| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 
 | .PS
# Lyap.m4
threeD_init
scale = 1/1.2
viewaz = 30
viewel = 18
setview(viewaz,viewel)
Origin: Project(0,0,0)
#                             Components of view vector W
w1 = view3D1
w2 = view3D2
w3 = view3D3
#                             Shape factor of the ellipse on the xy plane
q = Cos(40)
#                             cost function
h = 0.5
c = 1
#                             The projected ellipse is (x/q)^2 + y^2 = c.
#                             The cost is v = c+h
define(`vs',`(`$2')*q*cos(`$1'),(`$2')*sin(`$1')')
define(`vp',`vs(`$1',`$2'),0')
define(`vx',`sum3D(vp(`$1',`$2'),0,0,h+(`$2')^2)')
#                             The gradient of v is (2x/q, 2y, -1) and the line
#                             separating front and back is W^T * grad(v) = 0
#                             This line intersects the projected ellipse at
#                             x1,y1 and x2,y2
  ap = w2^2*q^2/w1^2+1
  bp = -w2*w3*q^2/w1^2
  cp = w3^2*q^2/4/w1^2-c
  m = sqrt(bp^2-4*ap*cp)
  y1 = (-bp+m)/ap/2 ; x1 = (w3-2*y1*w2)*q/2/w1
  y2 = (-bp-m)/ap/2 ; x2 = (w3-2*y2*w2)*q/2/w1
  t1 = atan2(y1,x1)
  t2 = atan2(y2,x2)
  theta1 = min(t1,t2)
  theta2 = max(t1,t2)
#                             tangent curve
  nT = 11
  for i = 0 to nT do {
    y = y1 + (y2-y1)/nT*i
    theta = atan2(y,(w3-2*y*w2)*q/2/w1)
    r = y/sin(theta)
    T[i]: Project(vx(theta,r))
    }
#                             front and back parts of the top curve
  n = 12
  for i = 0 to n do {
    theta = theta1 + (theta2-theta1)/n*i
    F[i]: Project(vx(theta,c))
    Fp[i]: Project(vp(theta,c))
    }
  for i = 0 to n do {
    theta = theta2 + (theta1+twopi_-theta2)/n*i
    B[i]: Project(vx(theta,c))
    Bp[i]: Project(vp(theta,c))
    }
#                             trajectory
rotations = 1.55
nx = 7
thetas = 75*dtor_
thetaf = thetas - rotations*twopi_
rx = c*0.9
beta = exp(log(.5)/20)
define(`defX',` rx = `$5' ; np = np-1
  ts = `$1' ; tf = `$2'
  for i = 0 to `$3' do {
    tha = ts + (tf-ts)*i/(`$3')
    for thx = tha to -twopi_ by twopi_ do {}
    `$4'[i]: Project(vx(thx,rx))
    Xp[np]: Project(vp(thx,rx))
    np = np+1
    rx = beta*rx
    }')
np = 1
defX(thetas,theta1,nx,X1,rx)
defX(theta1,theta2-twopi_,nx,X2,rx/beta)
defX(theta2-twopi_,theta1-twopi_,nx,X3,rx/beta)
defX(theta1-twopi_,thetaf,5,X4,rx/beta)
#                             First draw the inside back
#                             B is the back curve
#                             T is the outline
ifpstricks(`
\psset{gradbegin=lightgray,gradend=darkgray,gradlines=1000}
\pscustom[fillstyle=gradient,gradmidpoint=0.7]{
  fitcurve(B,n)
  for i = 0 to nT do {TT[i]: T[nT-i] }
  fitcurve(TT,nT)
\relax} ',
` fitcurve(B,n)
  for i = 0 to nT do {TT[i]: T[nT-i] }
  fitcurve(TT,nT) ')
#                             Centre axis
thinlines_
line from Origin to Project(0,0,h)
#                             F[0] is the leftmost point of the front curve
line from F[0] to Fp[0]
#                             F[n] is the rightmost point of the front curve
line from F[n] to Fp[n]
thicklines_
#                             Now draw the outside front
ifpstricks(`
\newgray{gray1}{0.9}%
\newgray{gray2}{0.4}%
\psset{gradbegin=gray1,gradend=gray2,gradlines=1000}
\pscustom[linewidth=0pt,fillstyle=gradient,gradmidpoint=0.99]{
  fitcurve(F,n)
  fitcurve(T,nT)
\relax} ',
` shade(1,fitcurve(F,n)
  fitcurve(T,nT)) ')
#                             T is the limit curve of visibility
  fitcurve(T,nT)
#                             F is the top front
  fitcurve(F,n)
#                             Front and back projections of the top on xy
  fitcurve(Fp,n)
  fitcurve(Bp,n)
#                             The trajectory in pieces, to allow dashed parts
  fitcurve(X1,nx)
  fitcurve(X2,nx,dotted 0.025)
  fitcurve(X3,nx)
  fitcurve(X4,3,dotted 0.015)
  arca(from X4[4] to X4[3],ccw,0.3,<-)
#                             Projected trajectory
  np = np-2
  fitcurve(Xp,np-1)
  arca(from Xp[np] to Xp[np-2],ccw,0.18,<-)
  "$X(t)$" at Xp[np]-(2bp__,0) ljust
#                             Axes and vertical lines
thinlines_
  line from X1[0] to Xp[0]
  line from X4[4] to Xp[np]
arrow from Origin to Project(1.5,0,0)
"$x_1$" rjust below
arrow from Origin to Project(0,1.5,0)
"$x_2$" ljust
line dashed from Project(0,0,h) to F[n/2] chop 0 chop arrowht/4
arrow from F[n/2] to Project(0,0,2)
"$v(X)$" ljust
"`${0}$'" at Origin+(0,1 pt__) below
"$\Omega$" at Project(0,0.9*c,0)+(0,3bp__) above
"`$v(X) = c$'" at (Project(vp(100*dtor_,c)))+(2bp__,0) above ljust
.PE
 |