File: lcode.c

package info (click to toggle)
texlive-bin 2018.20181218.49446-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 186,920 kB
  • sloc: ansic: 873,264; cpp: 311,278; perl: 82,918; sh: 23,243; makefile: 8,590; lex: 4,939; python: 4,462; pascal: 3,813; java: 3,569; yacc: 2,901; tcl: 2,379; exp: 2,031; xml: 844; ruby: 678; lisp: 398; sed: 331; asm: 140; csh: 46; awk: 30
file content (1203 lines) | stat: -rw-r--r-- 34,304 bytes parent folder | download | duplicates (26)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
/*
** $Id: lcode.c,v 2.112 2016/12/22 13:08:50 roberto Exp $
** Code generator for Lua
** See Copyright Notice in lua.h
*/

#define lcode_c
#define LUA_CORE

#include "lprefix.h"


#include <math.h>
#include <stdlib.h>

#include "lua.h"

#include "lcode.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "llex.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lparser.h"
#include "lstring.h"
#include "ltable.h"
#include "lvm.h"


/* Maximum number of registers in a Lua function (must fit in 8 bits) */
#define MAXREGS		255


#define hasjumps(e)	((e)->t != (e)->f)


/*
** If expression is a numeric constant, fills 'v' with its value
** and returns 1. Otherwise, returns 0.
*/
static int tonumeral(const expdesc *e, TValue *v) {
  if (hasjumps(e))
    return 0;  /* not a numeral */
  switch (e->k) {
    case VKINT:
      if (v) setivalue(v, e->u.ival);
      return 1;
    case VKFLT:
      if (v) setfltvalue(v, e->u.nval);
      return 1;
    default: return 0;
  }
}


/*
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
** instruction is also OP_LOADNIL and ranges are compatible, adjust
** range of previous instruction instead of emitting a new one. (For
** instance, 'local a; local b' will generate a single opcode.)
*/
void luaK_nil (FuncState *fs, int from, int n) {
  Instruction *previous;
  int l = from + n - 1;  /* last register to set nil */
  if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */
    previous = &fs->f->code[fs->pc-1];
    if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
      int pfrom = GETARG_A(*previous);  /* get previous range */
      int pl = pfrom + GETARG_B(*previous);
      if ((pfrom <= from && from <= pl + 1) ||
          (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
        if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
        if (pl > l) l = pl;  /* l = max(l, pl) */
        SETARG_A(*previous, from);
        SETARG_B(*previous, l - from);
        return;
      }
    }  /* else go through */
  }
  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
}


/*
** Gets the destination address of a jump instruction. Used to traverse
** a list of jumps.
*/
static int getjump (FuncState *fs, int pc) {
  int offset = GETARG_sBx(fs->f->code[pc]);
  if (offset == NO_JUMP)  /* point to itself represents end of list */
    return NO_JUMP;  /* end of list */
  else
    return (pc+1)+offset;  /* turn offset into absolute position */
}


/*
** Fix jump instruction at position 'pc' to jump to 'dest'.
** (Jump addresses are relative in Lua)
*/
static void fixjump (FuncState *fs, int pc, int dest) {
  Instruction *jmp = &fs->f->code[pc];
  int offset = dest - (pc + 1);
  lua_assert(dest != NO_JUMP);
  if (abs(offset) > MAXARG_sBx)
    luaX_syntaxerror(fs->ls, "control structure too long");
  SETARG_sBx(*jmp, offset);
}


/*
** Concatenate jump-list 'l2' into jump-list 'l1'
*/
void luaK_concat (FuncState *fs, int *l1, int l2) {
  if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
  else if (*l1 == NO_JUMP)  /* no original list? */
    *l1 = l2;  /* 'l1' points to 'l2' */
  else {
    int list = *l1;
    int next;
    while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
      list = next;
    fixjump(fs, list, l2);  /* last element links to 'l2' */
  }
}


/*
** Create a jump instruction and return its position, so its destination
** can be fixed later (with 'fixjump'). If there are jumps to
** this position (kept in 'jpc'), link them all together so that
** 'patchlistaux' will fix all them directly to the final destination.
*/
int luaK_jump (FuncState *fs) {
  int jpc = fs->jpc;  /* save list of jumps to here */
  int j;
  fs->jpc = NO_JUMP;  /* no more jumps to here */
  j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
  luaK_concat(fs, &j, jpc);  /* keep them on hold */
  return j;
}


/*
** Code a 'return' instruction
*/
void luaK_ret (FuncState *fs, int first, int nret) {
  luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
}


/*
** Code a "conditional jump", that is, a test or comparison opcode
** followed by a jump. Return jump position.
*/
static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
  luaK_codeABC(fs, op, A, B, C);
  return luaK_jump(fs);
}


/*
** returns current 'pc' and marks it as a jump target (to avoid wrong
** optimizations with consecutive instructions not in the same basic block).
*/
int luaK_getlabel (FuncState *fs) {
  fs->lasttarget = fs->pc;
  return fs->pc;
}


/*
** Returns the position of the instruction "controlling" a given
** jump (that is, its condition), or the jump itself if it is
** unconditional.
*/
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  Instruction *pi = &fs->f->code[pc];
  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
    return pi-1;
  else
    return pi;
}


/*
** Patch destination register for a TESTSET instruction.
** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
** register. Otherwise, change instruction to a simple 'TEST' (produces
** no register value)
*/
static int patchtestreg (FuncState *fs, int node, int reg) {
  Instruction *i = getjumpcontrol(fs, node);
  if (GET_OPCODE(*i) != OP_TESTSET)
    return 0;  /* cannot patch other instructions */
  if (reg != NO_REG && reg != GETARG_B(*i))
    SETARG_A(*i, reg);
  else {
     /* no register to put value or register already has the value;
        change instruction to simple test */
    *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
  }
  return 1;
}


/*
** Traverse a list of tests ensuring no one produces a value
*/
static void removevalues (FuncState *fs, int list) {
  for (; list != NO_JUMP; list = getjump(fs, list))
      patchtestreg(fs, list, NO_REG);
}


/*
** Traverse a list of tests, patching their destination address and
** registers: tests producing values jump to 'vtarget' (and put their
** values in 'reg'), other tests jump to 'dtarget'.
*/
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
                          int dtarget) {
  while (list != NO_JUMP) {
    int next = getjump(fs, list);
    if (patchtestreg(fs, list, reg))
      fixjump(fs, list, vtarget);
    else
      fixjump(fs, list, dtarget);  /* jump to default target */
    list = next;
  }
}


/*
** Ensure all pending jumps to current position are fixed (jumping
** to current position with no values) and reset list of pending
** jumps
*/
static void dischargejpc (FuncState *fs) {
  patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
  fs->jpc = NO_JUMP;
}


/*
** Add elements in 'list' to list of pending jumps to "here"
** (current position)
*/
void luaK_patchtohere (FuncState *fs, int list) {
  luaK_getlabel(fs);  /* mark "here" as a jump target */
  luaK_concat(fs, &fs->jpc, list);
}


/*
** Path all jumps in 'list' to jump to 'target'.
** (The assert means that we cannot fix a jump to a forward address
** because we only know addresses once code is generated.)
*/
void luaK_patchlist (FuncState *fs, int list, int target) {
  if (target == fs->pc)  /* 'target' is current position? */
    luaK_patchtohere(fs, list);  /* add list to pending jumps */
  else {
    lua_assert(target < fs->pc);
    patchlistaux(fs, list, target, NO_REG, target);
  }
}


/*
** Path all jumps in 'list' to close upvalues up to given 'level'
** (The assertion checks that jumps either were closing nothing
** or were closing higher levels, from inner blocks.)
*/
void luaK_patchclose (FuncState *fs, int list, int level) {
  level++;  /* argument is +1 to reserve 0 as non-op */
  for (; list != NO_JUMP; list = getjump(fs, list)) {
    lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
                (GETARG_A(fs->f->code[list]) == 0 ||
                 GETARG_A(fs->f->code[list]) >= level));
    SETARG_A(fs->f->code[list], level);
  }
}


/*
** Emit instruction 'i', checking for array sizes and saving also its
** line information. Return 'i' position.
*/
static int luaK_code (FuncState *fs, Instruction i) {
  Proto *f = fs->f;
  dischargejpc(fs);  /* 'pc' will change */
  /* put new instruction in code array */
  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
                  MAX_INT, "opcodes");
  f->code[fs->pc] = i;
  /* save corresponding line information */
  luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
                  MAX_INT, "opcodes");
  f->lineinfo[fs->pc] = fs->ls->lastline;
  return fs->pc++;
}


/*
** Format and emit an 'iABC' instruction. (Assertions check consistency
** of parameters versus opcode.)
*/
int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
  lua_assert(getOpMode(o) == iABC);
  lua_assert(getBMode(o) != OpArgN || b == 0);
  lua_assert(getCMode(o) != OpArgN || c == 0);
  lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
  return luaK_code(fs, CREATE_ABC(o, a, b, c));
}


/*
** Format and emit an 'iABx' instruction.
*/
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
  lua_assert(getCMode(o) == OpArgN);
  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  return luaK_code(fs, CREATE_ABx(o, a, bc));
}


/*
** Emit an "extra argument" instruction (format 'iAx')
*/
static int codeextraarg (FuncState *fs, int a) {
  lua_assert(a <= MAXARG_Ax);
  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
}


/*
** Emit a "load constant" instruction, using either 'OP_LOADK'
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
** instruction with "extra argument".
*/
int luaK_codek (FuncState *fs, int reg, int k) {
  if (k <= MAXARG_Bx)
    return luaK_codeABx(fs, OP_LOADK, reg, k);
  else {
    int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
    codeextraarg(fs, k);
    return p;
  }
}


/*
** Check register-stack level, keeping track of its maximum size
** in field 'maxstacksize'
*/
void luaK_checkstack (FuncState *fs, int n) {
  int newstack = fs->freereg + n;
  if (newstack > fs->f->maxstacksize) {
    if (newstack >= MAXREGS)
      luaX_syntaxerror(fs->ls,
        "function or expression needs too many registers");
    fs->f->maxstacksize = cast_byte(newstack);
  }
}


/*
** Reserve 'n' registers in register stack
*/
void luaK_reserveregs (FuncState *fs, int n) {
  luaK_checkstack(fs, n);
  fs->freereg += n;
}


/*
** Free register 'reg', if it is neither a constant index nor
** a local variable.
)
*/
static void freereg (FuncState *fs, int reg) {
  if (!ISK(reg) && reg >= fs->nactvar) {
    fs->freereg--;
    lua_assert(reg == fs->freereg);
  }
}


/*
** Free register used by expression 'e' (if any)
*/
static void freeexp (FuncState *fs, expdesc *e) {
  if (e->k == VNONRELOC)
    freereg(fs, e->u.info);
}


/*
** Free registers used by expressions 'e1' and 'e2' (if any) in proper
** order.
*/
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  if (r1 > r2) {
    freereg(fs, r1);
    freereg(fs, r2);
  }
  else {
    freereg(fs, r2);
    freereg(fs, r1);
  }
}


/*
** Add constant 'v' to prototype's list of constants (field 'k').
** Use scanner's table to cache position of constants in constant list
** and try to reuse constants. Because some values should not be used
** as keys (nil cannot be a key, integer keys can collapse with float
** keys), the caller must provide a useful 'key' for indexing the cache.
*/
static int addk (FuncState *fs, TValue *key, TValue *v) {
  lua_State *L = fs->ls->L;
  Proto *f = fs->f;
  TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */
  int k, oldsize;
  if (ttisinteger(idx)) {  /* is there an index there? */
    k = cast_int(ivalue(idx));
    /* correct value? (warning: must distinguish floats from integers!) */
    if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
                      luaV_rawequalobj(&f->k[k], v))
      return k;  /* reuse index */
  }
  /* constant not found; create a new entry */
  oldsize = f->sizek;
  k = fs->nk;
  /* numerical value does not need GC barrier;
     table has no metatable, so it does not need to invalidate cache */
  setivalue(idx, k);
  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  setobj(L, &f->k[k], v);
  fs->nk++;
  luaC_barrier(L, f, v);
  return k;
}


/*
** Add a string to list of constants and return its index.
*/
int luaK_stringK (FuncState *fs, TString *s) {
  TValue o;
  setsvalue(fs->ls->L, &o, s);
  return addk(fs, &o, &o);  /* use string itself as key */
}


/*
** Add an integer to list of constants and return its index.
** Integers use userdata as keys to avoid collision with floats with
** same value; conversion to 'void*' is used only for hashing, so there
** are no "precision" problems.
*/
int luaK_intK (FuncState *fs, lua_Integer n) {
  TValue k, o;
  setpvalue(&k, cast(void*, cast(size_t, n)));
  setivalue(&o, n);
  return addk(fs, &k, &o);
}

/*
** Add a float to list of constants and return its index.
*/
static int luaK_numberK (FuncState *fs, lua_Number r) {
  TValue o;
  setfltvalue(&o, r);
  return addk(fs, &o, &o);  /* use number itself as key */
}


/*
** Add a boolean to list of constants and return its index.
*/
static int boolK (FuncState *fs, int b) {
  TValue o;
  setbvalue(&o, b);
  return addk(fs, &o, &o);  /* use boolean itself as key */
}


/*
** Add nil to list of constants and return its index.
*/
static int nilK (FuncState *fs) {
  TValue k, v;
  setnilvalue(&v);
  /* cannot use nil as key; instead use table itself to represent nil */
  sethvalue(fs->ls->L, &k, fs->ls->h);
  return addk(fs, &k, &v);
}


/*
** Fix an expression to return the number of results 'nresults'.
** Either 'e' is a multi-ret expression (function call or vararg)
** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
*/
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  if (e->k == VCALL) {  /* expression is an open function call? */
    SETARG_C(getinstruction(fs, e), nresults + 1);
  }
  else if (e->k == VVARARG) {
    Instruction *pc = &getinstruction(fs, e);
    SETARG_B(*pc, nresults + 1);
    SETARG_A(*pc, fs->freereg);
    luaK_reserveregs(fs, 1);
  }
  else lua_assert(nresults == LUA_MULTRET);
}


/*
** Fix an expression to return one result.
** If expression is not a multi-ret expression (function call or
** vararg), it already returns one result, so nothing needs to be done.
** Function calls become VNONRELOC expressions (as its result comes
** fixed in the base register of the call), while vararg expressions
** become VRELOCABLE (as OP_VARARG puts its results where it wants).
** (Calls are created returning one result, so that does not need
** to be fixed.)
*/
void luaK_setoneret (FuncState *fs, expdesc *e) {
  if (e->k == VCALL) {  /* expression is an open function call? */
    /* already returns 1 value */
    lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
    e->k = VNONRELOC;  /* result has fixed position */
    e->u.info = GETARG_A(getinstruction(fs, e));
  }
  else if (e->k == VVARARG) {
    SETARG_B(getinstruction(fs, e), 2);
    e->k = VRELOCABLE;  /* can relocate its simple result */
  }
}


/*
** Ensure that expression 'e' is not a variable.
*/
void luaK_dischargevars (FuncState *fs, expdesc *e) {
  switch (e->k) {
    case VLOCAL: {  /* already in a register */
      e->k = VNONRELOC;  /* becomes a non-relocatable value */
      break;
    }
    case VUPVAL: {  /* move value to some (pending) register */
      e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
      e->k = VRELOCABLE;
      break;
    }
    case VINDEXED: {
      OpCode op;
      freereg(fs, e->u.ind.idx);
      if (e->u.ind.vt == VLOCAL) {  /* is 't' in a register? */
        freereg(fs, e->u.ind.t);
        op = OP_GETTABLE;
      }
      else {
        lua_assert(e->u.ind.vt == VUPVAL);
        op = OP_GETTABUP;  /* 't' is in an upvalue */
      }
      e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
      e->k = VRELOCABLE;
      break;
    }
    case VVARARG: case VCALL: {
      luaK_setoneret(fs, e);
      break;
    }
    default: break;  /* there is one value available (somewhere) */
  }
}


/*
** Ensures expression value is in register 'reg' (and therefore
** 'e' will become a non-relocatable expression).
*/
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: {
      luaK_nil(fs, reg, 1);
      break;
    }
    case VFALSE: case VTRUE: {
      luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
      break;
    }
    case VK: {
      luaK_codek(fs, reg, e->u.info);
      break;
    }
    case VKFLT: {
      luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
      break;
    }
    case VKINT: {
      luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
      break;
    }
    case VRELOCABLE: {
      Instruction *pc = &getinstruction(fs, e);
      SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
      break;
    }
    case VNONRELOC: {
      if (reg != e->u.info)
        luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
      break;
    }
    default: {
      lua_assert(e->k == VJMP);
      return;  /* nothing to do... */
    }
  }
  e->u.info = reg;
  e->k = VNONRELOC;
}


/*
** Ensures expression value is in any register.
*/
static void discharge2anyreg (FuncState *fs, expdesc *e) {
  if (e->k != VNONRELOC) {  /* no fixed register yet? */
    luaK_reserveregs(fs, 1);  /* get a register */
    discharge2reg(fs, e, fs->freereg-1);  /* put value there */
  }
}


static int code_loadbool (FuncState *fs, int A, int b, int jump) {
  luaK_getlabel(fs);  /* those instructions may be jump targets */
  return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
}


/*
** check whether list has any jump that do not produce a value
** or produce an inverted value
*/
static int need_value (FuncState *fs, int list) {
  for (; list != NO_JUMP; list = getjump(fs, list)) {
    Instruction i = *getjumpcontrol(fs, list);
    if (GET_OPCODE(i) != OP_TESTSET) return 1;
  }
  return 0;  /* not found */
}


/*
** Ensures final expression result (including results from its jump
** lists) is in register 'reg'.
** If expression has jumps, need to patch these jumps either to
** its final position or to "load" instructions (for those tests
** that do not produce values).
*/
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  discharge2reg(fs, e, reg);
  if (e->k == VJMP)  /* expression itself is a test? */
    luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
  if (hasjumps(e)) {
    int final;  /* position after whole expression */
    int p_f = NO_JUMP;  /* position of an eventual LOAD false */
    int p_t = NO_JUMP;  /* position of an eventual LOAD true */
    if (need_value(fs, e->t) || need_value(fs, e->f)) {
      int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
      p_f = code_loadbool(fs, reg, 0, 1);
      p_t = code_loadbool(fs, reg, 1, 0);
      luaK_patchtohere(fs, fj);
    }
    final = luaK_getlabel(fs);
    patchlistaux(fs, e->f, final, reg, p_f);
    patchlistaux(fs, e->t, final, reg, p_t);
  }
  e->f = e->t = NO_JUMP;
  e->u.info = reg;
  e->k = VNONRELOC;
}


/*
** Ensures final expression result (including results from its jump
** lists) is in next available register.
*/
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  freeexp(fs, e);
  luaK_reserveregs(fs, 1);
  exp2reg(fs, e, fs->freereg - 1);
}


/*
** Ensures final expression result (including results from its jump
** lists) is in some (any) register and return that register.
*/
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  if (e->k == VNONRELOC) {  /* expression already has a register? */
    if (!hasjumps(e))  /* no jumps? */
      return e->u.info;  /* result is already in a register */
    if (e->u.info >= fs->nactvar) {  /* reg. is not a local? */
      exp2reg(fs, e, e->u.info);  /* put final result in it */
      return e->u.info;
    }
  }
  luaK_exp2nextreg(fs, e);  /* otherwise, use next available register */
  return e->u.info;
}


/*
** Ensures final expression result is either in a register or in an
** upvalue.
*/
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  if (e->k != VUPVAL || hasjumps(e))
    luaK_exp2anyreg(fs, e);
}


/*
** Ensures final expression result is either in a register or it is
** a constant.
*/
void luaK_exp2val (FuncState *fs, expdesc *e) {
  if (hasjumps(e))
    luaK_exp2anyreg(fs, e);
  else
    luaK_dischargevars(fs, e);
}


/*
** Ensures final expression result is in a valid R/K index
** (that is, it is either in a register or in 'k' with an index
** in the range of R/K indices).
** Returns R/K index.
*/
int luaK_exp2RK (FuncState *fs, expdesc *e) {
  luaK_exp2val(fs, e);
  switch (e->k) {  /* move constants to 'k' */
    case VTRUE: e->u.info = boolK(fs, 1); goto vk;
    case VFALSE: e->u.info = boolK(fs, 0); goto vk;
    case VNIL: e->u.info = nilK(fs); goto vk;
    case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
    case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
    case VK:
     vk:
      e->k = VK;
      if (e->u.info <= MAXINDEXRK)  /* constant fits in 'argC'? */
        return RKASK(e->u.info);
      else break;
    default: break;
  }
  /* not a constant in the right range: put it in a register */
  return luaK_exp2anyreg(fs, e);
}


/*
** Generate code to store result of expression 'ex' into variable 'var'.
*/
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  switch (var->k) {
    case VLOCAL: {
      freeexp(fs, ex);
      exp2reg(fs, ex, var->u.info);  /* compute 'ex' into proper place */
      return;
    }
    case VUPVAL: {
      int e = luaK_exp2anyreg(fs, ex);
      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
      break;
    }
    case VINDEXED: {
      OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
      int e = luaK_exp2RK(fs, ex);
      luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
      break;
    }
    default: lua_assert(0);  /* invalid var kind to store */
  }
  freeexp(fs, ex);
}


/*
** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
*/
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  int ereg;
  luaK_exp2anyreg(fs, e);
  ereg = e->u.info;  /* register where 'e' was placed */
  freeexp(fs, e);
  e->u.info = fs->freereg;  /* base register for op_self */
  e->k = VNONRELOC;  /* self expression has a fixed register */
  luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
  luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
  freeexp(fs, key);
}


/*
** Negate condition 'e' (where 'e' is a comparison).
*/
static void negatecondition (FuncState *fs, expdesc *e) {
  Instruction *pc = getjumpcontrol(fs, e->u.info);
  lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
                                           GET_OPCODE(*pc) != OP_TEST);
  SETARG_A(*pc, !(GETARG_A(*pc)));
}


/*
** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
** is true, code will jump if 'e' is true.) Return jump position.
** Optimize when 'e' is 'not' something, inverting the condition
** and removing the 'not'.
*/
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  if (e->k == VRELOCABLE) {
    Instruction ie = getinstruction(fs, e);
    if (GET_OPCODE(ie) == OP_NOT) {
      fs->pc--;  /* remove previous OP_NOT */
      return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
    }
    /* else go through */
  }
  discharge2anyreg(fs, e);
  freeexp(fs, e);
  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
}


/*
** Emit code to go through if 'e' is true, jump otherwise.
*/
void luaK_goiftrue (FuncState *fs, expdesc *e) {
  int pc;  /* pc of new jump */
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VJMP: {  /* condition? */
      negatecondition(fs, e);  /* jump when it is false */
      pc = e->u.info;  /* save jump position */
      break;
    }
    case VK: case VKFLT: case VKINT: case VTRUE: {
      pc = NO_JUMP;  /* always true; do nothing */
      break;
    }
    default: {
      pc = jumponcond(fs, e, 0);  /* jump when false */
      break;
    }
  }
  luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
  luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
  e->t = NO_JUMP;
}


/*
** Emit code to go through if 'e' is false, jump otherwise.
*/
void luaK_goiffalse (FuncState *fs, expdesc *e) {
  int pc;  /* pc of new jump */
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VJMP: {
      pc = e->u.info;  /* already jump if true */
      break;
    }
    case VNIL: case VFALSE: {
      pc = NO_JUMP;  /* always false; do nothing */
      break;
    }
    default: {
      pc = jumponcond(fs, e, 1);  /* jump if true */
      break;
    }
  }
  luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
  luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
  e->f = NO_JUMP;
}


/*
** Code 'not e', doing constant folding.
*/
static void codenot (FuncState *fs, expdesc *e) {
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: case VFALSE: {
      e->k = VTRUE;  /* true == not nil == not false */
      break;
    }
    case VK: case VKFLT: case VKINT: case VTRUE: {
      e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
      break;
    }
    case VJMP: {
      negatecondition(fs, e);
      break;
    }
    case VRELOCABLE:
    case VNONRELOC: {
      discharge2anyreg(fs, e);
      freeexp(fs, e);
      e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
      e->k = VRELOCABLE;
      break;
    }
    default: lua_assert(0);  /* cannot happen */
  }
  /* interchange true and false lists */
  { int temp = e->f; e->f = e->t; e->t = temp; }
  removevalues(fs, e->f);  /* values are useless when negated */
  removevalues(fs, e->t);
}


/*
** Create expression 't[k]'. 't' must have its final result already in a
** register or upvalue.
*/
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
  t->u.ind.t = t->u.info;  /* register or upvalue index */
  t->u.ind.idx = luaK_exp2RK(fs, k);  /* R/K index for key */
  t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
  t->k = VINDEXED;
}


/*
** Return false if folding can raise an error.
** Bitwise operations need operands convertible to integers; division
** operations cannot have 0 as divisor.
*/
static int validop (int op, TValue *v1, TValue *v2) {
  switch (op) {
    case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
    case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
      lua_Integer i;
      return (tointeger(v1, &i) && tointeger(v2, &i));
    }
    case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
      return (nvalue(v2) != 0);
    default: return 1;  /* everything else is valid */
  }
}


/*
** Try to "constant-fold" an operation; return 1 iff successful.
** (In this case, 'e1' has the final result.)
*/
static int constfolding (FuncState *fs, int op, expdesc *e1,
                                                const expdesc *e2) {
  TValue v1, v2, res;
  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
    return 0;  /* non-numeric operands or not safe to fold */
  luaO_arith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
  if (ttisinteger(&res)) {
    e1->k = VKINT;
    e1->u.ival = ivalue(&res);
  }
  else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
    lua_Number n = fltvalue(&res);
    if (luai_numisnan(n) || n == 0)
      return 0;
    e1->k = VKFLT;
    e1->u.nval = n;
  }
  return 1;
}


/*
** Emit code for unary expressions that "produce values"
** (everything but 'not').
** Expression to produce final result will be encoded in 'e'.
*/
static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
  freeexp(fs, e);
  e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
  e->k = VRELOCABLE;  /* all those operations are relocatable */
  luaK_fixline(fs, line);
}


/*
** Emit code for binary expressions that "produce values"
** (everything but logical operators 'and'/'or' and comparison
** operators).
** Expression to produce final result will be encoded in 'e1'.
** Because 'luaK_exp2RK' can free registers, its calls must be
** in "stack order" (that is, first on 'e2', which may have more
** recent registers to be released).
*/
static void codebinexpval (FuncState *fs, OpCode op,
                           expdesc *e1, expdesc *e2, int line) {
  int rk2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */
  int rk1 = luaK_exp2RK(fs, e1);
  freeexps(fs, e1, e2);
  e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2);  /* generate opcode */
  e1->k = VRELOCABLE;  /* all those operations are relocatable */
  luaK_fixline(fs, line);
}


/*
** Emit code for comparisons.
** 'e1' was already put in R/K form by 'luaK_infix'.
*/
static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
                          : check_exp(e1->k == VNONRELOC, e1->u.info);
  int rk2 = luaK_exp2RK(fs, e2);
  freeexps(fs, e1, e2);
  switch (opr) {
    case OPR_NE: {  /* '(a ~= b)' ==> 'not (a == b)' */
      e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
      break;
    }
    case OPR_GT: case OPR_GE: {
      /* '(a > b)' ==> '(b < a)';  '(a >= b)' ==> '(b <= a)' */
      OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
      e1->u.info = condjump(fs, op, 1, rk2, rk1);  /* invert operands */
      break;
    }
    default: {  /* '==', '<', '<=' use their own opcodes */
      OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
      e1->u.info = condjump(fs, op, 1, rk1, rk2);
      break;
    }
  }
  e1->k = VJMP;
}


/*
** Aplly prefix operation 'op' to expression 'e'.
*/
void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  switch (op) {
    case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
      if (constfolding(fs, op + LUA_OPUNM, e, &ef))
        break;
      /* FALLTHROUGH */
    case OPR_LEN:
      codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
      break;
    case OPR_NOT: codenot(fs, e); break;
    default: lua_assert(0);
  }
}


/*
** Process 1st operand 'v' of binary operation 'op' before reading
** 2nd operand.
*/
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  switch (op) {
    case OPR_AND: {
      luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
      break;
    }
    case OPR_OR: {
      luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
      break;
    }
    case OPR_CONCAT: {
      luaK_exp2nextreg(fs, v);  /* operand must be on the 'stack' */
      break;
    }
    case OPR_ADD: case OPR_SUB:
    case OPR_MUL: case OPR_DIV: case OPR_IDIV:
    case OPR_MOD: case OPR_POW:
    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
    case OPR_SHL: case OPR_SHR: {
      if (!tonumeral(v, NULL))
        luaK_exp2RK(fs, v);
      /* else keep numeral, which may be folded with 2nd operand */
      break;
    }
    default: {
      luaK_exp2RK(fs, v);
      break;
    }
  }
}


/*
** Finalize code for binary operation, after reading 2nd operand.
** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
** concatenation is right associative), merge second CONCAT into first
** one.
*/
void luaK_posfix (FuncState *fs, BinOpr op,
                  expdesc *e1, expdesc *e2, int line) {
  switch (op) {
    case OPR_AND: {
      lua_assert(e1->t == NO_JUMP);  /* list closed by 'luK_infix' */
      luaK_dischargevars(fs, e2);
      luaK_concat(fs, &e2->f, e1->f);
      *e1 = *e2;
      break;
    }
    case OPR_OR: {
      lua_assert(e1->f == NO_JUMP);  /* list closed by 'luK_infix' */
      luaK_dischargevars(fs, e2);
      luaK_concat(fs, &e2->t, e1->t);
      *e1 = *e2;
      break;
    }
    case OPR_CONCAT: {
      luaK_exp2val(fs, e2);
      if (e2->k == VRELOCABLE &&
          GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
        lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
        freeexp(fs, e1);
        SETARG_B(getinstruction(fs, e2), e1->u.info);
        e1->k = VRELOCABLE; e1->u.info = e2->u.info;
      }
      else {
        luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */
        codebinexpval(fs, OP_CONCAT, e1, e2, line);
      }
      break;
    }
    case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
    case OPR_IDIV: case OPR_MOD: case OPR_POW:
    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
    case OPR_SHL: case OPR_SHR: {
      if (!constfolding(fs, op + LUA_OPADD, e1, e2))
        codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
      break;
    }
    case OPR_EQ: case OPR_LT: case OPR_LE:
    case OPR_NE: case OPR_GT: case OPR_GE: {
      codecomp(fs, op, e1, e2);
      break;
    }
    default: lua_assert(0);
  }
}


/*
** Change line information associated with current position.
*/
void luaK_fixline (FuncState *fs, int line) {
  fs->f->lineinfo[fs->pc - 1] = line;
}


/*
** Emit a SETLIST instruction.
** 'base' is register that keeps table;
** 'nelems' is #table plus those to be stored now;
** 'tostore' is number of values (in registers 'base + 1',...) to add to
** table (or LUA_MULTRET to add up to stack top).
*/
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1;
  int b = (tostore == LUA_MULTRET) ? 0 : tostore;
  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  if (c <= MAXARG_C)
    luaK_codeABC(fs, OP_SETLIST, base, b, c);
  else if (c <= MAXARG_Ax) {
    luaK_codeABC(fs, OP_SETLIST, base, b, 0);
    codeextraarg(fs, c);
  }
  else
    luaX_syntaxerror(fs->ls, "constructor too long");
  fs->freereg = base + 1;  /* free registers with list values */
}