File: mpmathdouble.w

package info (click to toggle)
texlive-bin 2018.20181218.49446-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 186,920 kB
  • sloc: ansic: 873,264; cpp: 311,278; perl: 82,918; sh: 23,243; makefile: 8,590; lex: 4,939; python: 4,462; pascal: 3,813; java: 3,569; yacc: 2,901; tcl: 2,379; exp: 2,031; xml: 844; ruby: 678; lisp: 398; sed: 331; asm: 140; csh: 46; awk: 30
file content (1487 lines) | stat: -rw-r--r-- 52,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
% $Id$
%
% This file is part of MetaPost;
% the MetaPost program is in the public domain.
% See the <Show version...> code in mpost.w for more info.

% Here is TeX material that gets inserted after \input webmac

\font\tenlogo=logo10 % font used for the METAFONT logo
\font\logos=logosl10
\def\MF{{\tenlogo META}\-{\tenlogo FONT}}
\def\MP{{\tenlogo META}\-{\tenlogo POST}}
\def\pct!{{\char`\%}} % percent sign in ordinary text
\def\psqrt#1{\sqrt{\mathstrut#1}}


\def\title{Math support functions for IEEE double based math}
\pdfoutput=1

@ Introduction.

@c 
#include <w2c/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "mpmathdouble.h" /* internal header */
#define ROUND(a) floor((a)+0.5)
@h

@ @c
@<Declarations@>;

@ @(mpmathdouble.h@>=
#ifndef MPMATHDOUBLE_H
#define  MPMATHDOUBLE_H 1
#include "mplib.h"
#include "mpmp.h" /* internal header */
@<Internal library declarations@>;
#endif

@* Math initialization.

First, here are some very important constants.

@d PI 3.1415926535897932384626433832795028841971 
@d fraction_multiplier 4096.0
@d angle_multiplier 16.0

@ Here are the functions that are static as they are not used elsewhere

@<Declarations@>=
static void mp_double_scan_fractional_token (MP mp, int n);
static void mp_double_scan_numeric_token (MP mp, int n);
static void mp_ab_vs_cd (MP mp, mp_number *ret, mp_number a, mp_number b, mp_number c, mp_number d);
static void mp_double_ab_vs_cd (MP mp, mp_number *ret, mp_number a, mp_number b, mp_number c, mp_number d);
static void mp_double_crossing_point (MP mp, mp_number *ret, mp_number a, mp_number b, mp_number c);
static void mp_number_modulo (mp_number *a, mp_number b);
static void mp_double_print_number (MP mp, mp_number n);
static char * mp_double_number_tostring (MP mp, mp_number n);
static void mp_double_slow_add (MP mp, mp_number *ret, mp_number x_orig, mp_number y_orig);
static void mp_double_square_rt (MP mp, mp_number *ret, mp_number x_orig);
static void mp_double_sin_cos (MP mp, mp_number z_orig, mp_number *n_cos, mp_number *n_sin);
static void mp_init_randoms (MP mp, int seed);
static void mp_number_angle_to_scaled (mp_number *A);
static void mp_number_fraction_to_scaled (mp_number *A);
static void mp_number_scaled_to_fraction (mp_number *A);
static void mp_number_scaled_to_angle (mp_number *A);
static void mp_double_m_unif_rand (MP mp, mp_number *ret, mp_number x_orig);
static void mp_double_m_norm_rand (MP mp, mp_number *ret);
static void mp_double_m_exp (MP mp, mp_number *ret, mp_number x_orig);
static void mp_double_m_log (MP mp, mp_number *ret, mp_number x_orig);
static void mp_double_pyth_sub (MP mp, mp_number *r, mp_number a, mp_number b);
static void mp_double_pyth_add (MP mp, mp_number *r, mp_number a, mp_number b);
static void mp_double_n_arg (MP mp, mp_number *ret, mp_number x, mp_number y);
static void mp_double_velocity (MP mp, mp_number *ret, mp_number st, mp_number ct, mp_number sf,  mp_number cf, mp_number t);
static void mp_set_double_from_int(mp_number *A, int B);
static void mp_set_double_from_boolean(mp_number *A, int B);
static void mp_set_double_from_scaled(mp_number *A, int B);
static void mp_set_double_from_addition(mp_number *A, mp_number B, mp_number C);
static void mp_set_double_from_substraction (mp_number *A, mp_number B, mp_number C);
static void mp_set_double_from_div(mp_number *A, mp_number B, mp_number C);
static void mp_set_double_from_mul(mp_number *A, mp_number B, mp_number C);
static void mp_set_double_from_int_div(mp_number *A, mp_number B, int C);
static void mp_set_double_from_int_mul(mp_number *A, mp_number B, int C);
static void mp_set_double_from_of_the_way(MP mp, mp_number *A, mp_number t, mp_number B, mp_number C);
static void mp_number_negate(mp_number *A);
static void mp_number_add(mp_number *A, mp_number B);
static void mp_number_substract(mp_number *A, mp_number B);
static void mp_number_half(mp_number *A);
static void mp_number_halfp(mp_number *A);
static void mp_number_double(mp_number *A);
static void mp_number_add_scaled(mp_number *A, int B); /* also for negative B */
static void mp_number_multiply_int(mp_number *A, int B);
static void mp_number_divide_int(mp_number *A, int B);
static void mp_double_abs(mp_number *A);   
static void mp_number_clone(mp_number *A, mp_number B);
static void mp_number_swap(mp_number *A, mp_number *B);
static int mp_round_unscaled(mp_number x_orig);
static int mp_number_to_int(mp_number A);
static int mp_number_to_scaled(mp_number A);
static int mp_number_to_boolean(mp_number A);
static double mp_number_to_double(mp_number A);
static int mp_number_odd(mp_number A);
static int mp_number_equal(mp_number A, mp_number B);
static int mp_number_greater(mp_number A, mp_number B);
static int mp_number_less(mp_number A, mp_number B);
static int mp_number_nonequalabs(mp_number A, mp_number B);
static void mp_number_floor (mp_number *i);
static void mp_double_fraction_to_round_scaled (mp_number *x);
static void mp_double_number_make_scaled (MP mp, mp_number *r, mp_number p, mp_number q);
static void mp_double_number_make_fraction (MP mp, mp_number *r, mp_number p, mp_number q);
static void mp_double_number_take_fraction (MP mp, mp_number *r, mp_number p, mp_number q);
static void mp_double_number_take_scaled (MP mp, mp_number *r, mp_number p, mp_number q);
static void mp_new_number (MP mp, mp_number *n, mp_number_type t) ;
static void mp_free_number (MP mp, mp_number *n) ;
static void mp_set_double_from_double(mp_number *A, double B);
static void mp_free_double_math (MP mp);
static void mp_double_set_precision (MP mp);

@ And these are the ones that {\it are} used elsewhere

@<Internal library declarations@>=
void * mp_initialize_double_math (MP mp);

@ 

@d coef_bound ((7.0/3.0)*fraction_multiplier) /* |fraction| approximation to 7/3 */
@d fraction_threshold 0.04096 /* a |fraction| coefficient less than this is zeroed */
@d half_fraction_threshold (fraction_threshold/2) /* half of |fraction_threshold| */
@d scaled_threshold 0.000122 /* a |scaled| coefficient less than this is zeroed */
@d half_scaled_threshold (scaled_threshold/2) /* half of |scaled_threshold| */
@d near_zero_angle (0.0256*angle_multiplier)  /* an angle of about 0.0256 */
@d p_over_v_threshold 0x80000 /* TODO */
@d equation_threshold 0.001
@d tfm_warn_threshold 0.0625
@d warning_limit pow(2.0,52.0)  /* this is a large value that can just be expressed without loss of precision */
@d epsilon pow(2.0,-52.0)

@c
void * mp_initialize_double_math (MP mp) {
  math_data *math = (math_data *)mp_xmalloc(mp,1,sizeof(math_data));
  /* alloc */
  math->allocate = mp_new_number;
  math->free = mp_free_number;
  mp_new_number (mp, &math->precision_default, mp_scaled_type);
  math->precision_default.data.dval  = 16 * unity;
  mp_new_number (mp, &math->precision_max, mp_scaled_type);
  math->precision_max.data.dval  = 16 * unity;
  mp_new_number (mp, &math->precision_min, mp_scaled_type);
  math->precision_min.data.dval  = 16 * unity;
  /* here are the constants for |scaled| objects */
  mp_new_number (mp, &math->epsilon_t, mp_scaled_type);
  math->epsilon_t.data.dval  = epsilon;
  mp_new_number (mp, &math->inf_t, mp_scaled_type);
  math->inf_t.data.dval  = EL_GORDO;
  mp_new_number (mp, &math->warning_limit_t, mp_scaled_type);
  math->warning_limit_t.data.dval  = warning_limit;
  mp_new_number (mp, &math->one_third_inf_t, mp_scaled_type);
  math->one_third_inf_t.data.dval = one_third_EL_GORDO;
  mp_new_number (mp, &math->unity_t, mp_scaled_type);
  math->unity_t.data.dval = unity;
  mp_new_number (mp, &math->two_t, mp_scaled_type);
  math->two_t.data.dval = two;
  mp_new_number (mp, &math->three_t, mp_scaled_type);
  math->three_t.data.dval = three;
  mp_new_number (mp, &math->half_unit_t, mp_scaled_type);
  math->half_unit_t.data.dval = half_unit;
  mp_new_number (mp, &math->three_quarter_unit_t, mp_scaled_type);
  math->three_quarter_unit_t.data.dval = three_quarter_unit;
  mp_new_number (mp, &math->zero_t, mp_scaled_type);
  /* |fractions| */
  mp_new_number (mp, &math->arc_tol_k, mp_fraction_type);
  math->arc_tol_k.data.dval = (unity/4096);  /* quit when change in arc length estimate reaches this */
  mp_new_number (mp, &math->fraction_one_t, mp_fraction_type);
  math->fraction_one_t.data.dval = fraction_one;
  mp_new_number (mp, &math->fraction_half_t, mp_fraction_type);
  math->fraction_half_t.data.dval = fraction_half;
  mp_new_number (mp, &math->fraction_three_t, mp_fraction_type);
  math->fraction_three_t.data.dval = fraction_three;
  mp_new_number (mp, &math->fraction_four_t, mp_fraction_type);
  math->fraction_four_t.data.dval = fraction_four;
  /* |angles| */
  mp_new_number (mp, &math->three_sixty_deg_t, mp_angle_type);
  math->three_sixty_deg_t.data.dval = three_sixty_deg;
  mp_new_number (mp, &math->one_eighty_deg_t, mp_angle_type);
  math->one_eighty_deg_t.data.dval = one_eighty_deg;
  /* various approximations */
  mp_new_number (mp, &math->one_k, mp_scaled_type);
  math->one_k.data.dval = 1.0/64 ; 
  mp_new_number (mp, &math->sqrt_8_e_k, mp_scaled_type); 
  math->sqrt_8_e_k.data.dval = 1.71552776992141359295 ;   /* $2^{16}\sqrt{8/e}\approx 112428.82793$ */
  mp_new_number (mp, &math->twelve_ln_2_k, mp_fraction_type); 
  math->twelve_ln_2_k.data.dval = 8.31776616671934371292 *256;  /* $2^{24}\cdot12\ln2\approx139548959.6165$ */
  mp_new_number (mp, &math->coef_bound_k, mp_fraction_type);
  math->coef_bound_k.data.dval = coef_bound;
  mp_new_number (mp, &math->coef_bound_minus_1, mp_fraction_type);
  math->coef_bound_minus_1.data.dval = coef_bound - 1/65536.0;
  mp_new_number (mp, &math->twelvebits_3, mp_scaled_type);
  math->twelvebits_3.data.dval = 1365 / 65536.0;  /* $1365\approx 2^{12}/3$ */
  mp_new_number (mp, &math->twentysixbits_sqrt2_t, mp_fraction_type);
  math->twentysixbits_sqrt2_t.data.dval = 94906266 / 65536.0;      /* $2^{26}\sqrt2\approx94906265.62$ */
  mp_new_number (mp, &math->twentyeightbits_d_t, mp_fraction_type);
  math->twentyeightbits_d_t.data.dval = 35596755 / 65536.0;        /* $2^{28}d\approx35596754.69$ */
  mp_new_number (mp, &math->twentysevenbits_sqrt2_d_t, mp_fraction_type);
  math->twentysevenbits_sqrt2_d_t.data.dval = 25170707 / 65536.0;  /* $2^{27}\sqrt2\,d\approx25170706.63$ */
  /* thresholds */
  mp_new_number (mp, &math->fraction_threshold_t, mp_fraction_type);
  math->fraction_threshold_t.data.dval = fraction_threshold;
  mp_new_number (mp, &math->half_fraction_threshold_t, mp_fraction_type);
  math->half_fraction_threshold_t.data.dval = half_fraction_threshold;
  mp_new_number (mp, &math->scaled_threshold_t, mp_scaled_type);
  math->scaled_threshold_t.data.dval = scaled_threshold;
  mp_new_number (mp, &math->half_scaled_threshold_t, mp_scaled_type);
  math->half_scaled_threshold_t.data.dval = half_scaled_threshold;
  mp_new_number (mp, &math->near_zero_angle_t, mp_angle_type);
  math->near_zero_angle_t.data.dval = near_zero_angle;
  mp_new_number (mp, &math->p_over_v_threshold_t, mp_fraction_type);
  math->p_over_v_threshold_t.data.dval = p_over_v_threshold;
  mp_new_number (mp, &math->equation_threshold_t, mp_scaled_type);
  math->equation_threshold_t.data.dval = equation_threshold;
  mp_new_number (mp, &math->tfm_warn_threshold_t, mp_scaled_type);
  math->tfm_warn_threshold_t.data.dval = tfm_warn_threshold;
  /* functions */
  math->from_int = mp_set_double_from_int;
  math->from_boolean = mp_set_double_from_boolean;
  math->from_scaled = mp_set_double_from_scaled;
  math->from_double = mp_set_double_from_double;
  math->from_addition  = mp_set_double_from_addition;
  math->from_substraction  = mp_set_double_from_substraction;
  math->from_oftheway  = mp_set_double_from_of_the_way;
  math->from_div  = mp_set_double_from_div;
  math->from_mul  = mp_set_double_from_mul;
  math->from_int_div  = mp_set_double_from_int_div;
  math->from_int_mul  = mp_set_double_from_int_mul;
  math->negate = mp_number_negate;
  math->add  = mp_number_add;
  math->substract = mp_number_substract;
  math->half = mp_number_half;
  math->halfp = mp_number_halfp;
  math->do_double = mp_number_double;
  math->abs = mp_double_abs;
  math->clone = mp_number_clone;
  math->swap = mp_number_swap;
  math->add_scaled = mp_number_add_scaled;
  math->multiply_int = mp_number_multiply_int;
  math->divide_int = mp_number_divide_int;
  math->to_boolean = mp_number_to_boolean;
  math->to_scaled = mp_number_to_scaled;
  math->to_double = mp_number_to_double;
  math->to_int = mp_number_to_int;
  math->odd = mp_number_odd;
  math->equal = mp_number_equal;
  math->less = mp_number_less;
  math->greater = mp_number_greater;
  math->nonequalabs = mp_number_nonequalabs;
  math->round_unscaled = mp_round_unscaled;
  math->floor_scaled = mp_number_floor;
  math->fraction_to_round_scaled = mp_double_fraction_to_round_scaled;
  math->make_scaled = mp_double_number_make_scaled;
  math->make_fraction = mp_double_number_make_fraction;
  math->take_fraction = mp_double_number_take_fraction;
  math->take_scaled = mp_double_number_take_scaled;
  math->velocity = mp_double_velocity;
  math->n_arg = mp_double_n_arg;
  math->m_log = mp_double_m_log;
  math->m_exp = mp_double_m_exp;
  math->m_unif_rand = mp_double_m_unif_rand;
  math->m_norm_rand = mp_double_m_norm_rand;
  math->pyth_add = mp_double_pyth_add;
  math->pyth_sub = mp_double_pyth_sub;
  math->fraction_to_scaled = mp_number_fraction_to_scaled;
  math->scaled_to_fraction = mp_number_scaled_to_fraction;
  math->scaled_to_angle = mp_number_scaled_to_angle;
  math->angle_to_scaled = mp_number_angle_to_scaled;
  math->init_randoms = mp_init_randoms;
  math->sin_cos = mp_double_sin_cos;
  math->slow_add = mp_double_slow_add;
  math->sqrt = mp_double_square_rt;
  math->print = mp_double_print_number;
  math->tostring = mp_double_number_tostring;
  math->modulo = mp_number_modulo;
  math->ab_vs_cd = mp_ab_vs_cd;
  math->crossing_point = mp_double_crossing_point;
  math->scan_numeric = mp_double_scan_numeric_token;
  math->scan_fractional = mp_double_scan_fractional_token;
  math->free_math = mp_free_double_math;
  math->set_precision = mp_double_set_precision;
  return (void *)math;
}

void mp_double_set_precision (MP mp) {
}

void mp_free_double_math (MP mp) {
  free_number (((math_data *)mp->math)->three_sixty_deg_t);
  free_number (((math_data *)mp->math)->one_eighty_deg_t);
  free_number (((math_data *)mp->math)->fraction_one_t);
  free_number (((math_data *)mp->math)->zero_t);
  free_number (((math_data *)mp->math)->half_unit_t);
  free_number (((math_data *)mp->math)->three_quarter_unit_t);
  free_number (((math_data *)mp->math)->unity_t);
  free_number (((math_data *)mp->math)->two_t);
  free_number (((math_data *)mp->math)->three_t);
  free_number (((math_data *)mp->math)->one_third_inf_t);
  free_number (((math_data *)mp->math)->inf_t);
  free_number (((math_data *)mp->math)->warning_limit_t);
  free_number (((math_data *)mp->math)->one_k);
  free_number (((math_data *)mp->math)->sqrt_8_e_k);
  free_number (((math_data *)mp->math)->twelve_ln_2_k);
  free_number (((math_data *)mp->math)->coef_bound_k);
  free_number (((math_data *)mp->math)->coef_bound_minus_1);
  free_number (((math_data *)mp->math)->fraction_threshold_t);
  free_number (((math_data *)mp->math)->half_fraction_threshold_t);
  free_number (((math_data *)mp->math)->scaled_threshold_t);
  free_number (((math_data *)mp->math)->half_scaled_threshold_t);
  free_number (((math_data *)mp->math)->near_zero_angle_t);
  free_number (((math_data *)mp->math)->p_over_v_threshold_t);
  free_number (((math_data *)mp->math)->equation_threshold_t);
  free_number (((math_data *)mp->math)->tfm_warn_threshold_t);
  free(mp->math);
}

@ Creating an destroying |mp_number| objects

@ @c
void mp_new_number (MP mp, mp_number *n, mp_number_type t) {
  (void)mp;
  n->data.dval = 0.0;
  n->type = t;
}

@ 

@c
void mp_free_number (MP mp, mp_number *n) {
  (void)mp;
  n->type = mp_nan_type;
}

@ Here are the low-level functions on |mp_number| items, setters first.

@c 
void mp_set_double_from_int(mp_number *A, int B) {
  A->data.dval = B;
}
void mp_set_double_from_boolean(mp_number *A, int B) {
  A->data.dval = B;
}
void mp_set_double_from_scaled(mp_number *A, int B) {
  A->data.dval = B / 65536.0;
}
void mp_set_double_from_double(mp_number *A, double B) {
  A->data.dval = B;
}
void mp_set_double_from_addition(mp_number *A, mp_number B, mp_number C) {
  A->data.dval = B.data.dval+C.data.dval;
}
void mp_set_double_from_substraction (mp_number *A, mp_number B, mp_number C) {
 A->data.dval = B.data.dval-C.data.dval;
}
void mp_set_double_from_div(mp_number *A, mp_number B, mp_number C) {
  A->data.dval = B.data.dval / C.data.dval;
}
void mp_set_double_from_mul(mp_number *A, mp_number B, mp_number C) {
  A->data.dval = B.data.dval * C.data.dval;
}
void mp_set_double_from_int_div(mp_number *A, mp_number B, int C) {
  A->data.dval = B.data.dval / C;
}
void mp_set_double_from_int_mul(mp_number *A, mp_number B, int C) {
  A->data.dval = B.data.dval * C;
}
void mp_set_double_from_of_the_way(MP mp, mp_number *A, mp_number t, mp_number B, mp_number C) {
  A->data.dval = B.data.dval - mp_double_take_fraction(mp, (B.data.dval - C.data.dval), t.data.dval);
}
void mp_number_negate(mp_number *A) {
  A->data.dval = -A->data.dval;
  if (A->data.dval == -0.0)
    A->data.dval = 0.0;
}
void mp_number_add(mp_number *A, mp_number B) {
  A->data.dval = A->data.dval + B.data.dval;
}
void mp_number_substract(mp_number *A, mp_number B) {
  A->data.dval = A->data.dval - B.data.dval;
}
void mp_number_half(mp_number *A) {
  A->data.dval = A->data.dval/2.0;
}
void mp_number_halfp(mp_number *A) {
  A->data.dval = (A->data.dval/2.0);
}
void mp_number_double(mp_number *A) {
  A->data.dval = A->data.dval * 2.0;
}
void mp_number_add_scaled(mp_number *A, int B) { /* also for negative B */
  A->data.dval = A->data.dval + (B/65536.0);
}
void mp_number_multiply_int(mp_number *A, int B) {
  A->data.dval = (double)(A->data.dval * B);
}
void mp_number_divide_int(mp_number *A, int B) {
  A->data.dval = A->data.dval / (double)B;
}
void mp_double_abs(mp_number *A) {   
  A->data.dval = fabs(A->data.dval);
}
void mp_number_clone(mp_number *A, mp_number B) {
  A->data.dval = B.data.dval;
}
void mp_number_swap(mp_number *A, mp_number *B) {
  double swap_tmp = A->data.dval;
  A->data.dval = B->data.dval;
  B->data.dval = swap_tmp;
}
void mp_number_fraction_to_scaled (mp_number *A) {
    A->type = mp_scaled_type;
    A->data.dval = A->data.dval / fraction_multiplier;
}
void mp_number_angle_to_scaled (mp_number *A) {
    A->type = mp_scaled_type;
    A->data.dval = A->data.dval / angle_multiplier;
}
void mp_number_scaled_to_fraction (mp_number *A) {
    A->type = mp_fraction_type;
    A->data.dval = A->data.dval * fraction_multiplier;
}
void mp_number_scaled_to_angle (mp_number *A) {
    A->type = mp_angle_type;
    A->data.dval = A->data.dval * angle_multiplier;
}


@ Query functions

@c
int mp_number_to_scaled(mp_number A) {
  return (int)ROUND(A.data.dval * 65536.0);
}
int mp_number_to_int(mp_number A) {
  return (int)(A.data.dval);
}
int mp_number_to_boolean(mp_number A) {
  return (int)(A.data.dval);
}
double mp_number_to_double(mp_number A) {
  return A.data.dval;
}
int mp_number_odd(mp_number A) {
  return odd((int)ROUND(A.data.dval * 65536.0));
}
int mp_number_equal(mp_number A, mp_number B) {
  return (A.data.dval==B.data.dval);
}
int mp_number_greater(mp_number A, mp_number B) {
  return (A.data.dval>B.data.dval);
}
int mp_number_less(mp_number A, mp_number B) {
  return (A.data.dval<B.data.dval);
}
int mp_number_nonequalabs(mp_number A, mp_number B) {
  return (!(fabs(A.data.dval)==fabs(B.data.dval)));
}

@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
positions from the right end of a binary computer word.

@d unity   1.0
@d two 2.0
@d three 3.0
@d half_unit  0.5
@d three_quarter_unit 0.75

@d EL_GORDO   (DBL_MAX/2.0-1.0) /* the largest value that \MP\ likes. */
@d one_third_EL_GORDO (EL_GORDO/3.0)

@ One of \MP's most common operations is the calculation of
$\lfloor{a+b\over2}\rfloor$,
the midpoint of two given integers |a| and~|b|. The most decent way to do
this is to write `|(a+b)/2|'; but on many machines it is more efficient 
to calculate `|(a+b)>>1|'.

Therefore the midpoint operation will always be denoted by `|half(a+b)|'
in this program. If \MP\ is being implemented with languages that permit
binary shifting, the |half| macro should be changed to make this operation
as efficient as possible.  Since some systems have shift operators that can
only be trusted to work on positive numbers, there is also a macro |halfp|
that is used only when the quantity being halved is known to be positive
or zero.

@ Here is a procedure analogous to |print_int|.  The current version
is fairly stupid, and it is not round-trip safe, but this is good
enough for a beta test.

@c
char * mp_double_number_tostring (MP mp, mp_number n) {
   static char set[64];
   int l = 0;
   char *ret = mp_xmalloc(mp, 64, 1);
   snprintf(set, 64, "%.17g", n.data.dval);
   while (set[l] == ' ') l++;
   strcpy(ret, set+l);
   return ret;
}


@ @c
void mp_double_print_number (MP mp, mp_number n) {
  char *str = mp_double_number_tostring(mp, n);
  mp_print (mp, str);
  free (str);
}




@ Addition is not always checked to make sure that it doesn't overflow,
but in places where overflow isn't too unlikely the |slow_add| routine
is used.

@c
void mp_double_slow_add (MP mp, mp_number *ret, mp_number x_orig, mp_number y_orig) {
  double x, y;
  x = x_orig.data.dval;
  y = y_orig.data.dval;
  if (x >= 0) {
    if (y <= EL_GORDO - x) {
      ret->data.dval = x + y;
    } else {
      mp->arith_error = true;
      ret->data.dval =  EL_GORDO;
    }
  } else if (-y <= EL_GORDO + x) {
    ret->data.dval = x + y;
  } else {
    mp->arith_error = true;
    ret->data.dval =  -EL_GORDO;
  }
}

@ The |make_fraction| routine produces the |fraction| equivalent of
|p/q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_fraction(t,t)=fraction| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_fraction(t,fraction)=t| between scaled types.

If the result would have magnitude $2^{31}$ or more, |make_fraction|
sets |arith_error:=true|. Most of \MP's internal computations have
been designed to avoid this sort of error.

If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to int-eger arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.

This operation is part of \MP's ``inner loop''; indeed, it will
consume nearly 10\pct! of the running time (exclusive of input and output)
if the code below is left unchanged. A machine-dependent recoding
will therefore make \MP\ run faster. The present implementation
is highly portable, but slow; it avoids multiplication and division
except in the initial stage. System wizards should be careful to
replace it with a routine that is guaranteed to produce identical
results in all cases.
@^system dependencies@>

As noted below, a few more routines should also be replaced by machine-dependent
code, for efficiency. But when a procedure is not part of the ``inner loop,''
such changes aren't advisable; simplicity and robustness are
preferable to trickery, unless the cost is too high.
@^inner loop@>

@c
double mp_double_make_fraction (MP mp, double p, double q) {
  return ((p / q) * fraction_multiplier);
}
void mp_double_number_make_fraction (MP mp, mp_number *ret, mp_number p, mp_number q) {
  ret->data.dval = mp_double_make_fraction (mp, p.data.dval, q.data.dval);
}

@ @<Declarations@>=
double mp_double_make_fraction (MP mp, double p, double q);

@ The dual of |make_fraction| is |take_fraction|, which multiplies a
given integer~|q| by a fraction~|f|. When the operands are positive, it
computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
of |q| and~|f|.

This routine is even more ``inner loopy'' than |make_fraction|;
the present implementation consumes almost 20\pct! of \MP's computation
time during typical jobs, so a machine-language substitute is advisable.
@^inner loop@> @^system dependencies@>

@c
double mp_double_take_fraction (MP mp, double p, double q) {
  return ((p * q) / fraction_multiplier);
}
void mp_double_number_take_fraction (MP mp, mp_number *ret, mp_number p, mp_number q) {
  ret->data.dval = mp_double_take_fraction (mp, p.data.dval, q.data.dval);
}

@ @<Declarations@>=
double mp_double_take_fraction (MP mp, double p, double q);

@ When we want to multiply something by a |scaled| quantity, we use a scheme
analogous to |take_fraction| but with a different scaling.
Given positive operands, |take_scaled|
computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.

Once again it is a good idea to use a machine-language replacement if
possible; otherwise |take_scaled| will use more than 2\pct! of the running time
when the Computer Modern fonts are being generated.
@^inner loop@>

@c
void mp_double_number_take_scaled (MP mp, mp_number *ret, mp_number p_orig, mp_number q_orig) {
  ret->data.dval = p_orig.data.dval * q_orig.data.dval;
}


@ For completeness, there's also |make_scaled|, which computes a
quotient as a |scaled| number instead of as a |fraction|.
In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
operands are positive. \ (This procedure is not used especially often,
so it is not part of \MP's inner loop.)

@c
double mp_double_make_scaled (MP mp, double p, double q) {
    return p / q;
}
void mp_double_number_make_scaled (MP mp, mp_number *ret, mp_number p_orig, mp_number q_orig) {
  ret->data.dval = p_orig.data.dval / q_orig.data.dval;
}

@ @<Declarations@>=
double mp_double_make_scaled (MP mp, double p, double q);


@ 
@d halfp(A) (integer)((unsigned)(A) >> 1)

@* Scanning numbers in the input.

The definitions below are temporarily here

@d set_cur_cmd(A) mp->cur_mod_->type=(A)
@d set_cur_mod(A) mp->cur_mod_->data.n.data.dval=(A)

@<Declarations...@>=
static void mp_wrapup_numeric_token(MP mp, unsigned char *start, unsigned char *stop);

@ @c
void mp_wrapup_numeric_token(MP mp, unsigned char *start, unsigned char *stop) {
  double result;
  char *end = (char *)stop;
  errno = 0;
  result = strtod ((char *)start, &end);
  if (errno == 0) {
    set_cur_mod(result);
    if (result >= warning_limit) {
      if (internal_value (mp_warning_check).data.dval > 0 &&
          (mp->scanner_status != tex_flushing)) {
        char msg[256];
        const char *hlp[] = {"Continue and I'll try to cope",
               "with that big value; but it might be dangerous.",
               "(Set warningcheck:=0 to suppress this message.)",
               NULL };
        mp_snprintf (msg, 256, "Number is too large (%g)", result);
@.Number is too large@>;
        mp_error (mp, msg, hlp, true);
      }
    }
  } else if (mp->scanner_status != tex_flushing) {
    const char *hlp[] = {"I could not handle this number specification",
                         "probably because it is out of range. Error:",
                         "",
                          NULL };   
    hlp[2] = strerror(errno);
    mp_error (mp, "Enormous number has been reduced.", hlp, false);
@.Enormous number...@>;
    set_cur_mod(EL_GORDO);
  }
  set_cur_cmd((mp_variable_type)mp_numeric_token);
}

@ @c
static void find_exponent (MP mp)  {
  if (mp->buffer[mp->cur_input.loc_field] == 'e' || 
      mp->buffer[mp->cur_input.loc_field] == 'E') {
     mp->cur_input.loc_field++;
     if (!(mp->buffer[mp->cur_input.loc_field] == '+' || 
        mp->buffer[mp->cur_input.loc_field] == '-' ||
	mp->char_class[mp->buffer[mp->cur_input.loc_field]] == digit_class)) {
       mp->cur_input.loc_field--;
       return;
     }     
     if (mp->buffer[mp->cur_input.loc_field] == '+' || 
        mp->buffer[mp->cur_input.loc_field] == '-') {
        mp->cur_input.loc_field++;
     }
     while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == digit_class) {
       mp->cur_input.loc_field++;
     }
  }
}
void mp_double_scan_fractional_token (MP mp, int n) { /* n: scaled */
  unsigned char *start = &mp->buffer[mp->cur_input.loc_field -1];
  unsigned char *stop;
  while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == digit_class) {
     mp->cur_input.loc_field++;
  }
  find_exponent(mp);
  stop = &mp->buffer[mp->cur_input.loc_field-1];
  mp_wrapup_numeric_token (mp, start, stop);
}


@ Input format is the same as for the C language, so we just collect valid
bytes in the buffer, then call |strtod()|

@c
void mp_double_scan_numeric_token (MP mp, int n) { /* n: scaled */
  unsigned char *start = &mp->buffer[mp->cur_input.loc_field -1];
  unsigned char *stop;
  while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == digit_class) {
     mp->cur_input.loc_field++;
  }
  if (mp->buffer[mp->cur_input.loc_field] == '.' && 
      mp->buffer[mp->cur_input.loc_field+1] != '.') {
     mp->cur_input.loc_field++;
     while (mp->char_class[mp->buffer[mp->cur_input.loc_field]] == digit_class) {
       mp->cur_input.loc_field++;
     }
  } 
  find_exponent(mp);
  stop = &mp->buffer[mp->cur_input.loc_field-1];
  mp_wrapup_numeric_token (mp, start, stop);
}

@ The |scaled| quantities in \MP\ programs are generally supposed to be
less than $2^{12}$ in absolute value, so \MP\ does much of its internal
arithmetic with 28~significant bits of precision. A |fraction| denotes
a scaled integer whose binary point is assumed to be 28 bit positions
from the right.

@d fraction_half (0.5*fraction_multiplier)
@d fraction_one (1.0*fraction_multiplier)
@d fraction_two (2.0*fraction_multiplier)
@d fraction_three (3.0*fraction_multiplier)
@d fraction_four (4.0*fraction_multiplier)

@ Here is a typical example of how the routines above can be used.
It computes the function
$${1\over3\tau}f(\theta,\phi)=
{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
 (\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
fudge factor for placing the first control point of a curve that starts
at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
(Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)

The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
(It's a sum of eight terms whose absolute values can be bounded using
relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
is positive; and since the tension $\tau$ is constrained to be at least
$3\over4$, the numerator is less than $16\over3$. The denominator is
nonnegative and at most~6.  

The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
$\sin\phi$, and $\cos\phi$, respectively.

@c
void mp_double_velocity (MP mp, mp_number *ret, mp_number st, mp_number ct, mp_number sf,
                  mp_number cf, mp_number t) {
  double acc, num, denom;      /* registers for intermediate calculations */
  acc = mp_double_take_fraction (mp, st.data.dval - (sf.data.dval / 16.0), 
                                     sf.data.dval - (st.data.dval / 16.0));
  acc = mp_double_take_fraction (mp, acc, ct.data.dval - cf.data.dval);
  num = fraction_two + mp_double_take_fraction (mp, acc, sqrt(2)*fraction_one);
  denom =
    fraction_three + mp_double_take_fraction (mp, ct.data.dval, 3*fraction_half*(sqrt(5.0)-1.0)) 
                   + mp_double_take_fraction (mp, cf.data.dval, 3*fraction_half*(3.0-sqrt(5.0)));
  if (t.data.dval != unity)
    num = mp_double_make_scaled (mp, num, t.data.dval);
  if (num / 4 >= denom) {
    ret->data.dval = fraction_four;
  } else {
    ret->data.dval = mp_double_make_fraction (mp, num, denom);
  }
#if DEBUG
  fprintf(stdout, "\n%f = velocity(%f,%f,%f,%f,%f)", mp_number_to_double(*ret), 
mp_number_to_double(st),mp_number_to_double(ct),
mp_number_to_double(sf),mp_number_to_double(cf),
mp_number_to_double(t));
#endif
}


@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.

@c
void mp_ab_vs_cd (MP mp, mp_number *ret, mp_number a_orig, mp_number b_orig, mp_number c_orig, mp_number d_orig) {
  integer q, r; /* temporary registers */
  integer a, b, c, d;
  (void)mp;
  
  mp_double_ab_vs_cd(mp,ret, a_orig, b_orig, c_orig, d_orig);
  if (1>0) 
    return ;
  /* TODO: remove this code until the end */
  a = a_orig.data.dval;
  b = b_orig.data.dval;
  c = c_orig.data.dval;
  d = d_orig.data.dval;
  @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
  while (1) {
    q = a / d;
    r = c / b;
    if (q != r) {
      ret->data.dval = (q > r ? 1 : -1);
      goto RETURN;
    }
    q = a % d;
    r = c % b;
    if (r == 0) {
      ret->data.dval = (q ? 1 : 0);
      goto RETURN;
    }
    if (q == 0) {
      ret->data.dval = -1;
      goto RETURN;
    }
    a = b;
    b = q;
    c = d;
    d = r;
  }                             /* now |a>d>0| and |c>b>0| */
RETURN:
#if DEBUG
  fprintf(stdout, "\n%f = ab_vs_cd(%f,%f,%f,%f)", mp_number_to_double(*ret), 
mp_number_to_double(a_orig),mp_number_to_double(b_orig),
mp_number_to_double(c_orig),mp_number_to_double(d_orig));
#endif
  return;
}


@ @<Reduce to the case that |a...@>=
if (a < 0) {
  a = -a;
  b = -b;
}
if (c < 0) {
  c = -c;
  d = -d;
}
if (d <= 0) {
  if (b >= 0) {
    if ((a == 0 || b == 0) && (c == 0 || d == 0)) 
      ret->data.dval = 0;
    else
      ret->data.dval = 1;
    goto RETURN;
  }
  if (d == 0) {
    ret->data.dval = (a == 0 ? 0 : -1);
    goto RETURN;
  }
  q = a;
  a = c;
  c = q;
  q = -b;
  b = -d;
  d = q;
} else if (b <= 0) {
  if (b < 0 && a > 0) {
    ret->data.dval  = -1;
    return;
  }
  ret->data.dval = (c == 0 ? 0 : -1);
  goto RETURN;
}

@ Now here's a subroutine that's handy for all sorts of path computations:
Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
returns the unique |fraction| value |t| between 0 and~1 at which
$B(a,b,c;t)$ changes from positive to negative, or returns
|t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
is already negative at |t=0|), |crossing_point| returns the value zero.

The general bisection method is quite simple when $n=2$, hence
|crossing_point| does not take much time. At each stage in the
recursion we have a subinterval defined by |l| and~|j| such that
$B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.

It is convenient for purposes of calculation to combine the values
of |l| and~|j| in a single variable $d=2^l+j$, because the operation
of bisection then corresponds simply to doubling $d$ and possibly
adding~1. Furthermore it proves to be convenient to modify
our previous conventions for bisection slightly, maintaining the
variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.

The following code maintains the invariant relations
$0\L|x0|<\max(|x1|,|x1|+|x2|)$,
$\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
it has been constructed in such a way that no arithmetic overflow
will occur if the inputs satisfy
$a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.

@d no_crossing   { ret->data.dval = fraction_one + 1; goto RETURN; }
@d one_crossing  { ret->data.dval = fraction_one; goto RETURN; }
@d zero_crossing { ret->data.dval = 0; goto RETURN; }

@c
static void mp_double_crossing_point (MP mp, mp_number *ret, mp_number aa, mp_number bb, mp_number cc) {
  double a,b,c;
  double d;    /* recursive counter */
  double x, xx, x0, x1, x2;    /* temporary registers for bisection */
  a = aa.data.dval;
  b = bb.data.dval;
  c = cc.data.dval;
  if (a < 0)
    zero_crossing;
  if (c >= 0) {
    if (b >= 0) {
      if (c > 0) {
        no_crossing;
      } else if ((a == 0) && (b == 0)) {
        no_crossing;
      } else {
        one_crossing;
      }
    }
    if (a == 0)
      zero_crossing;
  } else if (a == 0) {
    if (b <= 0)
      zero_crossing;
  }

  /* Use bisection to find the crossing point... */
  d = epsilon;
  x0 = a;
  x1 = a - b;
  x2 = b - c;
  do {
    /* not sure why the error correction has to be >= 1E-12 */
    x = (x1 + x2) / 2 + 1E-12;
    if (x1 - x0 > x0) {
      x2 = x;
      x0 += x0;
      d += d;
    } else {
      xx = x1 + x - x0;
      if (xx > x0) {
        x2 = x;
        x0 += x0;
        d += d;
      } else {
        x0 = x0 - xx;
        if (x <= x0) {
          if (x + x2 <= x0)
            no_crossing;
        }
        x1 = x;
        d = d + d + epsilon;
      }
    }
  } while (d < fraction_one);
  ret->data.dval = (d - fraction_one); 
RETURN:
#if DEBUG
  fprintf(stdout, "\n%f = crossing_point(%f,%f,%f)", mp_number_to_double(*ret), 
mp_number_to_double(aa),mp_number_to_double(bb),mp_number_to_double(cc));
#endif
  return;
}
 

@ We conclude this set of elementary routines with some simple rounding
and truncation operations.


@ |round_unscaled| rounds a |scaled| and converts it to |int|
@c
int mp_round_unscaled(mp_number x_orig) {
  int x = (int)ROUND(x_orig.data.dval);
  return x;
}

@ |number_floor| floors a number

@c
void mp_number_floor (mp_number *i) {
  i->data.dval = floor(i->data.dval);
}

@ |fraction_to_scaled| rounds a |fraction| and converts it to |scaled|
@c
void mp_double_fraction_to_round_scaled (mp_number *x_orig) {
  double x = x_orig->data.dval;
  x_orig->type = mp_scaled_type;
  x_orig->data.dval = x/fraction_multiplier;
}



@* Algebraic and transcendental functions.
\MP\ computes all of the necessary special functions from scratch, without
relying on |real| arithmetic or system subroutines for sines, cosines, etc.

@ 

@c
void mp_double_square_rt (MP mp, mp_number *ret, mp_number x_orig) { /* return, x: scaled */
  double x;
  x = x_orig.data.dval;
  if (x <= 0) {
    @<Handle square root of zero or negative argument@>;
  } else {
    ret->data.dval = sqrt(x);
  }
}


@ @<Handle square root of zero...@>=
{  
  if (x < 0) {
    char msg[256];
    const char *hlp[] = {
           "Since I don't take square roots of negative numbers,",
           "I'm zeroing this one. Proceed, with fingers crossed.",
           NULL };
    char *xstr = mp_double_number_tostring (mp, x_orig);
    mp_snprintf(msg, 256, "Square root of %s has been replaced by 0", xstr);
    free(xstr);
@.Square root...replaced by 0@>;
    mp_error (mp, msg, hlp, true);
  }
  ret->data.dval = 0;
  return;
}


@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by a quick hack

@c
void mp_double_pyth_add (MP mp, mp_number *ret, mp_number a_orig, mp_number b_orig) {
  double a, b; /* a,b : scaled */
  a = fabs (a_orig.data.dval);
  b = fabs (b_orig.data.dval);
  errno = 0;
  ret->data.dval = sqrt(a*a + b*b);
  if (errno) {
    mp->arith_error = true;
    ret->data.dval = EL_GORDO;
  }
}


@ Here is a similar algorithm for $\psqrt{a^2-b^2}$. Same quick hack, also.

@c
void mp_double_pyth_sub (MP mp, mp_number *ret, mp_number a_orig, mp_number b_orig) {
  double a, b;
  a = fabs (a_orig.data.dval);
  b = fabs (b_orig.data.dval);
  if (a <= b) {
    @<Handle erroneous |pyth_sub| and set |a:=0|@>;
  } else {
    a = sqrt(a*a - b*b);
  }
  ret->data.dval = a;
}


@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
{
  if (a < b) {
    char msg[256];
    const char *hlp[] = {
         "Since I don't take square roots of negative numbers,",
         "I'm zeroing this one. Proceed, with fingers crossed.",
         NULL };
    char *astr = mp_double_number_tostring (mp, a_orig);
    char *bstr = mp_double_number_tostring (mp, b_orig);
    mp_snprintf (msg, 256, "Pythagorean subtraction %s+-+%s has been replaced by 0", astr, bstr);
    free(astr);
    free(bstr);
@.Pythagorean...@>;
    mp_error (mp, msg, hlp, true);
  }
  a = 0;
}


@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. 

@d two_to_the(A) (1<<(unsigned)(A))

@ Here is the routine that calculates $2^8$ times the natural logarithm
of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
when |x| is a given positive integer.

@c
void mp_double_m_log (MP mp, mp_number *ret, mp_number x_orig) {
  if (x_orig.data.dval <= 0) {
    @<Handle non-positive logarithm@>;
  } else {
    ret->data.dval = log (x_orig.data.dval)*256.0;
  }
}

@ @<Handle non-positive logarithm@>=
{
  char msg[256];
  const char *hlp[] = { 
         "Since I don't take logs of non-positive numbers,",
         "I'm zeroing this one. Proceed, with fingers crossed.",
          NULL };
  char *xstr = mp_double_number_tostring (mp, x_orig);
  mp_snprintf (msg, 256, "Logarithm of %s has been replaced by 0", xstr);
  free (xstr);
@.Logarithm...replaced by 0@>;
  mp_error (mp, msg, hlp, true);
  ret->data.dval = 0;
}


@ Conversely, the exponential routine calculates $\exp(x/2^8)$,
when |x| is |scaled|. 

@c
void mp_double_m_exp (MP mp, mp_number *ret, mp_number x_orig) {
  errno = 0;  
  ret->data.dval = exp(x_orig.data.dval/256.0);
  if (errno) {
    if (x_orig.data.dval > 0) {
      mp->arith_error = true;
      ret->data.dval = EL_GORDO;
    } else {
      ret->data.dval = 0;
    }
  }
}


@ Given integers |x| and |y|, not both zero, the |n_arg| function
returns the |angle| whose tangent points in the direction $(x,y)$.

@c
void mp_double_n_arg (MP mp, mp_number *ret, mp_number x_orig, mp_number y_orig) {
  if (x_orig.data.dval == 0.0 && y_orig.data.dval == 0.0) {
    @<Handle undefined arg@>;
  } else {
    ret->type = mp_angle_type;
    ret->data.dval = atan2 (y_orig.data.dval, x_orig.data.dval) * (180.0 / PI)  * angle_multiplier;
    if (ret->data.dval == -0.0) 
      ret->data.dval = 0.0;
#if DEBUG
    fprintf(stdout, "\nn_arg(%g,%g,%g)", mp_number_to_double(*ret),
    mp_number_to_double(x_orig),mp_number_to_double(y_orig));
#endif
  }
}


@ @<Handle undefined arg@>=
{
  const char *hlp[] = {
         "The `angle' between two identical points is undefined.",
         "I'm zeroing this one. Proceed, with fingers crossed.",
         NULL };
  mp_error (mp, "angle(0,0) is taken as zero", hlp, true);
@.angle(0,0)...zero@>;
  ret->data.dval = 0;
}


@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
and cosine of that angle. The results of this routine are
stored in global integer variables |n_sin| and |n_cos|.

@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
the purpose of |n_sin_cos(z)| is to set
|x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
for some rather large number~|r|. The maximum of |x| and |y|
will be between $2^{28}$ and $2^{30}$, so that there will be hardly
any loss of accuracy. Then |x| and~|y| are divided by~|r|.

@d one_eighty_deg (180.0*angle_multiplier)
@d three_sixty_deg (360.0*angle_multiplier)

@d odd(A)   (abs(A)%2==1)

@ Compute a multiple of the sine and cosine

@c
void mp_double_sin_cos (MP mp, mp_number z_orig, mp_number *n_cos, mp_number *n_sin) {
  double rad;
  rad = (z_orig.data.dval / angle_multiplier); /* still degrees */
  if ((rad == 90.0)||(rad == -270)){
    n_cos->data.dval = 0.0;
    n_sin->data.dval = fraction_multiplier;
  } else if ((rad == -90.0)||(rad == 270.0)) {
    n_cos->data.dval = 0.0;
    n_sin->data.dval = -fraction_multiplier;
  } else if ((rad == 180.0) || (rad == -180.0)) {
    n_cos->data.dval = -fraction_multiplier;
    n_sin->data.dval = 0.0;
  } else {
    rad = rad * PI/180.0;
    n_cos->data.dval = cos(rad) * fraction_multiplier;
    n_sin->data.dval = sin(rad) * fraction_multiplier;
  }
#if DEBUG
  fprintf(stdout, "\nsin_cos(%f,%f,%f)", mp_number_to_double(z_orig),
mp_number_to_double(*n_cos), mp_number_to_double(*n_sin));
#endif
}

@ This is the http://www-cs-faculty.stanford.edu/~uno/programs/rng.c
with  small cosmetic modifications.

@c
#define KK 100                     /* the long lag  */
#define LL  37                     /* the short lag */
#define MM (1L<<30)                /* the modulus   */
#define mod_diff(x,y) (((x)-(y))&(MM-1)) /* subtraction mod MM */
/* */ 
static long ran_x[KK];                    /* the generator state */
/* */ 
static void ran_array(long aa[],int n) /* put n new random numbers in aa */
  /* long aa[]    destination */
  /* int n       array length (must be at least KK) */
{
  register int i,j;
  for (j=0;j<KK;j++) aa[j]=ran_x[j];
  for (;j<n;j++) aa[j]=mod_diff(aa[j-KK],aa[j-LL]);
  for (i=0;i<LL;i++,j++) ran_x[i]=mod_diff(aa[j-KK],aa[j-LL]);
  for (;i<KK;i++,j++) ran_x[i]=mod_diff(aa[j-KK],ran_x[i-LL]);
}
/* */ 
/* the following routines are from exercise 3.6--15 */
/* after calling |ran_start|, get new randoms by, e.g., |x=ran_arr_next()| */
/* */ 
#define QUALITY 1009 /* recommended quality level for high-res use */
static long ran_arr_buf[QUALITY];
static long ran_arr_dummy=-1, ran_arr_started=-1;
static long *ran_arr_ptr=&ran_arr_dummy; /* the next random number, or -1 */
/* */ 
#define TT  70   /* guaranteed separation between streams */
#define is_odd(x)  ((x)&1)          /* units bit of x */
/* */ 
static void ran_start(long seed) /* do this before using |ran_array| */
  /* long seed             selector for different streams */
{
  register int t,j;
  long x[KK+KK-1];              /* the preparation buffer */
  register long ss=(seed+2)&(MM-2);
  for (j=0;j<KK;j++) {
    x[j]=ss;                      /* bootstrap the buffer */
    ss<<=1; if (ss>=MM) ss-=MM-2; /* cyclic shift 29 bits */
  }
  x[1]++;              /* make x[1] (and only x[1]) odd */
  for (ss=seed&(MM-1),t=TT-1; t; ) {       
    for (j=KK-1;j>0;j--) x[j+j]=x[j], x[j+j-1]=0; /* "square" */
    for (j=KK+KK-2;j>=KK;j--)
      x[j-(KK-LL)]=mod_diff(x[j-(KK-LL)],x[j]),
      x[j-KK]=mod_diff(x[j-KK],x[j]);
    if (is_odd(ss)) {              /* "multiply by z" */
      for (j=KK;j>0;j--)  x[j]=x[j-1];
      x[0]=x[KK];            /* shift the buffer cyclically */
      x[LL]=mod_diff(x[LL],x[KK]);
    }
    if (ss) ss>>=1; else t--;
  }
  for (j=0;j<LL;j++) ran_x[j+KK-LL]=x[j];
  for (;j<KK;j++) ran_x[j-LL]=x[j];
  for (j=0;j<10;j++) ran_array(x,KK+KK-1); /* warm things up */
  ran_arr_ptr=&ran_arr_started;
}
/* */ 
#define ran_arr_next() (*ran_arr_ptr>=0? *ran_arr_ptr++: ran_arr_cycle())
static long ran_arr_cycle(void)
{
  if (ran_arr_ptr==&ran_arr_dummy)
    ran_start(314159L); /* the user forgot to initialize */
  ran_array(ran_arr_buf,QUALITY);
  ran_arr_buf[KK]=-1;
  ran_arr_ptr=ran_arr_buf+1;
  return ran_arr_buf[0];
}



@ To initialize the |randoms| table, we call the following routine.

@c
void mp_init_randoms (MP mp, int seed) {
  int j, jj, k;    /* more or less random integers */
  int i;        /* index into |randoms| */
  j =  abs (seed);
  while (j >= fraction_one) {
    j = j/2;
  }
  k = 1;
  for (i = 0; i <= 54; i++) {
    jj = k;
    k = j - k;
    j = jj;
    if (k<0)
      k += fraction_one;
    mp->randoms[(i * 21) % 55].data.dval = j;
  }
  mp_new_randoms (mp);
  mp_new_randoms (mp);
  mp_new_randoms (mp);          /* ``warm up'' the array */

  ran_start((unsigned long) seed);  


}

@ @c
static double modulus(double left, double right);
double modulus(double left, double right) {
    double quota = left / right;
    double frac,tmp;
    frac = modf(quota,&tmp);
    /* frac contains what's beyond the '.' */
    frac *= right;
    return frac;
}
void mp_number_modulo (mp_number *a, mp_number b) {
   a->data.dval = modulus (a->data.dval, b.data.dval);
}



@ To consume a random  integer for the uniform generator, the program below will say `|next_unif_random|'.

@c 
static void mp_next_unif_random (MP mp, mp_number *ret) { 
  double a; 
  unsigned long int op;
  (void)mp;
  op = (unsigned)ran_arr_next(); 
  a = op/(MM*1.0);
  ret->data.dval = a;
}



@ To consume a random fraction, the program below will say `|next_random|'.

@c 
static void mp_next_random (MP mp, mp_number *ret) { 
  if ( mp->j_random==0 ) 
    mp_new_randoms(mp);
  else 
    mp->j_random = mp->j_random-1;
  mp_number_clone (ret, mp->randoms[mp->j_random]);
}


@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.

Note that the call of |take_fraction| will produce the values 0 and~|x|
with about half the probability that it will produce any other particular
values between 0 and~|x|, because it rounds its answers.

@c
static void mp_double_m_unif_rand (MP mp, mp_number *ret, mp_number x_orig) {
  mp_number y;     /* trial value */
  mp_number x, abs_x;
  mp_number u;
  new_fraction (y);
  new_number (x);
  new_number (abs_x);
  new_number (u);
  mp_number_clone (&x, x_orig);
  mp_number_clone (&abs_x, x);
  mp_double_abs (&abs_x);
  mp_next_unif_random(mp, &u);
  y.data.dval = abs_x.data.dval * u.data.dval;
  free_number (u);
  if (mp_number_equal(y, abs_x)) {
    mp_number_clone (ret, ((math_data *)mp->math)->zero_t);
  } else if (mp_number_greater(x, ((math_data *)mp->math)->zero_t)) {
    mp_number_clone (ret, y);
  } else {
    mp_number_clone (ret, y);
    mp_number_negate (ret);
  }
  free_number (abs_x);
  free_number (x);
  free_number (y);
}



@ Finally, a normal deviate with mean zero and unit standard deviation
can readily be obtained with the ratio method (Algorithm 3.4.1R in
{\sl The Art of Computer Programming\/}).

@c
static void mp_double_m_norm_rand (MP mp, mp_number *ret) {
  mp_number ab_vs_cd; 
  mp_number abs_x;
  mp_number u;
  mp_number r;
  mp_number la, xa;
  new_number (ab_vs_cd);
  new_number (la);
  new_number (xa);
  new_number (abs_x);
  new_number (u);
  new_number (r);
  
  do {
    do {
      mp_number v;
      new_number (v);
      mp_next_random(mp, &v);
      mp_number_substract (&v, ((math_data *)mp->math)->fraction_half_t); 
      mp_double_number_take_fraction (mp,&xa, ((math_data *)mp->math)->sqrt_8_e_k, v); 
      free_number (v);
      mp_next_random(mp, &u);
      mp_number_clone (&abs_x, xa);
      mp_double_abs (&abs_x);
    } while (!mp_number_less(abs_x, u));
    mp_double_number_make_fraction (mp, &r, xa, u);
    mp_number_clone (&xa, r);
    mp_double_m_log (mp,&la, u);
    mp_set_double_from_substraction(&la, ((math_data *)mp->math)->twelve_ln_2_k, la);
    mp_double_ab_vs_cd (mp,&ab_vs_cd, ((math_data *)mp->math)->one_k, la, xa, xa);
  } while (mp_number_less(ab_vs_cd,((math_data *)mp->math)->zero_t));
  mp_number_clone (ret, xa);
  free_number (ab_vs_cd);
  free_number (r);
  free_number (abs_x);
  free_number (la);
  free_number (xa);
  free_number (u);
}




@ The following subroutine is used only in |norm_rand| and tests  if $ab$ is
greater than, equal to, or less than~$cd$.
The result is $+1$, 0, or~$-1$ in the three respective cases.

@c
void mp_double_ab_vs_cd (MP mp, mp_number *ret, mp_number a_orig, mp_number b_orig, mp_number c_orig, mp_number d_orig) {
  double ab, cd;
  (void)mp;
  ret->data.dval = 0 ;
  ab = a_orig.data.dval*b_orig.data.dval;
  cd = c_orig.data.dval*d_orig.data.dval;
  if (ab > cd ) 
       ret->data.dval = 1 ;
  else if (ab < cd ) 
       ret->data.dval = -1 ;
  return ;
}