation of the coordinate
in an @code{\avec (@var{x} @var{y})} command, but does not change the
line width or arrowhead sizes in effect. None of the @TeX{}draw scaling
commands affect the size of @TeX{} text produced by, for instance, the
@code{\htext} command. Scale changes will however affect the
positioning of text for subsequent commands.
The line parameters are changed only if the corresponding commands to
change them are issued. If the @code{\linewd} command is given, the
current coordinate scaling is used to determine the line width. To
achieve a behaviour more like a global scaling, whenever the scale
factor is changed, the line parameters should be set again.
@node Resolution, Text placement, Scaling, Extending TeXdraw
@subsection Resolution
@cindex resolution
@TeX{}draw scales coordinates before passing them to PostScript.
Keeping track of the coordinate scaling is necessary, in any event, to
allow @TeX{}draw to compute the maximum excursions of the coordinates.
@TeX{}draw uses pixel units in its PostScript code. One pixel unit is
equal to 1/300 of an inch. @TeX{}draw issues PostScript commands with
integer valued pixel coordinates. This sets the positioning resolution
for @TeX{}draw. The passing of integer valued coordinates which
correspond to the device resolution keeps lines aligned with the device
grid; parallel lines of the same width will be rendered with the same
width.
The position saving mechanism in @TeX{}draw (@pxref{Saving positions})
associates the pixel coordinates of a position with the specified name.
@TeX{}draw uses the limited real number representation provided by
@TeX{}. These operations are based on the representation of dimensions
as real-valued numbers of points. Internally in @TeX{}, dimensions are
stored 32-bit values, normalized so that 1 pt corresponds to the scaled
point (sp) value of 65536. Dimensions with magnitudes between 0.000015
pt and 32767 pt can be represented. This is also the dynamic range of
the @TeX{}draw pixel coordinates passed to PostScript. @TeX{}draw must
convert from user supplied coordinates using the scaling factor (which
itself consists of two components, the unit scale and the segment scale)
and a pixel conversion factor. The use of limited precision real
numbers in these computations can cause accumulation of error when
relative scaling is used repeatedly.
@node Text placement, Intermediate PostScript file, Resolution, Extending TeXdraw
@subsection Text placement
While in the @TeX{}draw environment, @TeX{} text is placed in a @TeX{}
box while PostScript code is written to the intermediate file. At the
end of the @TeX{}draw environment, the size of the drawing is
determined. A @TeX{} box of this size is created. The @TeX{}
@code{\special} mechanism is used to instruct the PostScript driver
program to position the PostScript drawing from the intermediate file in
this area. Next, the text generated by @TeX{}draw is positioned and
placed in the box. Note that when the document is printed, the
PostScript drawing is placed on the page before the @TeX{} text; @TeX{}
text will appear on top of graphics.
@cindex rotated text
@cindex text rotation
The rotation of text is carried out with in-line PostScript code which
does not appear in the intermediate PostScript file. This code is sent
to the PostScript driver with a @code{\special} command. This
PostScript code is embedded in the dvi (device independent) file that
@TeX{} produces.
@node Intermediate PostScript file, , Text placement, Extending TeXdraw
@subsection The intermediate PostScript file
@cindex Encapsulated PostScript File
The intermediate PostScript file consists of a header, a body and a
trailer following Encapsulated PostScript File (EPSF) standards. The
header sets up PostScript definitions and default parameter values. The
trailer includes the @code{BoundingBox} information which gives the
coordinates in default PostScript units (72 per inch) for the lower
lefthand corner and the upper righthand corner of the drawing. The body
of the intermediate PostScript file contains the PostScript commands
generated by @TeX{}draw.
Many moves in @TeX{}draw serve only to position text or to reset saved
positions. @TeX{}draw buffers move commands in order to be able to
collapse runs of moves. Only the last move of a run of moves is
actually written to the PostScript file. However the intermediate moves
still affect the size of the drawing. The expunging of moves means that
the PostScript file @code{BoundingBox} information may indicate a drawing size
larger than the PostScript commands themselves would warrant.
Drawing segments in @TeX{}draw show up in the PostScript file as saves
and restores of the PostScript graphics state. Segment starts are
buffered and only written out if necessary. This way ``empty'' segments
do not generate output to the PostScript file. These empty segments
arise if a segment contains only moves and text commands. The moves
inside the segment are not needed since they are local to the segment,
and the text commands do not generate output to the PostScript file.
If @TeX{}draw is used only for moves and text, no intermediate
PostScript file will be created.
@node How TeXdraw merges graphics and text, , Extending TeXdraw, More Details
@section How @TeX{}draw merges graphics and text
@cindex graphics placement
@cindex text placement
@cindex placement of graphics and text
@TeX{}draw creates a box which is the same size as the graphic. The
printer driver will place the PostScript graphic into this space. Any
@TeX{} text generated by the @TeX{}draw commands will be superimposed on
this graphic.
@cindex @code{texdraw} package
@cindex @code{graphics} package
The La@TeX{}2e front-end for @TeX{}draw is enabled by including the
@code{texdraw} package. The @code{texdraw} package automatically
invokes the standard @code{graphics} package distributed with
La@TeX{}2e. The @code{graphics} package has support for a number of
different printer drivers, including a number for PostScript printers.
Any options to the @code{texdraw} package are passed on to the
@code{graphics} package. Such an option can be used to select a driver
other than the default one.
@cindex PostScript printer drivers
@cindex printer drivers
@cindex @code{dvips} printer driver
@cindex rotated text
@cindex text rotation
Within the @code{graphics} package, the driver option is used to select
definitions for the low-level macros which generate the @code{\special}
commands needed to request insertion of a graphics file and to rotate
text.@footnote{Not all PostScript drivers support text rotation.}
@TeX{}draw uses the user-level macros defined by the @code{graphics}
package (@pxref{PostScript printer drivers}). When not used with the
La@TeX{}2e front-end, @TeX{}draw defines versions of these macros that
are suitable for use with the @code{dvips} printer driver.
@node PostScript Commands, TeXdraw Toolbox, More Details, Top
@appendix PostScript Commands
@cindex PostScript commands
This appendix describes a set of macros for accessing some of the
PostScript builtin functions. Each of these macros issues a single
PostScript command. The extra services provided by @TeX{}draw are the
interpretation of coordinates in user units relative to the current
drawing segment and the writing of a pending @TeX{}draw move to the
PostScript file. This last operation establishes the current point in
PostScript. The user of these commands should be familiar with the
concepts of path construction and filling in PostScript. Further
details on the PostScript functions used can found in the
@cite{PostScript Language Reference Manual, Second Edition}, Adobe
Systems, Addison-Wesley, 1990.
These macros are distributed in file @file{txdps.tex}.
The @code{\PSsetlinecap} and @code{\PSsetlinejoin} commands control the
way line ends and line joins are rendered. The default values set by
@TeX{}draw (round caps and round join) are appropriate for most
drawings. Changes to these parameters apply to the current and
subsequent paths.
@cindex line cap
@cindex line join
@table @code
@findex setlinecap
@findex \PSsetlinecap
@item \PSsetlinecap @var{type}
Set the line cap parameter. The value @code{0} gives a butt cap;
@code{1} gives a round cap; and @code{2} gives a projecting square cap.
The initial value is corresponds to a round cap.
@findex setlinejoin
@findex \PSsetlinejoin
@item \PSsetlinejoin @var{type}
Set the line join parameter. The value @code{0} gives a miter join;
@code{1} gives a round join; and @code{2} gives a bevel join. The
initial value corresponds to a round join.
@end table
@cindex stroking lines
@cindex filling regions
@cindex paths
@cindex current position in PostScript
PostScript paths and fill operations can be controlled by a number of
functions. By design, @TeX{}draw always maintains a defined PostScript
current point. Some of the following macros cause the PostScript
current point to become undefined. The PostScript current point must be
set again (say with a @code{\PSmoveto} command) before invoking basic
@TeX{}draw commands.
@table @code
@findex stroke
@findex \PSstroke
@item \PSstroke
Stroke a PostScript path. The current path is stroked with the current
gray level (set with @code{\setgray}) and the current line pattern (set
with @code{\lpatt}). The PostScript current point becomes undefined.
@findex newpath
@findex \PSnewpath
@item \PSnewpath
Establish a new path. The PostScript current point becomes undefined.
@findex closepath
@findex \PSclosepath
@item \PSclosepath
Close a subpath. A new subpath is started.
@findex fill
@findex \PSfill
@item \PSfill
Fill a region defined by a path. Each subpath is closed and the
enclosed regions painted with the current gray level. The PostScript
current point becomes undefined. The gray level can be set with the
@TeX{}draw command @code{\setgray}.
@end table
The following line commands interpret coordinates relative to the
current @TeX{}draw scaling and drawing segment. The specified
coordinate affects the drawing size as determined by @TeX{}draw.
@cindex lines
@cindex moves
@table @code
@findex lineto
@findex \PSlineto
@item \PSlineto (@var{x} @var{y})
Add a line segment to the current path. This command is identical to
the @TeX{}draw command @code{\lvec}. The PostScript current point must
be defined before this command is issued.
@findex moveto
@findex \PSmoveto
@item \PSmoveto (@var{x} @var{y})
Move to the coordinate specified by @code{(@var{x} @var{y})}. The
PostScript current point becomes defined.
@end table
The following macros provide access to the general arc commands in
PostScript. The coordinates are interpreted relative to the current
@TeX{}draw scaling and drawing segment. The specified coordinate
affects the drawing size as determined by @TeX{}draw.
@cindex arcs
@table @code
@findex arc
@findex \PSarc
@item \PSarc r:@var{radius} sd:@var{start-angle} ed:@var{end-angle} (@var{x} @var{y})
Draw a counterclockwise arc. The center of the arc is at the given
position. The radius is specified by @var{radius}. The start and end
angles (in degrees) are specified by @var{start-angle} and
@var{end-angle}. If the PostScript current point is defined, this
command also draws the line from the current point to the beginning of
the arc. The line and arc become part of the current path. The current
point becomes defined.
@findex arcn
@findex \PSarcn
@item \PSarcn r:@var{radius} sd:@var{start-angle} ed:@var{end-angle} (@var{x} @var{y})
Draw a clockwise arc. The center of the arc is at the given position.
The radius is specified by @var{radius}. The start and end angles (in
degrees) are specified by @var{start-angle} and @var{end-angle}. If the
PostScript current point is defined, this command also draws the line
from the current point to the beginning of the arc. The line and arc
become part of the current path. The current point becomes defined.
@end table
The macro @code{\writeps} provides the general facility to write
arbitrary PostScript commands to the PostScript file. This macro is
used by the preceding commands and by the @TeX{}draw commands
themselves. This facility has to be used with care since changes in
position or scaling resulting from the PostScript commands are not known
to @TeX{}draw.
@table @code
@findex \writeps
@item \writeps @{@var{<ps-commands>}@}
Write PostScript commands to the intermediate PostScript file. Before
the commands are inserted, any pending @TeX{}draw move is written to the
PostScript file. The PostScript scaling gives 300 units/inch.
@end table
@node TeXdraw Toolbox, Examples, PostScript Commands, Top
@appendix @TeX{}draw Toolbox
This appendix describes some of the macros supplied with @TeX{}draw
which can be used to define additional commands for creating drawings.
The macros described here work in the user specified coordinate system.
Some of these toolbox macros are used by the @TeX{}draw commands
themselves, others are supplied in an auxiliary file
@file{txdtools.tex}.
@menu
* Coordinate parsing::
* Real arithmetic::
* Arrow curve::
@end menu
@node Coordinate parsing, Real arithmetic, , TeXdraw Toolbox
@appendixsec Coordinate parsing
The coordinate parsing macro @code{\getpos} is useful for creating new
commands. This macro takes care of stripping leading and trailing
blanks from coordinates specified between parentheses. In addition,
symbolic coordinates are translated to the corresponding relative
coordinate using the segment offset and scaling in effect.
The macro @code{\currentpos} returns the relative coordinates of the
current position. The returned values are relative to the current
segment and the current scaling. The macro @code{\cossin} returns the
real-valued cosine and sine of the direction of the line joining two
points. The macro @code{\vectlen} returns the length of a vector. The
results appear as the value of user supplied macro names.
@cindex coordinate parsing
@cindex current position
@cindex angle of a vector
@cindex direction of a line
@cindex cosine of a vector direction
@cindex sine of a vector direction
@cindex length of a vector
@table @code
@findex \getpos
@item \getpos (@var{x} @var{y})\@var{mx}\@var{my}
Decode coordinate values. The coordinates specified by @code{(@var{x}
@var{y})} are decoded. Symbolic coordinates are translated to the
corresponding relative coordinate using the current segment offset and
scaling. The resulting character strings representing the real-valued
coordinates are assigned to the macros specified by @code{\@var{mx}} and
@code{\@var{my}}.
@findex \currentpos
@item \currentpos \@var{mx}\@var{my}
Return the coordinates of the current position. The coordinates are
relative to the current segment offset and scaling. The resulting
character strings representing the real-valued coordinates are assigned
to the macros specified by @code{\@var{mx}} and @code{\@var{my}}.
@findex \cossin
@item \cossin (@var{x1} @var{y1})(@var{x2} @var{y2})\@var{cosa}\@var{sina}
Return the cosine and sine of the direction of a vector joining two
points. The cosine and sine of the angle of the vector which goes from
@code{(@var{x1} @var{y1})} to @code{(@var{x2} @var{y2})}. The character
strings representing these real-valued quantities are assigned to the
macros specified by @code{\@var{cosa}} and @code{\@var{sina}}.
@findex \vectlen
@item \vectlen (@var{x1} @var{y1})(@var{x2} @var{y2})\@var{len}
Return the length of a vector joining two points. The length of the
vector is relative to the current scaling. The character string
representing the real-valued length is assigned to the macro specified
by @code{\@var{len}}.
@end table
@node Real arithmetic, Arrow curve, Coordinate parsing, TeXdraw Toolbox
@appendixsec Real arithmetic
The @TeX{}draw toolbox supplies macros to perform real arithmetic on
coordinate values. The result appears as the value of a user supplied
macro name.
@table @code
@findex \realadd
@item \realadd @{@var{value1}@} @{@var{value2}@} \@var{sum}
Add two real quantities, assigning the resultant character string
representing the sum to the macro @code{\@var{sum}}.
@findex \realmult
@item \realmult @{@var{value1}@} @{@var{value2}@} \@var{prod}
Multiply two real quantities, assigning the resultant character string
representing the product to the macro @code{\@var{prod}}.
@findex \realdiv
@item \realdiv @{@var{value1}@} @{@var{value2}@} \@var{result}
Divide two real quantities, assigning the resultant character string
representing the result of @var{value1}/@var{value2} to the macro
@code{\@var{result}}.
@end table
@node Arrow curve, , Real arithmetic, TeXdraw Toolbox
@appendixsec Arrow curve
@cindex example, arrow curve
This example illustrates the use of the @TeX{}draw toolbox routines to
do computations with the coordinates. The problem will be tackled in
two parts. First, we will produce a macro to place an arrowhead on a
Bezier curve. Then given this macro, we will produce a macro which can
draw a ``wiggly'' line from the current position to a given coordinate.
@tex
\bigskip
\def\cavec (#1 #2)(#3 #4)(#5 #6){
\clvec (#1 #2)(#3 #4)(#5 #6)
\cossin (#3 #4)(#5 #6)\cosa\sina
\rmove (0 0) % stroke the Bezier curve
\bsegment
\drawdim in \setsegscale 0.05
\move ({-\cosa} -\sina) \avec (0 0)
\esegment}
\def\caw (#1 #2){
\currentpos \xa\ya
\cossin ({\xa} \ya)(#1 #2)\cosa\sina
% The nominal wiggly curve is (0 0) (1+dx dy) (-dx -dy) (1 0)
% Find the rotated offset (dx dy) -> (du dv)
\rotatecoord (0.4 0.1)\cosa\sina \du\dv
% calculate the length of the vector
\vectlen ({\xa} \ya)(#1 #2)\len
% draw the curve in normalized units
\bsegment
\setsegscale {\len}
\realadd \cosa \du \tmpa \realadd \sina \dv \tmpb
\cavec ({\tmpa} \tmpb)({-\du} -\dv)({\cosa} \sina)
\esegment
\move (#1 #2)}
% rotate a coordinate (x y)
% arguments: (x y) cosa sina x' y'
% x' = cosa * x - sina * y; y' = sina * x + cosa * y
\def\rotatecoord (#1 #2)#3#4#5#6{
\getpos (#1 #2)\xarg\yarg
\realmult \xarg {#3} \tmpa \realmult \yarg {#4} \tmpb
\realadd \tmpa {-\tmpb} #5
\realmult \xarg {#4} \tmpa \realmult \yarg {#3} \tmpb
\realadd \tmpa \tmpb #6}
\centertexdraw{
\arrowheadtype t:W
\move (0 0)
\cavec (1.4 0.1)(-0.4 -0.1)(1 0)
\move (1 0) \caw (1 1) \htext{tip at \tt (1 1)}
\move (1 0) \caw (2 1) \htext{tip at \tt (2 1)}
\move (1 0) \caw (2 0) \htext{tip at \tt (2 0)}
\move (0 1.13) \move (0 -0.04)
}
@end tex
The first macro, @code{\cavec}, uses the @code{\cossin} command to
determine the the cosine and sine of the angle of the line joining the
second control point to the end point of the Bezier curve. Recall that
the Bezier curve is tangent to this line at the end point. After
drawing the Bezier curve, the scaling is set locally to absolute units
of 0.05 inches. We go back down the line from the end point by 0.05
inches and draw an arrow vector to the end point from there. This arrow
vector is mostly arrowhead, with little or no tail.
@example
@group
\def\cavec (#1 #2)(#3 #4)(#5 #6)@{
\clvec (#1 #2)(#3 #4)(#5 #6)
\cossin (#3 #4)(#5 #6)\cosa\sina
\rmove (0 0)
\bsegment
\drawdim in \setsegscale 0.05
\move (@{-\cosa@} -\sina) \avec (0 0)
\esegment@}
@end group
@end example
Note the use of macros as arguments to a @code{\move} command. Minus
signs are put in front of the macros. However, the value of the macro
@code{\cosa} or @code{\sina} could be negative. Fortunately, @TeX{}
accepts two minus signs in a row and interprets the result as positive.
Note that the @code{\rmove (0 0)} command before the beginning of the
segment ensures that the Bezier curve is stroked before the arrowhead is
drawn.
The second macro @code{\caw} builds on @code{\cavec}. The goal is to
produce a wiggly vector that can be used as a pointer in a drawing.
Consider the following symmetrical normalized Bezier curve.
@example
\centertexdraw@{ \move (0 0) \cavec (1.4 0.1)(-0.4 -0.1)(1 0) @}
@end example
This curve has the appropriate wiggle. Now we want to be able to draw
this curve, appropriately scaled and rotated. The macro @code{\caw}
needs to do computations on the coordinates. First, @code{\caw} uses
the macros @code{\getpos} and @code{\currentpos} to get the positions of
the end and start of the curve. Next, the length of the vector is
calculated using the macro @code{\vectlen}. A local macro
@code{\rotatecoord} is used to rotate a coordinate pair about the
origin, using the cosine and sine of the rotation angle. The vector
length is used to scale the normalized curve. The remaining code draws
the rotated, normalized curve.
@example
\def\caw (#1 #2)@{
\currentpos \xa\ya
\cossin (@{\xa@} \ya)(#1 #2)\cosa\sina
% The nominal wiggly curve is (0 0) (1+dx dy) (-dx -dy) (1 0)
% Find the rotated offset (dx dy) -> (du dv)
\rotatecoord (0.4 0.1)\cosa\sina \du\dv
% calculate the length of the vector
\vectlen (@{\xa@} \ya)(#1 #2)\len
% draw the curve in normalized units
\bsegment
\setsegscale @{\len@}
\realadd \cosa \du \tmpa \realadd \sina \dv \tmpb
\cavec (@{\tmpa@} \tmpb)(@{-\du@} -\dv)(@{\cosa@} \sina)
\esegment
\move (#1 #2)@}
% rotate a coordinate (x y)
% arguments: (x y) cosa sina x' y'
% x' = cosa * x - sina * y; y' = sina * x + cosa * y
\def\rotatecoord (#1 #2)#3#4#5#6@{
\getpos (#1 #2)\xarg\yarg
\realmult \xarg @{#3@} \tmpa \realmult \yarg @{#4@} \tmpb
\realadd \tmpa @{-\tmpb@} #5
\realmult \xarg @{#4@} \tmpa \realmult \yarg @{#3@} \tmpb
\realadd \tmpa \tmpb #6@}
@end example
Finally, the new macro can be used as follows.
@example
\centertexdraw@{
\arrowheadtype t:W
\move (0 0)
\cavec (1.4 0.1)(-0.4 -0.1)(1 0)
\move (1 0) \caw (1 1) \htext@{tip at \tt (1 1)@}
\move (1 0) \caw (2 1) \htext@{tip at \tt (2 1)@}
\move (1 0) \caw (2 0) \htext@{tip at \tt (2 0)@}
@}
@end example
Note that the Bezier curve in the macro @code{\cavec} lies below the
arrowhead. The example then draws an arrowhead of type @code{W} to
erase the part of the line below the arrowhead.
@node Examples, Command Listing, TeXdraw Toolbox, Top
@appendix Examples
@cindex example, block diagram
This appendix shows examples of the use of @TeX{}draw.
@menu
* Block diagram::
* Filter response graph::
* Geometric construction::
@end menu
@node Block diagram, Filter response graph, , Examples
@appendixsec Block diagram of a lattice filter
The block diagram of a lattice filter uses a library of extended
commands built from the basic @TeX{}draw commands.
@tex
\bigskip
\bigskip
\def\delay {\bsegment
\setsegscale 0.3
\lvec (0 +0.5) \lvec (1 +0.5) \lvec (1 -0.5)
\lvec (0 -0.5) \lvec (0 0)
\textref h:C v:C \htext (0.5 0){$z^{-1}$}
\savepos (1 0)(*ex *ey)
\esegment
\move (*ex *ey)}
\def\bdot {\fcir f:0 r:0.02 }
\def\Ttext #1{\bsegment
\textref h:C v:B \htext (0 +0.06){#1}
\esegment}
\def\Btext #1{\bsegment
\textref h:C v:T \htext (0 -0.06){#1}
\esegment}
\def\Ltext #1{\bsegment
\textref h:R v:C \htext (-0.06 0){#1}
\esegment}
\def\Rtext #1{\bsegment
\textref h:L v:C \htext (+0.06 0){#1}
\esegment}
\def\cradius {0.08}
\def\pluss {\bsegment
\setsegscale {\cradius}
\move (-0.5 0) \lvec (+0.5 0)
\move (0 -0.5) \lvec (0 +0.5)
\esegment}
\def\pcir {\lcir r:{\cradius} \pluss}
\def\puttext (#1 #2)#3{\bsegment
\setsegscale {\cradius}
\textref h:C v:C \htext (#1 #2){#3}
\esegment}
\def\putwnw #1{\puttext (-1.7 +1.2){#1}}
\def\putwsw #1{\puttext (-1.7 -1.2){#1}}
\def\putn #1{\puttext ( 0 +2 ){#1}}
\def\puts #1{\puttext ( 0 -2 ){#1}}
\def\avectoc (#1 #2){\currentpos \xa\ya
\cossin ({\xa} \ya)(#1 #2)\cosa\sina
\savepos (#1 #2)(*tx *ty)
\bsegment
\move (*tx *ty)
\setsegscale {\cradius}
\rmove ({-\cosa} -\sina)
\savecurrpos (*ex *ey)
\esegment
\avec (*ex *ey)
\move (#1 #2)}
\def\avecfrc (#1 #2){\currentpos \xa\ya
\cossin ({\xa} \ya)(#1 #2)\cosa\sina
\bsegment
\setsegscale {\cradius}
\move ({\cosa} \sina)
\savecurrpos (*ex *ey)
\esegment
\move (*ex *ey)
\avec (#1 #2)}
\centertexdraw{
\drawdim in
\arrowheadtype t:F \arrowheadsize l:0.08 w:0.04
\def\pl {$\scriptscriptstyle +$} \def\mn {$\scriptscriptstyle -$}
\move (0 +0.63) \move (0 -0.60) % compensate for the text size
\move (0 0)
% Input to the first stage
\bsegment
\Ltext{$x(n)$}
\lvec (0.3 0) \bdot \lvec (0.3 +0.4)
\move (0.3 0) \lvec (0.3 -0.4)
\savepos (0.3 0)(*ex *ey)
\esegment
\move (*ex *ey)
% first lattice stage
\bsegment
\move (0 +0.4) \avectoc (1.7 +0.4)
\pcir \putwnw{\pl} \puts{\mn}
\avecfrc (2.1 +0.4)
\move (0 -0.4) \avec (0.4 -0.4) \delay \avectoc (1.7 -0.4)
\pcir \putwsw{\pl} \putn{\mn}
\avecfrc (2.1 -0.4)
\move (0.9 +0.4) \bdot \avectoc (1.7 -0.4)
\move (0.9 -0.4) \bdot \avectoc (1.7 +0.4)
\move (0.1 +0.42) \Ttext {$f_0(n)$}
\move (2.0 +0.42) \Ttext {$f_1(n)$}
\move (0.1 -0.4) \Btext {$b_0(n)$}
\move (2.0 -0.4) \Btext {$b_1(n)$}
\textref h:L v:B \htext (1.15 +0.2){$K_1$}
\textref h:L v:T \htext (1.15 -0.2){$K_1$}
\savepos (2.1 0)(*ex *ey)
\esegment
\move (*ex *ey)
% center section
\bsegment
\textref h:C v:C
\htext (0.3 +0.4){$\cdots$}
\htext (0.3 -0.4){$\cdots$}
\savepos (0.6 0)(*ex *ey)
\esegment
\move (*ex *ey)
% last lattice stage
\bsegment
\move (0 +0.4) \avectoc (1.7 +0.4)
\pcir \putwnw{\pl} \puts{\mn}
\avecfrc (2.3 +0.4) \Rtext{$e(n)$}
\move (0 -0.4) \avec (0.4 -0.4) \delay \avectoc (1.7 -0.4)
\pcir \putwsw{\pl} \putn{\mn}
\avecfrc (2.1 -0.4)
\move (0.9 +0.4) \bdot \avectoc (1.7 -0.4)
\move (0.9 -0.4) \bdot \avectoc (1.7 +0.4)
\move (0.1 +0.42) \Ttext {$f_{P-1}(n)$}
\move (2.0 +0.42) \Ttext {$f_P(n)$}
\move (0.1 -0.4) \Btext {$b_{P-1}(n)$}
\move (2.0 -0.4) \Btext {$b_P(n)$}
\textref h:L v:B \htext (1.15 +0.2){$K_P$}
\textref h:L v:T \htext (1.15 -0.2){$K_P$}
\esegment
}
\bigskip
@end tex
The block diagram uses a ``delay'' block. This is defined as a segment
which leaves the current position at the end of this block. A second
macro, @code{\bdot}, draws a ``big'' dot which is used to mark junctions
of lines. The @code{\Ttext} command centers text above a given point.
The offset to position the text is local to a segment, resulting in no
change to the current point. Similar macros to position text below a
point (@code{\Btext}), to the left of a point (@code{\Ltext}) and to the
right of a point (@code{\Rtext}) are used in the final drawing.
@example
\def\delay @{\bsegment
\setsegscale 0.3
\lvec (0 +0.5) \lvec (1 +0.5) \lvec (1 -0.5)
\lvec (0 -0.5) \lvec (0 0)
\textref h:C v:C \htext (0.5 0)@{$z^@{-1@}$@}
\savepos (1 0)(*ex *ey)
\esegment
\move (*ex *ey)@}
\def\bdot @{\fcir f:0 r:0.02 @}
\def\Ttext #1@{\bsegment
\textref h:C v:B \htext (0 +0.06)@{#1@}
\esegment@}
@end example
Several of the block diagram elements scale with the size of the summing
nodes. The radius of the circles for the summing nodes is defined as
the macro @code{\cradius}. The summing nodes will have enclosed plus
signs, appropriately scaled. The plus sign is drawn by the macro
@code{\pluss}. The macro @code{\pcir} draws both the circle and the
plus sign. The incoming lines to a summing node will be labelled with
plus or minus signs (characters this time), placed at the appropriate
position with respect to the center of the summing node. These
positions are given in terms of compass directions. The macro
@code{\putwnw} places text west by north-west relative to the center of
the summing node.
@example
\def\cradius @{0.08@}
\def\pluss @{\bsegment
\setsegscale @{\cradius@}
\move (-0.5 0) \lvec (+0.5 0)
\move (0 -0.5) \lvec (0 +0.5)
\esegment@}
\def\pcir @{\lcir r:@{\cradius@} \pluss@}
\def\puttext (#1 #2)#3@{\bsegment
\setsegscale @{\cradius@}
\textref h:C v:C \htext (#1 #2)@{#3@}
\esegment@}
\def\putwnw #1@{\puttext (-1.7 +1.2)@{#1@}@}
@end example
The block diagram has vectors arriving and departing from the summing
nodes (circles). One could calculate the points of intersection of the
lines with the circles, and then enter the values into the @TeX{}draw
code. However, in this example, we implement an automated procedure.
Two macros are needed, an arrow vector to a circle (@code{\avectoc}) and
an arrow vector leaving from a circle (@code{\avecfrc}). The macros
will calculate the point of intersection with the circle and start or
end the vector at the intersection point.
The arrow macros use scaling and relative positioning inside of a
drawing segment. In the case of the macro @code{\avectoc}, a move is
made to the final point (center of the circle), then within a drawing
segment, a scaled move is made back towards the initial point to
determine the intersection point with the circle.
@example
\def\avectoc (#1 #2)@{\currentpos \xa\ya
\cossin (@{\xa@} \ya)(#1 #2)\cosa\sina
\savepos (#1 #2)(*tx *ty)
\bsegment
\move (*tx *ty)
\setsegscale @{\cradius@}
\rmove (@{-\cosa@} -\sina)
\savecurrpos (*ex *ey)
\esegment
\avec (*ex *ey)
\move (#1 #2)@}
\def\avecfrc (#1 #2)@{\currentpos \xa\ya
\cossin (@{\xa@} \ya)(#1 #2)\cosa\sina
\bsegment
\setsegscale @{\cradius@}
\move (@{\cosa@} \sina)
\savecurrpos (*ex *ey)
\esegment
\move (*ex *ey)
\avec (#1 #2)@}
@end example
Having defined these macros, we are ready to draw the block diagram.
The first and last sections of the lattice filter are very similar,
differing mainly in the text labels. With more effort, code could be
shared between the commands used to draw these blocks.
@example
\centertexdraw@{
\drawdim in
\arrowheadtype t:F \arrowheadsize l:0.08 w:0.04
\def\pl @{$\scriptscriptstyle +$@} \def\mn @{$\scriptscriptstyle -$@}
\move (0 +0.63) \move (0 -0.60) % compensate for the text size
\move (0 0)
% Input to the first stage
\bsegment
\Ltext@{$x(n)$@}
\lvec (0.3 0) \bdot \lvec (0.3 +0.4) \move (0.3 0) \lvec (0.3 -0.4)
\savepos (0.3 0)(*ex *ey)
\esegment
\move (*ex *ey)
% first lattice stage
\bsegment
\move (0 +0.4) \avectoc (1.7 +0.4)
\pcir \putwnw@{\pl@} \puts@{\mn@}
\avecfrc (2.1 +0.4)
\move (0 -0.4) \avec (0.4 -0.4) \delay \avectoc (1.7 -0.4)
\pcir \putwsw@{\pl@} \putn@{\mn@}
\avecfrc (2.1 -0.4)
\move (0.9 +0.4) \bdot \avectoc (1.7 -0.4)
\move (0.9 -0.4) \bdot \avectoc (1.7 +0.4)
\move (0.1 +0.42) \Ttext @{$f_0(n)$@}
\move (2.0 +0.42) \Ttext @{$f_1(n)$@}
\move (0.1 -0.4) \Btext @{$b_0(n)$@}
\move (2.0 -0.4) \Btext @{$b_1(n)$@}
\textref h:L v:B \htext (1.15 +0.2)@{$K_1$@}
\textref h:L v:T \htext (1.15 -0.2)@{$K_1$@}
\savepos (2.1 0)(*ex *ey)
\esegment
\move (*ex *ey)
% center section
\bsegment
\textref h:C v:C \htext (0.3 +0.4)@{$\cdots$@}
\htext (0.3 -0.4)@{$\cdots$@}
\savepos (0.6 0)(*ex *ey)
\esegment
\move (*ex *ey)
% last lattice stage
\bsegment
\move (0 +0.4) \avectoc (1.7 +0.4)
\pcir \putwnw@{\pl@} \puts@{\mn@}
\avecfrc (2.3 +0.4) \Rtext@{$e(n)$@}
\move (0 -0.4) \avec (0.4 -0.4) \delay \avectoc (1.7 -0.4)
\pcir \putwsw@{\pl@} \putn@{\mn@}
\avecfrc (2.1 -0.4)
\move (0.9 +0.4) \bdot \avectoc (1.7 -0.4)
\move (0.9 -0.4) \bdot \avectoc (1.7 +0.4)
\move (0.1 +0.42) \Ttext @{$f_@{P-1@}(n)$@}
\move (2.0 +0.42) \Ttext @{$f_P(n)$@}
\move (0.1 -0.4) \Btext @{$b_@{P-1@}(n)$@}
\move (2.0 -0.4) \Btext @{$b_P(n)$@}
\textref h:L v:B \htext (1.15 +0.2)@{$K_P$@}
\textref h:L v:T \htext (1.15 -0.2)@{$K_P$@}
\esegment
@}
@end example
The macros used in this example are similar to the block diagram macros
defined in the file @file{blockdiagram.tex}.
@node Filter response graph, Geometric construction, Block diagram, Examples
@appendixsec Filter response graph
@cindex example, graph
This example shows the response of a canonical filter. @TeX{}draw is
not well suited for general purpose graphing --- it has no coordinate
translation facility nor does it have separate @var{x} and @var{y}
scaling. Nonetheless, for certain simple graphs, @TeX{}draw is
adequate.
@tex
\bigskip
\centertexdraw{
\arrowheadtype t:F \arrowheadsize l:0.08 w:0.04
\def\ds {\displaystyle}
\def\ticklab (#1 #2)#3{\move(#1 #2)
\bsegment
\lvec (0 0.05)
\textref h:C v:T \htext (0 -0.05){#3}
\esegment}
\def\Rtext #1{\bsegment
\textref h:L v:C \htext ( 0.08 0){#1}
\esegment}
\move (2.4 -0.32) % move to set the size
\move (0 0)
% Axes
\avec (0 1.4)
\move (0 0) \avec (2.2 0) \Rtext{$\omega$}
\ticklab (0 0) {0}
\ticklab (0.8 0) {$\ds {\pi \over 2N} $}
\ticklab (1.2 0) {$\omega_s$}
\ticklab (1.6 0) {$\ds {\pi \over N} $}
\linewd 0.025
\move (0 1)
\lvec (0.4 1)
\lvec (0.44 0.998)
\lvec (0.48 0.988)
\lvec (0.52 0.973)
\lvec (0.56 0.951)
\lvec (0.60 0.923)
\lvec (0.64 0.891)
\lvec (0.68 0.852)
\lvec (0.72 0.809)
\lvec (0.76 0.760)
\lvec (0.80 0.707)
\lvec (0.84 0.649)
\lvec (0.88 0.587)
\lvec (0.92 0.522)
\lvec (0.96 0.454)
\lvec (1.00 0.382)
\lvec (1.04 0.309)
\lvec (1.08 0.233)
\lvec (1.12 0.156)
\lvec (1.16 0.078)
\lvec (1.20 0)
\lvec (1.9 0)
}
\bigskip
@end tex
In this example, macro @code{\ticklab} places a labelled axis tick at a
given position. The data is specified in a straightforward manner,
having been scaled beforehand to give the desired aspect ratio for the
graph.
@example
\centertexdraw@{
\arrowheadtype t:F \arrowheadsize l:0.08 w:0.04
\def\ds @{\displaystyle@}
\def\ticklab (#1 #2)#3@{\move(#1 #2)
\bsegment
\lvec (0 0.05)
\textref h:C v:T \htext (0 -0.05)@{#3@}
\esegment@}
\def\Rtext #1@{\bsegment
\textref h:L v:C \htext (+0.08 0)@{#1@}
\esegment@}
\move (2.4 -0.3) % move to set the size
\move (0 0)
% Axes
\avec (0 +1.4)
\move (0 0) \avec (2.2 0) \Rtext@{$\omega$@}
\ticklab (0 0) @{0@}
\ticklab (0.8 0) @{$\ds @{\pi \over 2N@} $@}
\ticklab (1.2 0) @{$\omega_s$@}
\ticklab (1.6 0) @{$\ds @{\pi \over N@} $@}
\linewd 0.025
\move (0 1)
\lvec (0.4 1)
\lvec (0.44 0.998)
\lvec (0.48 0.988)
\lvec (0.52 0.973)
\lvec (0.56 0.951)
...
\lvec (1.08 0.233)
\lvec (1.12 0.156)
\lvec (1.16 0.078)
\lvec (1.20 0)
\lvec (1.9 0)
@}
@end example
@node Geometric construction, , Filter response graph, Examples
@appendixsec Geometric construction
@cindex example, circle and ellipse
This example shows a geometric construction which places an ellipse
tangent to an enclosing circle. The size of the ellipse is determined
from geometric considerations. Macros are used to modularize the code.
The example alters the unit scale factor. This allows the drawing to be
carried out in units normalized to the radius of the circle.
@tex
\bigskip
\centertexdraw{
\arrowheadtype t:V \arrowheadsize l:0.08 w:0.04
\linewd 0.01
\setunitscale 1.5 % circle will have radius 1.5 inches
\def\Btext #1{\bsegment
\textref h:C v:T \htext (0 -0.04){#1}
\esegment}
\def\Ttext #1{\bsegment
\textref h:C v:B \htext (0 0.04){#1}
\esegment}
\def\Ltext #1{\bsegment
\textref h:R v:C \htext (-0.04 0){#1}
\esegment}
\def\bdot {\fcir f:0 r:0.0133 }
\def\vtick {\bsegment
\move (0 -0.05) \lvec (0 0.05)
\esegment}
\def\htick {\bsegment
\move (-0.05 0) \lvec ( 0.05 0)
\esegment}
\def\Hlen #1#2{\bsegment
\vtick \avec ({#1} 0) \vtick \avec (0 0)
\relsegscale 0.5
\move ({#1} 0) \Ttext {#2}
\esegment}
\def\Vlen #1#2{\bsegment
\htick \avec (0 {#1}) \htick \avec (0 0)
\relsegscale 0.5
\move (0 {#1}) \Ltext {#2}
\esegment}
\lcir r:1 % circle
\move (-1.05 0) \lvec ( 1.05 0) % axes
\move (0 -1.05) \lvec (0 1.05)
\move (0 0) \lvec (0.707 0.707) \bdot
\rmove (0.02 0.02) \textref h:L v:B \htext {X}
\move (0.707 -0.707) \bdot
\textref h:R v:T \htext(-0.02 -0.02){O}
\move (0.5 0) % center of ellipse
\bsegment
\lellip rx:0.435 ry:0.804
\bdot \Btext {$\beta_2$}
\move (0 0.15) \Hlen {0.435}{$|\beta_1{+}\beta_3|$}
\move (-0.7 0) \Vlen {0.804}{$|\beta_1{-}\beta_3|$}
\esegment
}
\bigskip
@end tex
@example
\centertexdraw@{
\arrowheadtype t:V \arrowheadsize l:0.08 w:0.04
\linewd 0.01
\setunitscale 1.5 % circle will have radius 1.5 inches
\def\Btext #1@{\bsegment
\textref h:C v:T \htext (0 -0.04)@{#1@}
\esegment@}
\def\Ttext #1@{\bsegment
\textref h:C v:B \htext (0 +0.04)@{#1@}
\esegment@}
\def\Ltext #1@{\bsegment
\textref h:R v:C \htext (-0.04 0)@{#1@}
\esegment@}
\def\bdot @{\fcir f:0 r:0.0133 @}
\def\vtick @{\bsegment
\move (0 -0.05) \lvec (0 +0.05)
\esegment@}
\def\htick @{\bsegment
\move (-0.05 0) \lvec (+0.05 0)
\esegment@}
\def\Hlen #1#2@{\bsegment
\vtick \avec (@{#1@} 0) \vtick \avec (0 0)
\relsegscale 0.5
\move (@{#1@} 0) \Ttext @{#2@}
\esegment@}
\def\Vlen #1#2@{\bsegment
\htick \avec (0 @{#1@}) \htick \avec (0 0)
\relsegscale 0.5
\move (0 @{#1@}) \Ltext @{#2@}
\esegment@}
\lcir r:1 % circle
\move (-1.05 0) \lvec ( 1.05 0) % axes
\move (0 -1.05) \lvec (0 1.05)
\move (0 0) \lvec (0.707 0.707) \bdot
\rmove (0.02 0.02) \textref h:L v:B \htext @{X@}
\move (0.707 -0.707) \bdot
\textref h:R v:T \htext(-0.02 -0.02)@{O@}
\move (0.5 0) % center of ellipse
\bsegment
\lellip rx:0.435 ry:0.804
\bdot \Btext @{$\beta_2$@}
\move (0 0.15) \Hlen @{0.435@}@{$|\beta_1@{+@}\beta_3|$@}
\move (-0.7 0) \Vlen @{0.804@}@{$|\beta_1@{-@}\beta_3|$@}
\esegment
@}
@end example
@node Command Listing, Command Index, Examples, Top
@appendix Alphabetic listing of commands
@cindex listing of commands
@table @code
@item \arrowheadsize l:@var{length} w:@var{width}
Set the arrowhead size to be @var{length} units long and @var{width}
units wide. The width is measured across the ``base'' of the arrowhead.
The initial arrowhead size has a @var{length} of 0.16 inches and a
@var{width} of 0.08 inches.
@item \arrowheadtype t:@var{type}
Set the arrowhead type to @var{type}, where @var{type} is one of
@code{F}, @code{T}, @code{W}, @code{V}, or @code{H}. There are two
kinds of arrowheads. The first kind is a triangle. There are 3
variants: type @code{T} is an empty triangle, type @code{F} is a filled
triangle (using the current gray level for lines), type @code{W} is a
triangle filled with white. The second kind of arrowhead is an open
ended Vee. There are 2 variants: type @code{V} has the stem continue to
the tip, type @code{H} has the stem stop at the base of the arrowhead.
The initial arrowhead type is @code{T}.
@item \avec (@var{x} @var{y})
Draw a line with an arrowhead from the current position to
@code{(@var{x} @var{y})}. The new current position is @code{(@var{x}
@var{y})}. The arrowhead is aligned with the line, with the tip at
@code{(@var{x} @var{y})}.
@item \begin@{texdraw@}
Start a @TeX{}draw drawing. The drawing is terminated with an
@code{\end@{texdraw@}} command. This command is for use with La@TeX{}.
@item \bsegment
Start a drawing segment. The coordinate system is shifted such that the
current position corresponds to the coordinate @code{(0 0)}. Changes to
scaling, position and line parameters stay local to the drawing segment.
@item \btexdraw
Start a @TeX{}draw drawing. The drawing is terminated with an
@code{\etexdraw} command.
@item \centertexdraw @{ ... @}
Center a @TeX{}draw box. The argument contains @TeX{}draw commands.
The resulting box has the horizontal size @code{\hsize} and height equal
to the height of the drawing.
@item \clvec (@var{x1} @var{y1})(@var{x2} @var{y2})(@var{x3} @var{y3})
Draw a Bezier curve from the current position to the coordinate
@code{(@var{x3} @var{y3})} which becomes the new current position. The
coordinates @code{(@var{x1} @var{y1})} and @code{(@var{x2} @var{y2})}
serve as control points for the curve. Only the last coordinate given
is used to update the size of the drawing.
@item \drawbb
Draw a ruled box around the effective size of a drawing produced by
@TeX{}draw commands.
@item \drawdim @var{dim}
Set the units to @var{dim}. The argument @var{dim} can be any valid
@TeX{} dimension unit. The units are used to interpret coordinate
values. Examples of valid units: @code{cm}, @code{mm}, @code{in},
@code{pt}, and @code{bp}.
@item \end@{texdraw@}
End a @TeX{}draw drawing started with a @code{\begin@{texdraw@}}
command. The resulting @TeX{}draw drawing is placed in a box with
height equal to the height of the drawing and width equal to the width
of the drawing. The depth of the box is zero. This command is for use
with La@TeX{}.
@item \esegment
End a drawing segment. The current position in effect before the
corresponding @code{\bsegment} command is restored. The scaling and
line parameter values revert to those in effect before the corresponding
@code{\bsegment} was invoked.
@item \etexdraw
End a @TeX{}draw drawing started with a @code{\btexdraw} command. The
resulting @TeX{}draw drawing is placed in a box with height equal to the
height of the drawing and width equal to the width of the drawing. The
depth of the box is zero.
@item \everytexdraw @{ ... @}
Specify @TeX{}draw commands to be executed at the beginning of every
@TeX{}draw drawing.
@item \fcir f:@var{level} r:@var{radius}
Draw a filled circle with center at the current position. The radius is
specified by @var{radius}. The circle is painted with the gray level
specified by @var{level}. A gray level of 1 corresponds to white, with
decreasing values getting darker. The level 0 is full black. This
command does not draw a line along the circumference. The drawing size
is increased if necessary to contain the circle.
@item \fellip f:@var{level} rx:@var{x-radius} ry:@var{y-radius}
Draw a filled ellipse with center at the current position. The radius
in the @var{x} direction is specified by @var{x-radius}. The radius in
the @var{y} direction is specified by @var{y-radius}. The ellipse is
painted with the gray level specified by @var{level}. A gray level of 1
corresponds to white, with decreasing values getting darker. The level
0 is full black. This command does not draw a line along the boundary
of the ellipse. The drawing size is increased if necessary to contain
the ellipse.
@item \htext (@var{x} @var{y})@{@var{text}@}
@itemx \htext @{@var{text}@}
The first form of this command places the @TeX{} text @var{text}
horizontally with the text reference point at the coordinate
@code{(@var{x} @var{y})}. The new current position is @code{(@var{x}
@var{y})}. The second form of this command places the @TeX{} text
@var{text} horizontally with the text reference point at the current
position. The text reference point is set with the @code{\textref}
command.
@item \ifill f:@var{level}
Close the current path and paint the interior of the region with gray
level @var{level}. The line around the path is not drawn. Gray levels
are real values from 0 (black) through intermediate values (grays) to 1
(white).
@item \larc r:@var{radius} sd:@var{start-angle} ed:@var{end-angle}
Draw a counterclockwise arc. The center of the arc is at the current
position. The radius is specified by @var{radius}. The start and end
angles (in degrees) are specified by @var{start-angle} and
@var{end-angle}. This command does not affect the limits (size) of the
drawing.
@item \lcir r:@var{radius}
Draw a circle with center at the current position. The radius is
specified by @var{radius}. This command draws a line along the
circumference of the circle. The drawing size is increased if necessary
to contain the circle.
@item \lellip rx:@var{x-radius} ry:@var{y-radius}
Draw an ellipse with center at the current position. The radius in the
@var{x} direction is specified by @var{x-radius}. The radius in the
@var{y} direction is specified by @var{y-radius}. The drawing size is
increased if necessary to contain the ellipse.
@item \lfill f:@var{level}
Close the current path, draw the line around the path using the current
grey level for lines and paint the interior of the region with specified
gray level @var{level}. Gray levels are real values from 0 (black)
through intermediate values (grays) to 1 (white).
@item \linewd @var{width}
Set the line width to @var{width} units. Initially @var{width} is 0.01
inches (corresponding to 3 pixels at 300 pixels to the inch).
@item \lpatt (@var{pattern})
Set lines to have the pattern @code{(@var{pattern})}. A pattern is a
sequence of on/off lengths separated by blanks and enclosed in parentheses.
The lengths alternately specify the length of a dash and the length of a
gap between dashes. Each length is interpreted using the current
scaling and drawing units. The pattern is used cyclically. The empty
pattern signifies a solid line. The initial line pattern is a solid
line, corresponding to the empty pattern @code{\lpatt ()}.
@item \lvec (@var{x} @var{y})
Draw a line from the current position to coordinate @code{(@var{x}
@var{y})}. The new current position is @code{(@var{x} @var{y})}.
@item \move (@var{x} @var{y})
Move to coordinate @code{(@var{x} @var{y})}. The new current position
is @code{(@var{x} @var{y})}.
@item \ravec (@var{dx} @var{dy})
Draw a line with an arrowhead from the current position, @var{dx} units
in the @var{x} direction and @var{y} units in the @var{y} direction.
The final position becomes the new current position. The arrowhead is
aligned with the line, with the tip at the new current position.
@item \relsegscale @var{value}
Adjust the segment scale factor by multiplying by @var{value}. This has
the effect of multiplying the current overall scale factor by the same
factor. The overall scaling factor is the product of the unit scale
factor and the segment scale factor.
@item \relunitscale @var{value}
Adjust the unit scale factor by multiplying by @var{value}. This has
the effect of multiplying the overall scale factor by the same factor.
The overall scaling factor is the product of the unit scale factor and
the segment scale factor.
@item \rlvec (@var{dx} @var{dy})
Draw a line from the current position, @var{dx} units in the @var{x}
direction and @var{dy} units in the @var{y} direction. The final
position becomes the new current position.
@item \rmove (@var{dx} @var{dy})
Move from the current position, @var{dx} units in the @var{x} direction
and @var{dy} units in the @var{y} direction. The final position becomes
the new current position.
@item \rtext td:@var{angle} (x y)@{@var{text}@}
@itemx \rtext td:@var{angle} @{@var{text}@}
The first form of this command places the @TeX{} text @var{text} at an
angle with the text reference point at the coordinate @code{(@var{x}
@var{y})}. The new current position is @code{(@var{x} @var{y})}. The
second form of this command places the @TeX{} text @var{text} at an
angle with the text reference point at the current position. In both
cases, the @TeX{} text is placed in a box and the box is rotated
counterclockwise by @var{angle} degrees about the text reference point.
The text reference point is set with the @code{\textref} command.
@item \savecurrpos (*@var{px} *@var{py})
Save the current position as the absolute position referenced by
@code{(*@var{px} *@var{py})}.
@item \savepos (@var{x} @var{y})(*@var{px} *@var{py})
Save the coordinate position @code{(@var{x} @var{y})} as the absolute
position referenced by @code{(*@var{px} *@var{py})}. The coordinate
@code{(@var{x} @var{y})} is interpreted in the normal fashion as a
coordinate relative to the current segment, using the current scaling
factors and drawing unit.
@item \setgray @var{level}
Set the gray level of lines. Gray levels are real values from 0 (black)
through intermediate values (gray) to 1 (white). The initial gray level
is 0 corresponding to black.
@item \setsegscale @var{scale}
Set the segment scale factor. The argument @var{scale} is a real number
which is used to scale coordinate values. The overall scale factor is
the product of the unit scale factor and the segment scale factor.
@item \setunitscale @var{scale}
Set the unit scaling to @var{scale}. The argument @var{scale} is a real
number which is used to scale coordinate values. The overall scaling
factor is the product of the unit scale factor and the segment scale
factor.
@item \textref h:@var{h-ref} v:@var{v-ref}
Set the text reference point for subsequent text commands. The
horizontal reference point @var{h-ref} is one of @code{L}, @code{C} or
@code{R} (left, center or right). The vertical reference point
@var{v-ref} is one of @code{T}, @code{C} or @code{B} (top, center or
bottom). For rotated text, the reference point is determined before
rotation. The initial text reference point corresponds to
@code{\textref h:L v:B}.
@item \vtext (x y)@{@var{text}@}
@itemx \vtext @{@var{text}@}
The first form of this command places the @TeX{} text @var{text}
vertically with the text reference point at the coordinate
@code{(@var{x} @var{y})}. The new current position is @code{(@var{x}
@var{y})}. The second form of this command places the @TeX{} text
@var{text} vertically with the text reference point at the current
position. In both cases, the @TeX{} text is placed in a box and the box
is rotated counterclockwise by 90 degrees about the text reference
point. The text reference point is set with the @code{\textref}
command.
@end table
@node Command Index, Concept Index, Command Listing, Top
@unnumbered Command Index
@printindex fn
@node Concept Index, , Command Index, Top
@unnumbered Concept Index
@printindex cp
@bye
|