1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
|
% TeXdraw macros
% $Id: texdraw.tex 2.7 2019/04/18 TeXdraw-v2r3 $
% Copyright (C) 1991-2019 Peter Kabal
% This work is licensed under the Creative Commons Attribution (CC-BY)
% License, any version. To view the licenses, visit
% creativecommons.org/licenses/by or send a letter to
% Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
% Peter Kabal
% Department of Electrical & Computer Engineering
% McGill University
% peter dot kabal at mcgill dot ca
% http://www-mmsp.ece.mcgill.ca/MMSP/Documents/Software/
\def\setRevDate $#1 #2 #3${#2}
\def\TeXdrawId{\setRevDate $Date: 2019/04/18 14:10:45 $ TeXdraw V2R3}
% ===============================================================
% The TeXdraw macros allow PostScript line drawings and such to be
% generated from within TeX and LaTeX.
% (1) TeXdraw allows TeX text (either horizontal or rotated) to be
% superimposed on the figure.
% (2) TeXdraw implements a \bsegment-\esegment environment which allows
% parameter changes and coordinate changes to be kept local. In
% effect these segments are self-contained relocatable procedures.
% (3) TeX's macro facility can be used to modularize drawing units and
% produce more complex entities from simple elements.
% (4) The drawing can be positioned on the page like any other TeX box.
% TeXdraw coordinate units have positive X to the right and positive Y up.
% The drawing units can be selected (initially inches). In addition, two
% scaling parameters - unit scale and segment scale - are available. Their
% effects are multiplicative.
% Segments allow for relocatable drawing units. Inside each segment the
% coordinates are relative to the initial point, which becomes (0 0).
% Scaling is local to segments. Each segment inherits the unit scale
% scaling from outside the segment, but any changes apply to that segment
% and inferior segments. The segment scale factor is reset to unity on
% entry to each segment.
% The coordinates given as command arguments are used to determine
% the size of the drawing. The width of the plot line, sizes of
% arrowheads, arcs or text do not affect the size of the drawing.
% TeXdraw writes PostScript commands to an intermediate file. After the
% drawing is finished, the PostScript file is included in the document as a
% PostSript include file.
% This file is divided into 4 parts,
% - TeXdraw user interface
% - Utility definitions
% - Low level definitions
% - PostScript file macros
\chardef\catamp=\the\catcode`\@
\catcode`\@=11
% ===============================================================
% ===== TeXdraw user interface ==================================
\long % \centertexdraw needs to be very \long
\def\centertexdraw #1{\hbox to \hsize{\hss
\btexdraw #1\etexdraw
\hss}}
% ====== Begin TeXdraw
% Inside the texdraw box:
% The \vbox should be of zero size; none of the TeXdraw drawing commands
% generate text, the TeXdraw text commands generate zero size boxes.
\def\btexdraw {\x@pix=0 \y@pix=0
\x@segoffpix=\x@pix \y@segoffpix=\y@pix
\let\p@sfile=\p@sundef
% Set the default values (define outside of the group so that \etexdraw can
% see the scaling parameters)
\t@exdrawdef
\setbox\t@xdbox=\vbox\bgroup\offinterlineskip
\global\d@bs=0 % pending segments
\global\p@osinitfalse
\s@avemove \x@pix \y@pix % capture the initial position
\m@pendingfalse
\global\p@osinitfalse % capture the next move
\p@athfalse
\the\everytexdraw}
% ====== End TeXdraw
% Write out a trailer, close the file, bring in the PostScript code as
% a \special include file. The \special is offset on the page to be at
% (llx,ury) in PostScript coordinates.
% The drawing is placed in a \vbox of appropriate size (zero depth). The
% temporary PostScript file is superimposed with offsets such that the
% lower lefthand corner of the drawing is aligned with the lower lefthand of
% the box.
\def\etexdraw {\p@sclose % close the PostScript file
\egroup % ends the \vbox \bgroup
\vbox {\offinterlineskip
\pixtobp \xminpix \l@lxbp \pixtobp \yminpix \l@lybp
\pixtobp \xmaxpix \u@rxbp \pixtobp \ymaxpix \u@rybp
\ifx\p@sfile\p@sundef
\hbox{\t@xdempty
[{\l@lxbp},{\l@lybp}][{\u@rxbp},{\u@rybp}]}%
\else
\hbox{\t@xdinclude
[{\l@lxbp},{\l@lybp}][{\u@rxbp},{\u@rybp}]{\p@sfile}}%
\fi
\t@xdtext}%
}
% Superimpose TeX text. The position is temporarily offset to a position
% corresponding to (0 0) to place the TeX text.
\def\t@xdtext {
\ifdim \wd\t@xdbox>0pt
\t@xderror {TeXdraw box non-zero size, possible extraneous text}%
\fi
\pixtodim \xminpix \t@xpos \pixtodim \yminpix \t@ypos
\kern \t@ypos
\hbox {\kern -\t@xpos
\box\t@xdbox % TeX text
\kern \t@xpos}%
\kern -\t@ypos\relax
}
% ===== Drawing scaling
% The units in any segment may be scaled arbitrarily. A unit scale is
% local to a segment but affects enclosed segments unless specifically
% overridden in that segment. In addition there is a segment scale. The
% overall scale is the product of the two scaling factors.
%
% Scaling is handled entirely on the TeX side, the PostScript side gets
% absolute pixel coordinates.
% Drawing units, e.g. "in" or "cm"
\def\drawdim #1 {\def\d@dim{#1\relax}}
% \u@nitsc - unit scale
% \s@egsc - segment scale
% \d@sc - drawing scale, product of the unit scale and segment scale
% Note that successive application of relative scale factors can lead
% to poor accuracy of the final scale factor. Each scale factor is
% represented to about 5 decimal digits after the decimal point.
\def\setunitscale #1 {\edef\u@nitsc{#1}%
\realmult \u@nitsc \s@egsc \d@sc}
\def\relunitscale #1 {\realmult {#1}\u@nitsc \u@nitsc
\realmult \u@nitsc \s@egsc \d@sc}
\def\setsegscale #1 {\edef\s@egsc {#1}%
\realmult \u@nitsc \s@egsc \d@sc}
\def\relsegscale #1 {\realmult {#1}\s@egsc \s@egsc
\realmult \u@nitsc \s@egsc \d@sc}
% ===== Drawing segments
% The position is restored after a segment.
% Segments use TeX grouping on the TeX side and gsave/grestore on the
% PostScript side to keep changes local. On the TeX side segments have
% (0 0) as the initial point, while the PostScript side sees no scale
% changes or translations.
\def\bsegment {\ifp@ath
\f@lushbs
\f@lushmove
\fi
\begingroup
\x@segoffpix=\x@pix
\y@segoffpix=\y@pix
\setsegscale 1
\global\advance \d@bs by 1\relax}
\def\esegment {\endgroup
\ifnum \d@bs=0
\writetx {es}%
\else
\global\advance \d@bs by -1
\fi}
% Save a position
% Save each coordinate as the macro "*name". The macro is defined to
% be the pixel coordinate value.
\def\savecurrpos (#1 #2){\getsympos (#1 #2)\a@rgx\a@rgy
\s@etcsn \a@rgx {\the\x@pix}%
\s@etcsn \a@rgy {\the\y@pix}}
\def\savepos (#1 #2)(#3 #4){\getpos (#1 #2)\a@rgx\a@rgy
\coordtopix \a@rgx \t@pixa
\advance \t@pixa by \x@segoffpix
\coordtopix \a@rgy \t@pixb
\advance \t@pixb by \y@segoffpix
\getsympos (#3 #4)\a@rgx\a@rgy
\s@etcsn \a@rgx {\the\t@pixa}%
\s@etcsn \a@rgy {\the\t@pixb}}
% ===== Line parameters
% The following parameters apply to subsequent lines. Each of these
% commands invokes a stroke to draw the previous line segments,
% establishes the current point and then changes the line parameter.
% The parameters are kept local by the PostScript gsave/grestore
% mechanism. We use \writetx here, instead of \writeps, since we
% do not want to flush any moves.
\def\linewd #1 {\coordtopix {#1}\t@pixa
\f@lushbs
\writetx {\the\t@pixa\space sl}}
\def\setgray #1 {\f@lushbs
\writetx {#1 sg}}
\def\lpatt (#1){\listtopix (#1)\p@ixlist
\f@lushbs
\writetx {[\p@ixlist] sd}}
% ===== Line drawing
% PostScript uses the concept of a path consisting of line segments.
% In this interface to PostScript, paths are continuous across the
% beginning of segments. Paths terminate at the end of a segment with
% an implicit move. In addition, paths are both terminated and started
% with a move. There is a current point at all times, starting with
% initial position (0,0).
\def\lvec (#1 #2){\getpos (#1 #2)\a@rgx\a@rgy
\s@etpospix \a@rgx \a@rgy
\writeps {\the\x@pix\space \the\y@pix\space lv}}
\def\rlvec (#1 #2){\getpos (#1 #2)\a@rgx\a@rgy
\r@elpospix \a@rgx \a@rgy
\writeps {\the\x@pix\space \the\y@pix\space lv}}
\def\move (#1 #2){\getpos (#1 #2)\a@rgx\a@rgy
\s@etpospix \a@rgx \a@rgy
\s@avemove \x@pix \y@pix}
\def\rmove (#1 #2){\getpos (#1 #2)\a@rgx\a@rgy
\r@elpospix \a@rgx \a@rgy
\s@avemove \x@pix \y@pix}
% ===== Circles, ellipses and arcs
% Note that arcs do not update the size of the drawing.
% \lcir, stroked circle
% r:#1 - radius
% \fcir, filled circle
% f:#1 - fill gray level, 0 is black, 1 is white
% r:#2 - radius
% \ellip, stroked ellipse
% rx:#1 - x radius
% ry:#2 - y radius
% \fellip, filled ellipse
% f:#1 - fill gray level, 0 is black, 1 is white
% rx:#1 - x radius
% ry:#2 - y radius
% \larc, stroked counterclockwise arc, with the present position being
% the center of the arc. Only the arc is drawn (not the line
% joining the center to the beginning of the arc)
% r:#1 - radius
% sd:#2 - start angle (degrees)
% ed:#3 - end angle (degrees)
\def\lcir r:#1 {\coordtopix {#1}\t@pixa
\writeps {\the\t@pixa\space cr}%
\r@elupd \t@pixa \t@pixa
\r@elupd {-\t@pixa}{-\t@pixa}}
\def\fcir f:#1 r:#2 {\coordtopix {#2}\t@pixa
\writeps {\the\t@pixa\space #1 fc}%
\r@elupd \t@pixa \t@pixa
\r@elupd {-\t@pixa}{-\t@pixa}}
\def\lellip rx:#1 ry:#2 {\coordtopix {#1}\t@pixa
\coordtopix {#2}\t@pixb
\writeps {\the\t@pixa\space \the\t@pixb\space el}%
\r@elupd \t@pixa \t@pixb
\r@elupd {-\t@pixa}{-\t@pixb}}
\def\fellip f:#1 rx:#2 ry:#3 {\coordtopix {#2}\t@pixa
\coordtopix {#3}\t@pixb
\writeps {\the\t@pixa\space \the\t@pixb\space #1 fe}%
\r@elupd \t@pixa \t@pixb
\r@elupd {-\t@pixa}{-\t@pixb}}
\def\larc r:#1 sd:#2 ed:#3 {\coordtopix {#1}\t@pixa
\writeps {\the\t@pixa\space #2 #3 ar}}
% ===== Fill commands
% The form here completes a path with a closepath, applies the fill,
% starts a newpath and moves to the current point. The gray level has
% 0 as black and 1 as white. The current path is terminated.
\def\ifill f:#1 {\writeps {#1 fl}} % Fill only
\def\lfill f:#1 {\writeps {#1 fp}} % Stroke and fill
% ===== Text
% TeX text superimposed on the drawing
% \htext (x y){text} or \htext {text}
% \vtext (x y){text} or \vtext {text}
% \rtext td:angle (x y){text} or \rtext td:angle {text}
% \textref h:#1 v:#2
% The TeX text (or whatever) is placed in an \hbox. The box is rotated
% for vertical text. The text is placed on the drawing at the specified
% location (coordinates specified) or the current location (coordinates
% not specified). The text reference point is placed at that location.
% For the purposes of determining the drawing size, the text box is of
% zero size.
% Horizontal text
% Check if the argument starts with a left parenthesis
\def\htext #1{\def\testit {#1}%
\ifx \testit\l@paren
\let\t@cmd=\h@move
\else
\let\t@cmd=\h@text
\fi
\t@cmd {#1}}
% Rotated text
\def\rtext td:#1 #2{\def\testit {#2}%
\ifx \testit\l@paren
\let\t@cmd=\r@move
\else
\let\t@cmd=\r@text
\fi
\t@cmd td:#1 {#2}}
% Vertical text
\def\vtext {\rtext td:90 }
% Text reference point
% h:#1 text horizontal reference point - L, C or R
% v:#2 text vertical reference point - T, C or B
\def\textref h:#1 v:#2 {\ifx #1R%
\edef\l@stuff {\hss}\edef\r@stuff {}%
\else
\ifx #1C%
\edef\l@stuff {\hss}\edef\r@stuff {\hss}%
\else % default L
\edef\l@stuff {}\edef\r@stuff {\hss}%
\fi
\fi
\ifx #2T%
\edef\t@stuff {}\edef\b@stuff {\vss}%
\else
\ifx #2C%
\edef\t@stuff {\vss}\edef\b@stuff {\vss}%
\else % default B
\edef\t@stuff {\vss}\edef\b@stuff {}%
\fi
\fi}
% ===== Arrow vectors
\def\avec (#1 #2){\getpos (#1 #2)\a@rgx\a@rgy
\s@etpospix \a@rgx \a@rgy
\writeps {\the\x@pix\space \the\y@pix\space (\a@type) %
\the\a@lenpix\space \the\a@widpix\space av}}
\def\ravec (#1 #2){\getpos (#1 #2)\a@rgx\a@rgy
\r@elpospix \a@rgx \a@rgy
\writeps {\the\x@pix\space \the\y@pix\space (\a@type) %
\the\a@lenpix\space \the\a@widpix\space av}}
% Arrowhead size
% l:#1 - length of the arrowhead
% w:#2 - width of the base of the arrowhead
\def\arrowheadsize l:#1 w:#2 {\coordtopix{#1}\a@lenpix
\coordtopix{#2}\a@widpix}
% Arrowhead type
% t:#1 - arrowhead type, F filled triangle (using current gray level)
% T empty closed triangle
% W white filled triangle
% V Vee shape, at the end of the vector
% H (or other character) Vee shape, vector stops
% short of the Vee
\def\arrowheadtype t:#1 {\edef\a@type{#1}}
% ===== Bezier curve
% The initial point is assumed to be the current point. Only the last
% coordinate affects the size of the plot.
\def\clvec (#1 #2)(#3 #4)(#5 #6)%
{\getpos (#1 #2)\a@rgx\a@rgy
\coordtopix \a@rgx\t@pixa
\advance \t@pixa by \x@segoffpix
\coordtopix \a@rgy\t@pixb
\advance \t@pixb by \y@segoffpix
\getpos (#3 #4)\a@rgx\a@rgy
\coordtopix \a@rgx\t@pixc
\advance \t@pixc by \x@segoffpix
\coordtopix \a@rgy\t@pixd
\advance \t@pixd by \y@segoffpix
\getpos (#5 #6)\a@rgx\a@rgy
\s@etpospix \a@rgx \a@rgy
\writeps {\the\t@pixa\space \the\t@pixb\space
\the\t@pixc\space \the\t@pixd\space
\the\x@pix\space \the\y@pix\space cv}}
% ===== Draw the bounding box
\def\drawbb {\bsegment
\drawdim bp
\linewd 0.24 % line width 1/300 inch = 0.24 bp
\setunitscale {\p@sfactor}
\writeps {\the\xminpix\space \the\yminpix\space mv}%
\writeps {\the\xminpix\space \the\ymaxpix\space lv}%
\writeps {\the\xmaxpix\space \the\ymaxpix\space lv}%
\writeps {\the\xmaxpix\space \the\yminpix\space lv}%
\writeps {\the\xminpix\space \the\yminpix\space lv}%
\esegment}
% ===============================================================
% ===== Utility macros used by TeXdraw ==========================
% ===== Decode coordinates
% Get coordinates
% This macro is used to get two arguments separated by a blank, with
% possible leading and trailing blanks. Symbolic coordinates are
% converted to user coordinates.
% (#1 #2) - coordinates
% #3 - macro name to receive the x-coordinate value
% #4 - macro name to receive the y-coordinate value
\def\getpos (#1 #2)#3#4{\g@etargxy #1 #2 {} \\#3#4%
\c@heckast #3%
\ifa@st
\g@etsympix #3\t@pixa
\advance \t@pixa by -\x@segoffpix
\pixtocoord \t@pixa #3%
\fi
\c@heckast #4%
\ifa@st
\g@etsympix #4\t@pixa
\advance \t@pixa by -\y@segoffpix
\pixtocoord \t@pixa #4%
\fi}
% Get symbolic coordinate names
% (#1 #2) - symbolic coordinates
% #3 - macro name to receive the symbolic x coordinate name
% #4 - macro name to receive the symbolic y coordinate name
\def\getsympos (#1 #2)#3#4{\g@etargxy #1 #2 {} \\#3#4%
\c@heckast #3%
\ifa@st \else
\t@xderror {TeXdraw: invalid symbolic coordinate}%
\fi
\c@heckast #4%
\ifa@st \else
\t@xderror {TeXdraw: invalid symbolic coordinate}%
\fi}
% ===== Convert a list of values to pixel values
% (#1) - blank separated list of values in user coordinates
% #2 - macro name to receive the blank separated list of pixel values
\def\listtopix (#1)#2{\def #2{}%
\edef\l@ist {#1 }% % append a blank to the string
\m@oretrue
\loop
\expandafter\g@etitem \l@ist \\\a@rgx\l@ist
\a@pppix \a@rgx #2%
\ifx \l@ist\empty
\m@orefalse
\fi
\ifm@ore
\repeat}
% ===== Real multiplication
% This function uses the property that a box dimension may be scaled by
% a real value. The values are converted to dimensions in units of pt.
% This choice gives us a reasonable dynamic range. The final step is to
% clean off the "pt" on the resulting dimension. Note that these are fixed
% point operations with each operand represented to an accuracy of about 5
% decimal places.
% Note we must use magnified points not "true" points, since the answer is
% expressed in magnified points. The result will be calculated in the same
% manner no matter what the magnification is.
% #1 and #2 are multiplicands
% #3 macro name to capture the real result
\def\realmult #1#2#3{\dimen0=#1pt
\dimen2=#2\dimen0
\edef #3{\expandafter\c@lean\the\dimen2}}
% ===== Divide integers, real result
% #1 integer numerator value
% #2 integer denominator (divisor) value
% #3 macro name to capture the real result
\def\intdiv #1#2#3{\t@counta=#1
\t@countb=#2
% Limitations: #1 must be negatable, i.e. it must not be the largest
% magnitude negative number
% #2 must be able to be multiplied by 2 without overflow
% Calculate a*65536/b where the factor 65536 converts from pt to sp.
% This operation can also be interpretated as an extended precision
% numerator divided by the denominator. The scheme used is basically a
% long division, except that it is bootstrapped by an integer divide.
% The computations are carried out with positive numerator and
% denominator, with the appropriate restoration of sign at the end.
% \t@counta == remainder, r, initially set to a
% \t@countb == denominator, b
% \t@countc == quotient, q
% \t@countd == +1, a and b have the same sign
% -1, a and b have opposite signs
% \t@counte == temporary register
\ifnum \t@countb<0
\t@counta=-\t@counta
\t@countb=-\t@countb
\fi
\t@countd=1 % record the sign
\ifnum \t@counta<0
\t@counta=-\t@counta
\t@countd=-1
\fi
% % q=a/b, r=a-q*b
\t@countc=\t@counta \divide \t@countc by \t@countb
\t@counte=\t@countc \multiply \t@counte by \t@countb
\advance \t@counta by -\t@counte
\t@counte=-1
\loop
\advance \t@counte by 1
\ifnum \t@counte<16 % loop 16 times
\multiply \t@countc by 2 % q=2q
\multiply \t@counta by 2 % r=2r
\ifnum \t@counta<\t@countb \else % if ( r >= b )
\advance \t@countc by 1 % q=q+1
\advance \t@counta by -\t@countb % r=r-b
\fi
\repeat
\divide \t@countb by 2 % rounding
\ifnum \t@counta<\t@countb % if ( r >= b/2 ) q=q+1
\advance \t@countc by 1
\fi
\ifnum \t@countd<0 % restore the sign
\t@countc=-\t@countc
\fi
\dimen0=\t@countc sp % express as a dimension
\edef #3{\expandafter\c@lean\the\dimen0}}
% ===============================================================
% ===== Internal TeXdraw macros =================================
% ===== Macros for converting between dimensions and units
% Convert drawing units (coordinate value, scaled by the unit scale and
% segment scale) to pixels. We use rounding to get more accurate results.
% #1 dimension in drawing units
% #2 count in pixels (returned into a count)
\def\coordtopix #1#2{\dimen0=#1\d@dim
\dimen2=\d@sc\dimen0
\t@counta=\dimen2 % scaled dimension in sp
\t@countb=\s@ppix
\divide \t@countb by 2
\ifnum \t@counta<0 % rounding
\advance \t@counta by -\t@countb
\else
\advance \t@counta by \t@countb
\fi
\divide \t@counta by \s@ppix
#2=\t@counta}
% Convert from absolute pixels to relative scaled coordinates
% #1 - input integer pixel value
% #2 - macro name to receive the character string corresponding to the
% floating point coordinate value
\def\pixtocoord #1#2{\t@counta=#1%
\multiply \t@counta by \s@ppix
\dimen0=\d@sc\d@dim
\t@countb=\dimen0
\intdiv \t@counta \t@countb #2}
% Convert pixels to TeX dimensions.
% #1 - input integer pixel value
% #2 - returned dimension (returned into a dimension register)
\def\pixtodim #1#2{\t@countb=#1%
\multiply \t@countb by \s@ppix
#2=\t@countb sp\relax}
% Convert pixels to (integer) bp units
% #1 - input pixel value
% #2 - integer value, returned as a macro definition
\def\pixtobp #1#2{\dimen0=\p@sfactor pt
\t@counta=\dimen0
\multiply \t@counta by #1%
\ifnum \t@counta < 0 % rounding
\advance \t@counta by -32768
\else
\advance \t@counta by 32768
\fi
\divide \t@counta by 65536
\edef #2{\the\t@counta}}
% ===== Allocations for registers and counts
% == Temporary count registers
\newcount\t@counta \newcount\t@countb % Use at lowest levels
\newcount\t@countc \newcount\t@countd
\newcount\t@counte
\newcount\t@pixa \newcount\t@pixb % Use for pixel values
\newcount\t@pixc \newcount\t@pixd
% == Temporary dimension registers
\newdimen\t@xpos \newdimen\t@ypos
% == Position and parameter registers
% The minimum and maximum extent in the X and Y direction in pixel units
% (updated globally to reach outside segments)
\newcount\xminpix \newcount\xmaxpix
\newcount\yminpix \newcount\ymaxpix
% == Arrowhead parameters
\newcount\a@lenpix \newcount\a@widpix
% == Absolute pixel positions
\newcount\x@pix \newcount\y@pix
\newcount\x@segoffpix \newcount\y@segoffpix
\newcount\x@savepix \newcount\y@savepix
% == Conversion factor
\newcount\s@ppix % sp/pixel
% == Pending segments count
\newcount\d@bs
% == Counter to form unique file names
\newcount\t@xdnum
\global\t@xdnum=0
% == TeXdraw box
\newbox\t@xdbox
% == Output stream number for the PostScript file
\newwrite\drawfile
% == \newif
\newif\ifm@pending
\newif\ifp@ath
\newif\ifa@st
\newif\ifm@ore
\newif \ift@extonly
\newif\ifp@osinit
% == \newtoks
\newtoks\everytexdraw
% ===== Character definitions
\def\l@paren{(}
\def\a@st{*}
% ===== Special character macros
% Need to be able to insert "%", "{" and "}" characters into the
% PostScript file.
% Define macros which have these characters with category "other".
% We will assume that these characters have the standard meanings -
% after all, we use comments and braces in this code.
\catcode`\%=12
\def\p@b {%!} \def\p@p {%%}
\catcode`\%=14
\catcode`\{=12 \catcode`\}=12 \catcode`\u=1 \catcode`\v=2
\def\l@br u{v \def\r@br u}v
\catcode `\{=1 \catcode`\}=2 \catcode`\u=11 \catcode`\v=11
% ===== Pixel conversion factors
% The position is kept as an integer value (count). It is set to a
% resolution corresponding to 300 units/inch. We refer to them as pixels,
% but in fact the resolution is just that: movements are quantized to lie
% on a grid with that resolution.
% Using pixel units which correspond to the actual resolution of the device
% has advantages in that all horizontal and vertical lines then will be
% drawn with the same line thickness. In addition the coordinates are
% then integer values (no decimal point or leading zeros) which leads
% to a more compact PostScript file.
% The following macro sets the conversion from PostScript units (bp) to the
% integer units (pixels). The file inclusion \special environment in the
% PostScript driver restores the context to default PostScript values
% (bp or 72/in and origin in the lower lefthand corner). A scaling value
% of 0.24 converts to 300/inch. Note that the PostScript commands written
% to the temporary PostScript file do not depend on the TeX magnification
% in effect. Magnification should be handled by the dvi to PostScript
% driver at the time that the file is included in the output.
% Calculate the conversion factors
% Let s@ppix = sp/pixel = u / p, where u = sp/unit and p = pix/unit (both
% integer values).
% We calculate s@ppix as
% s@ppix = [ (u+0.5p)/p ]
% We also calculate the PostScript scale factor bp/pixel
% Let b = sp/bp. We want p@sfactor = s@ppix/b. For 300 pixels/inch, this
% gives p@sfactor=0.24. Using rounding
% p@sfactor = [ (s@ppix+0.5b)/b ] .
% To carry out the arithmetic, we will operate in sp units (integers) and
% generate the answer in pt units (multiplying by sp/pt). This result will
% expressed as a character string representing a real number after the "pt"
% designator is stripped off.
{\catcode`\p=12 \catcode`\t=12
\gdef\c@lean #1pt{#1}}
\def\sppix#1/#2 {\dimen0=1#2 \s@ppix=\dimen0
\t@counta=#1%
\divide \t@counta by 2
\advance \s@ppix by \t@counta
\divide \s@ppix by #1% % \s@ppix available
\t@counta=\s@ppix
\multiply \t@counta by 65536 % 1 pt = 65536 sp
\advance \t@counta by 32891 % 0.5 bp = 32890.88 sp
\divide \t@counta by 65782 % 1 bp = 65781.76 sp
\dimen0=\t@counta sp
\edef\p@sfactor {\expandafter\c@lean\the\dimen0}}
% ===== Low level coordinate decoding macros
% Get two values, separated by a blank
% Invoke as \g@etargxy <stuff> {} \\\ma\mb
\def\g@etargxy #1 #2 #3 #4\\#5#6{\def #5{#1}%
\ifx #5\empty
\g@etargxy #2 #3 #4 \\#5#6% leading blank
\else
\def #6{#2}%
\def\a@rg {#3}%
\ifx \a@rg\empty \else
\t@xderror {TeXdraw: invalid coordinate}%
\fi
\fi}
% Check for a leading asterisk
% Sets \a@stfalse or \a@sttrue, test with \ifa@st
\def\c@heckast #1{\expandafter
\c@heckastll #1\\}
\def\c@heckastll #1#2\\{\def\testit {#1}%
\ifx \testit\a@st
\a@sttrue
\else
\a@stfalse
\fi}
% Decode a symbolic coordinate
% Pixel value returned to a count
\def\g@etsympix #1#2{\expandafter
\ifx \csname #1\endcsname \relax
\t@xderror {TeXdraw: undefined symbolic coordinate}%
\fi
#2=\csname #1\endcsname}
% Set a macro named #1 to have value #2
\def\s@etcsn #1#2{\expandafter
\xdef\csname#1\endcsname {#2}}
% ===== Low level list decoding macros
% Pick off the first item -> #3, rest of string -> #4
\def\g@etitem #1 #2\\#3#4{\edef #4{#2}\edef #3{#1}}
\def\a@pppix #1#2{\edef\a@rg {#1}%
\ifx \a@rg\empty \else
\coordtopix {#1}\t@pixa
\ifx #2\empty
\edef #2{\the\t@pixa}%
\else
\edef #2{#2 \the\t@pixa}%
\fi
\fi}
% ===== Macros for updating the position
% Calculate the position in pixels and update the maximum excursions
\def\s@etpospix #1#2{\coordtopix {#1}\x@pix
\advance \x@pix by \x@segoffpix
\coordtopix {#2}\y@pix
\advance \y@pix by \y@segoffpix
\u@pdateminmax \x@pix \y@pix}
\def\r@elpospix #1#2{\coordtopix {#1}\t@pixa
\advance \x@pix by \t@pixa
\coordtopix {#2}\t@pixa
\advance \y@pix by \t@pixa
\u@pdateminmax \x@pix \y@pix}
\def\r@elupd #1#2{\t@counta=\x@pix
\advance\t@counta by #1%
\t@countb=\y@pix
\advance\t@countb by #2%
\u@pdateminmax \t@counta \t@countb}
\def\u@pdateminmax #1#2{\ifnum #1>\xmaxpix
\global\xmaxpix=#1%
\fi
\ifnum #1<\xminpix
\global\xminpix=#1%
\fi
\ifnum #2>\ymaxpix
\global\ymaxpix=#2%
\fi
\ifnum #2<\yminpix
\global\yminpix=#2%
\fi}
% ===== Save moves / flush moves
% A TeXdraw segment which generates only TeX text uses only move, begin
% segment and end segment commands. The goal is to avoid writing out
% empty segments for such cases. To this end, moves are held back and
% only written out if necessary to set the position or terminate a path.
% Also in this way, a TeXdraw drawing which generates only TeX text will
% not generate a PostScript file.
% Two flags are used. Both flags are local to a segment.
% - move pending: Set when a move has been invoked but the move command
% has not been written out to the PostScript file.
% - path in progress: Set when a PostScript path has been started but the
% path has not been terminated and stroked.
% (1) Moves are kept back. Using TeX's groups, a local flag and local
% position registers are used to keep track of whether the latest
% move applicable to a given segment has been written out or not. In
% effect there is a stack of pending moves, one for each level of
% segment nesting.
% (2) At the beginning of a segment, if a PS path is in progress and a
% a move is pending, the move is written out, terminating the path
% and stroking the path. This is done to ensure that the path is
% stroked before lines and/or fills are executed in the segment.
% (3) At the beginning of a segment, if a PS path is not in progress,
% any pending moves are kept back. Effectively, the move will be
% transferred into the segment. It will be written out only when
% the position needs to be updated for some other command. Such
% moves which are transferred into segments may have to be repeated
% outside the segment. The move pending flag will be restored to
% the value outside the segment on exit from the segment.
% (4) A begin segment command is not written out, but instead a global
% segment backlog counter is incremented. The backlog of begin
% segment commands is written out when a drawing command is
% encountered.
% The effect of the above on the TeXdraw commands is as follows.
% (a) move:
% - set the current position
% - record the position of the saved move
% - set the move pending flag
% (b) begin segment:
% - if a path is in progress
% - if a move is pending
% - if there is a backlog of segments
% - write out enough begin segments to clear the backlog
% - write out the pending move
% - reset the move pending flag (local to the containing segment,
% but affects inferior segments)
% - reset the path in progress flag
% - increment the segment backlog counter
% - begin a group
% (c) end segment:
% - end a group
% - if there is no backlog of segments
% - write an end segment command
% - if there is a backlog of segments
% - decrement the backlog counter, thereby omitting an empty
% empty segment.
% - the move pending flag and path in progress flag are automatically
% restored on leaving the TeX group
% (d) text:
% - create a text box
% (e) line parameters:
% - if there is a backlog of segments
% - write out enough begin segments to clear the backlog
% - clear the path in progress flag
% - write the PS command changing the line parameter
% (f) other drawing commands:
% - update the current position
% - if there is a backlog of segments
% - write out enough begin segments to clear the backlog
% - if there is a pending move
% - write out the pending move
% - reset the move pending flag (local to this segment, but affects
% inferior segments)
% - set the path in progress flag
% - write the drawing command
% Notes:
% (1) The es PS command strokes the path at the end of a segment to
% ensure that the correct line parameters are used for the segment.
% The path before the corresponding bs command is restored and
% continued.
% (2) The \f@lushbs and \f@lushmove commands must be invoked before each
% drawing command written to the PS file. The macro \writeps includes
% these operations.
% Another awkward business has to do with initialization. We want a
% default (0 0) initial position so that the user can draw vectors
% immediately. However, if the user specifies another move before
% beginning to draw, that position should be the initial position. The
% importance of this initial position is that the determination of the
% maximum excursion must take this value into account. We handle the
% initialization in the \s@avemove and \f@lushmove macros. The macro
% \ifp@osinit indicates whether the next move should be captured as the
% initial values for \xminpix, \yminpix, \xmaxpix, and \ymaxpix. However,
% if a \f@lushmove is invoked, then we assume that the appropriate initial
% values have already been set. The "mv" command in PostScript is defined
% to stroke the current path (if any) and move to the pixel coordinates
% specified.
% Note that \m@pendingtrue and \m@pendingfalse define the flag locally.
% In addition, \x@savepix and \y@savepix are local variables. We make
% use of the fact that the values of the flag and positions propagate
% down to inferior segments but not up to superior segments. This
% behaviour Is consistent with the gsave/grestore operation on the
% PostScript side.
\def\s@avemove #1#2{\x@savepix=#1\y@savepix=#2%
\m@pendingtrue
\ifp@osinit \else
\global\p@osinittrue
\global\xminpix=\x@savepix \global\yminpix=\y@savepix
\global\xmaxpix=\x@savepix \global\ymaxpix=\y@savepix
\fi}
\def\f@lushmove {\global\p@osinittrue
\ifm@pending
\writetx {\the\x@savepix\space \the\y@savepix\space mv}%
\m@pendingfalse
\p@athfalse
\fi}
% ===== Flush begin segment
% \f@lushbs flushes any saved up \bsegments. Some of these may be
% redundant, but we cannot know without looking ahead beyond the
% \esegment.
\def\f@lushbs {\loop
\ifnum \d@bs>0
\writetx {bs}%
\global\advance \d@bs by -1
\repeat}
% ===== Internal text macros
% Horizontal text, use only 3 levels of box nesting here
\def\h@move #1#2 #3)#4{\move (#2 #3)%
\h@text {#4}}
\def\h@text #1{\pixtodim \x@pix \t@xpos
\pixtodim \y@pix \t@ypos
\vbox to 0pt{\normalbaselines
\t@stuff
\kern -\t@ypos
\hbox to 0pt{\l@stuff
\kern \t@xpos
\hbox {#1}%
\kern -\t@xpos
\r@stuff}%
\kern \t@ypos
\b@stuff\relax}}
% Rotated text
% Uses 5 levels of box nesting here (so that the text reference point
% is that <before> rotation). This was done so that the reference point
% definition makes sense with arbitrary angle rotation. The text is
% rotated with respect to the text reference point. The result is zero
% sized. These macros generate in-line PostScript.
% #1 - rotation angle in degrees
% #2 - text to be rotated
\def\r@move td:#1 #2#3 #4)#5{\move (#3 #4)%
\r@text td:#1 {#5}}
\def\r@text td:#1 #2{\vbox to 0pt{\pixtodim \x@pix \t@xpos
\pixtodim \y@pix \t@ypos
\kern -\t@ypos
\hbox to 0pt{\kern \t@xpos
\rottxt {#1}{\z@sb {#2}}%
\hss}%
\vss}}
\def\z@sb #1{\vbox to 0pt{\normalbaselines
\t@stuff
\hbox to 0pt{\l@stuff \hbox {#1}\r@stuff}%
\b@stuff}}
% ===== Rotate text, in-line PostScript code
\ifx \rotatebox\@undefined
\def\rottxt #1#2{\bgroup
\special {ps: gsave currentpoint currentpoint translate
#1\space neg rotate
neg exch neg exch translate}%
#2%
\special {ps: currentpoint grestore moveto}%
\egroup}
\else
\let\rottxt=\rotatebox
\fi
% ===== Error message
% If not defined, use the plain TeX errmessage macro
\ifx \t@xderror\@undefined
\let\t@xderror=\errmessage
\fi
% ===== Default values
% These are reset each time TeXdraw is invoked
\def\t@exdrawdef {\sppix 300/in % 300 pixels/inch
\drawdim in % drawing units are inches
\edef\u@nitsc {1}% % unit scale 1 (has to be set
% before invoking \setsegscale)
\setsegscale 1 % segment scale 1
\arrowheadsize l:0.16 w:0.08
\arrowheadtype t:T
\textref h:L v:B }
% ===============================================================
% ===== PostScript file macros ==================================
% ===== Include the TeXdraw graphics
% The drawing in a box of appropriate size will be placed such that its
% lower left hand corner will be at the current TeX position.
\ifx \includegraphics\@undefined
\def\t@xdinclude [#1,#2][#3,#4]#5{%
\begingroup % keep definitions local
\message {<#5>}%
\leavevmode
\t@counta=-#1% % integer bounding box coordinates
\t@countb=-#2%
\setbox0=\hbox{%
\special {PSfile="#5"\space
hoffset=\the\t@counta\space voffset=\the\t@countb}}%
\t@ypos=#4 bp%
\advance \t@ypos by -#2 bp%
\t@xpos=#3 bp%
\advance \t@xpos by -#1 bp%
\dp0=0pt \ht0=\t@ypos \wd0=\t@xpos
\box0%
\endgroup}
\else
\let\t@xdinclude=\includegraphics
\fi
% Leave space without including a PS file
\def\t@xdempty [#1,#2][#3,#4]{%
\begingroup
\leavevmode
\setbox0=\hbox{}%
\t@ypos=#4 bp%
\advance \t@ypos by -#2 bp%
\t@xpos=#3 bp%
\advance \t@xpos by -#1 bp%
\dp0=0pt \ht0=\t@ypos \wd0=\t@xpos
\box0%
\endgroup}
% ===== Write to the PostScript file
% Macro to write PostScript commands to the temporary PostScript file
% To decrease the size of the PostScript file, moves are kept back to
% allow redundant multiple moves to be removed. In addition empty gsave/
% grestore pairs are not written. The PostScript file is not opened if
% TeXdraw has not generated any PostScript commands, i.e. it has produced
% only TeX text.
% \writeps : flushes the pending move to make sure things are positioned
% correctly and flushes pending begin segments before calling
% \writetx to write to the PostScript file
% \writetx : writes directly to the PostScript file. This version is used
% only for those commands which just change line parameters
% without drawing. This routine opens the file and writes the
% PS file header the first time it is called.
% \p@swr : lowest level direct write to the PostScript file
\def\writeps #1{\f@lushbs
\f@lushmove
\p@athtrue
\writetx {#1}}
\def\writetx #1{\p@sopen
\ifx\p@sfile\p@sundef \else
\p@swr {#1}%
\fi}
\def\p@swr #1{\immediate\write\drawfile {#1}}
% ===== Open/Close a PostScript file
% Open a PostScript file, write the definitions used by TeXdraw.
\xdef\p@sundef{UnDeFiNeD}
\def\p@sopen {%
\ifx\p@sfile\p@sundef
\p@sopenI
\fi
}
% The code has a hook to avoid generating the PS file under certain
% circumstances. The amsmath package sometimes sets an expression twice,
% once to measure it and again to actually typeset it. In the first case,
% \ifmeasuring@ is set to true. For that setting, the PS file is not
% generated.
\def\p@sopenI {%
\ifx\ifmeasuring@\iftrue \else % \ifmeasuring@ undefined or false
\global\advance \t@xdnum by 1
\ifnum \t@xdnum<10
\xdef \p@sfile{\jobname.ps\the\t@xdnum}%
\else
\xdef \p@sfile{\jobname.p\the\t@xdnum}%
\fi
\t@xdopen \p@sfile
\fi
}
\def\p@sclose {
\ifx\p@sfile\p@sundef \else
\t@xdclose
\fi
}
\def\t@xdopen #1{%
\immediate\openout\drawfile=#1%
\p@swr {\p@b PS-Adobe-3.0 EPSF-3.0}%
\p@swr {\p@p BoundingBox: (atend)}%
\p@swr {\p@p Title: TeXdraw drawing: #1}%
\p@swr {\p@p Pages: 1}%
\p@swr {\p@p Creator: \TeXdrawId}%
\p@swr {\p@p CreationDate: \the\year/\the\month/\the\day}%
\p@swr {50 dict begin}%
\p@swr {/mv {stroke moveto} def}%
\p@swr {/lv {lineto} def}%
\p@swr {/st {currentpoint stroke moveto} def}%
\p@swr {/sl {st setlinewidth} def}%
\p@swr {/sd {st 0 setdash} def}%
\p@swr {/sg {st setgray} def}%
\p@swr {/bs {gsave} def /es {stroke grestore} def}%
\p@swr {/fl \l@br gsave setgray fill grestore}%
\p@swr { currentpoint newpath moveto\r@br\space def}%
\p@swr {/fp {gsave setgray fill grestore st} def}%
\p@swr {/cv {curveto} def}%
\p@swr {/cr \l@br gsave currentpoint newpath 3 -1 roll 0 360 arc}%
\p@swr { stroke grestore\r@br\space def}%
\p@swr {/fc \l@br gsave setgray currentpoint newpath}%
\p@swr { 3 -1 roll 0 360 arc fill grestore\r@br\space def}%
\p@swr {/ar {gsave currentpoint newpath 5 2 roll arc stroke grestore} def}%
\p@swr {/el \l@br gsave /svm matrix currentmatrix def}%
\p@swr { currentpoint translate scale newpath 0 0 1 0 360 arc}%
\p@swr { svm setmatrix stroke grestore\r@br\space def}%
\p@swr {/fe \l@br gsave setgray currentpoint translate scale newpath}%
\p@swr { 0 0 1 0 360 arc fill grestore\r@br\space def}%
\p@swr {/av \l@br /hhwid exch 2 div def /hlen exch def}%
\p@swr { /ah exch def /tipy exch def /tipx exch def}%
\p@swr { currentpoint /taily exch def /tailx exch def}%
\p@swr { /dx tipx tailx sub def /dy tipy taily sub def}%
\p@swr { /alen dx dx mul dy dy mul add sqrt def}%
\p@swr { /blen alen hlen sub def}%
\p@swr { gsave tailx taily translate dy dx atan rotate}%
\p@swr { (V) ah ne {blen 0 gt {blen 0 lineto} if} {alen 0 lineto} ifelse}%
\p@swr { stroke blen hhwid neg moveto alen 0 lineto blen hhwid lineto}%
\p@swr { (T) ah eq {closepath} if}%
\p@swr { (W) ah eq {gsave 1 setgray fill grestore closepath} if}%
\p@swr { (F) ah eq {fill} {stroke} ifelse}%
\p@swr { grestore tipx tipy moveto\r@br\space def}%
\p@swr {\p@sfactor\space \p@sfactor\space scale}%
\p@swr {1 setlinecap 1 setlinejoin}%
\p@swr {3 setlinewidth [] 0 setdash}%
\p@swr {0 0 moveto}%
}
% Notes:
% - mv (move to) This command includes a stroke before the moveto. The
% stroke terminates a path and the move begins another path.
% - bs (begin segment) encloses a segment in a gsave/grestore to keep
% changes to line parameters local.
% - es (end segment) does a "stroke grestore" to make sure lines inside
% the segment use the line parameters local to that segment
% - ar (arc) The path is generated and stroked inside a gsave/grestore,
% leaving the current path intact.
% - cr (circle) The path is generated and stroked inside a gsave/grestore,
% leaving the current path intact.
% - fc (filled circle) The path is generated and filled inside a gsave/
% grestore, keeping the fill level local to the circle. The current
% path is left intact.
% - el (ellipse) The path is generated and stroked inside a gsave/grestore,
% leaving the current path intact. The elliptical path is defined
% with different x and y scaling, then stroked with default scaling
% to give a constant line thickness.
% - fe (filled ellipse) The path is generated and filled inside a gsave/
% grestore, leaving the current path intact.
% - fl (fill) The current path is closed and filled inside a gsave/restore,
% keeping the fill level local. A newpath terminates the path.
% - fp (fill path) The current path is closed and then filled inside a
% gsave/grestore. Finally the closed path is stroked, implicitly
% terminating the path.
% - av (arrow vector) The arrow vector is drawn inside a gsave/grestore.
% The line width and type are those currently in effect. After the
% grestore, the current path is continued with a move to the tip of
% the vector.
% ===== Close the PostScript file
% Write a trailer with the BoundingBox, close the file. Note that the
% BoundingBox may be larger than the commands in the PostScript file
% indicate. This is due to the fact that multiple move commands in
% a row are collapsed into a single move. The BoundingBox information
% includes the effect of the moves which were expunged.
\def\t@xdclose {%
\bgroup
\p@swr {stroke end showpage}%
\p@swr {\p@p Trailer:}%
\pixtobp \xminpix \l@lxbp \pixtobp \yminpix \l@lybp
\pixtobp \xmaxpix \u@rxbp \pixtobp \ymaxpix \u@rybp
\p@swr {\p@p BoundingBox: \l@lxbp\space \l@lybp\space
\u@rxbp\space \u@rybp}%
\p@swr {\p@p EOF}%
\egroup
\immediate\closeout\drawfile
}
% ===============================================================
\catcode`\@=\catamp
|