1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
.PS
# This is the source for a prototype xfig library of electric circuit
# elements. Each element is a compound xfig object with corners on grid points.
# Connection points (to which lines may be drawn) should also be on grid
# points.
#
# Processing postscript.m4 and this file thought dpic -r gives postscript
# output that can be read into CorelDraw and, probably, Adobe Illustrator.
#
log_init
gunit = 1/16 # default xfig grid dimension = (1/16) in
divert(-1)
define(`elen_',`8*gunit') # default 2-terminal element length
define(`dimen_',`8*gunit') # reference dimension for element bodies
define(`L_unit',`gunit') # logical gate grid size
define(`N_diam',1) # L_unit size of `not' circles
# grid round and chop
define(`g_round',`(int((`$1')/gunit+100000.5 )-100000)*gunit')
define(`g_chop', `(int((`$1')/gunit+100000.9999)-100000)*gunit')
# snap to grid
define(`g_snap',`(g_round((`$1').x),g_round((`$1').y))')
# Box containing an element. The element must be in a box that is
# intersected by a horizontal or vertical line from entry to exit.
define(`Xfigbox',`[ S: Here; `$1' ; F: Here
if S.y == F.y then { move from (max(S.x,F.x),F.y+g_chop(last[].n.y-F.y)) \
to (min(S.x,F.x),F.y-g_chop(F.y-last[].s.y)) } \
else { move from (F.x+g_chop(last[].e.x-F.x),max(S.y,F.y))\
to (F.x-g_chop(F.x-last[].w.x),min(S.y,F.y))
} ] ')
# Place compound object corners at grid intersections
define(`Below',
`with .nw at g_snap(ifelse(`$1',,`last []',`$1').sw)-(0,2*gunit)')
define(`Right',
`with .nw at g_snap(ifelse(`$1',,`last []',`$1').ne)+(2*gunit,0)')
# for debug
define(`prpos',`print (`$1').x/gunit,(`$1').y/gunit')
divert(0)dnl
[ [
rpoint_(up_ elen_)
A:Xfigbox( resistor )
Xfigbox( inductor(,W) ) Right
Xfigbox( inductor(,W,,M) ) Right
Xfigbox( inductor ) Right
Xfigbox( inductor(,,,M) ) Right
Xfigbox( capacitor(down_ elen_,C) ) Right
Xfigbox( capacitor ) Right
Xfigbox( diode(down_ elen_) ) Right
Xfigbox( diode(down_ elen_,Z) ) Right
Xfigbox( diode(down_ elen_,B) ) Right
Xfigbox( xtal ) Right
Xfigbox( down_ ; { [right_; ground] }; move down_ 3*gunit ) Right
Xfigbox( {move down_ gunit}; [right_; ground(,T)] ) Below
Xfigbox( move up_ 2*gunit; dot(at last move.c) ) Below
B:Xfigbox( source ) Below(A)
Xfigbox( source(,I) ) Right
Xfigbox( source(,AC) ) Right
Xfigbox( consource ) Right
Xfigbox( consource(,I) ) Right
Xfigbox( battery ) Right
Xfigbox( battery(,3) ) Right
Xfigbox( ebox ) Right
rpoint_(right_ elen_ from B)
C:Xfigbox( switch ) Below(B)
Xfigbox( switch(,,O) ) Below
D:Xfigbox( switch(,,C) ) Below
Xfigbox( amp(right_ elen_*10/8) ) with .nw at C.ne+(gunit,0)
D1:Xfigbox( delay ) Right
Xfigbox(define(`dimen_',dimen_*6/5)dnl
transformer(down_ 6*gunit,L)
define(`dimen_',`8*gunit') ) Right
define(`bi_tr_adj',`with .E at Here
line ifelse(`$1',,left,right) gunit*2/3 from last [].B')
define(`dimen_',`5/6*8*gunit') # Adjust transistors to grid
Xfigbox( [move right_ g_chop(29/10*gunit*2)
circle rad 29/10*gunit at last move] ) Right
up_
Xfigbox( {bi_tr bi_tr_adj}; move up_ gunit ) \
with .se at (g_round(D1.w.x),g_round(D.s.y))
Xfigbox( {bi_tr(,R) bi_tr_adj(R)}; move up_ gunit ) Right
Xfigbox( {bi_tr(,,P) bi_tr_adj}; move up_ gunit ) Right
Xfigbox( {bi_tr(,R,P) bi_tr_adj(R)}; move up_ gunit ) Right
define(`dimen_',15/16*8*gunit)
define(`fet_adj',`with .S at Here
line ifelse(`$1',,left,right) gunit*3/4 from last [].G')
define(`fet_move',`move up_ 5*gunit from last [].S-(0,gunit)')
E:Xfigbox( {j_fet fet_adj}; fet_move ) Below(D)
Xfigbox( {j_fet(,R) fet_adj(R)}; fet_move ) Right
Xfigbox( {j_fet(,,P,) fet_adj(R)}; fet_move ) Right
Xfigbox( {j_fet(,R,P,) fet_adj(R)}; fet_move ) Right
Xfigbox( {e_fet(,,,) fet_adj(R)}; fet_move ) Right
Xfigbox( {e_fet(,R,,) fet_adj(R)}; fet_move ) Right
F:Xfigbox( {e_fet(,,P,) fet_adj}; fet_move ) Below(E)
Xfigbox( {e_fet(,R,P,) fet_adj(R)}; fet_move ) Right
Xfigbox( {d_fet(,,,) fet_adj}; fet_move ) Right
Xfigbox( {d_fet(,R,,) fet_adj(R)}; fet_move ) Right
Xfigbox( {d_fet(,,P,) fet_adj}; fet_move ) Right
Xfigbox( {d_fet(,R,P,) fet_adj(R)}; fet_move ) Right
right_
G:Xfigbox( OR_gate(1) ) Below(F)
Xfigbox( NOR_gate ) Right
Xfigbox( XOR_gate ) Right
Xfigbox( NXOR_gate ) Right
# input lines for OR-like gates.
define(`OR_inlgth',`(-sqrt(OR_rad^2-G_hht^2)+sqrt(OR_rad^2-`$1'^2))*L_unit')
H:Xfigbox( [ {move right_ gunit}
{move from last move-svec_(0,G_hht) to last move+svec_(0,G_hht)}
{line right_ OR_inlgth(0)}
{line right_ OR_inlgth(2) from Here+svec_(0,2)}
{line same from Here-svec_(0,2)}
{line right_ OR_inlgth(1) from Here+svec_(0,1)}
{line same from Here-svec_(0,1)}] ) Below(G)
Xfigbox( [ {move right_ gunit}
{move from last move-svec_(0,G_hht) to last move+svec_(0,G_hht)}
{line right_ OR_inlgth(0)}
{line right_ OR_inlgth(2) from Here+svec_(0,2)}
{line same from Here-svec_(0,2)}] ) Right
Xfigbox( [ {move right_ gunit}
{move from last move-svec_(0,G_hht) to last move+svec_(0,G_hht)}
{line right_ OR_inlgth(2) from Here+svec_(0,2)}
{line same from Here-svec_(0,2)}] ) Right
Xfigbox( [ {move right_ gunit}
{move from last move-svec_(0,G_hht) to last move+svec_(0,G_hht)}
{line right_ OR_inlgth(0)}] ) Right
Xfigbox( AND_gate ) Right
Xfigbox( NAND_gate ) Right
Xfigbox( line right_ L_unit/2; BUFFER_gate ) Right
Xfigbox( line right_ L_unit/2; NOT_gate ) Right
# Deleted because of labels:
#right_
#textht = 10/72
#I:Xfigbox( FlipFlop(D) ) Below(H)
# Xfigbox( FlipFlop(T) ) Right
#J:Xfigbox( FlipFlop(RS) ) Below(I)
# Xfigbox( FlipFlop(JK) ) Right
]
box invis wid last [].wid+2*gunit ht last [].ht+2*gunit at last []
] with .sw at (1,1)
#print last [].wid,last[].ht
.PE
|