File: exer7-15.tex

package info (click to toggle)
texlive-doc 2005.dfsg.2-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 125,100 kB
  • ctags: 12,558
  • sloc: xml: 24,267; perl: 14,394; makefile: 727; sh: 324; lisp: 276; java: 159; sed: 4
file content (12 lines) | stat: -rw-r--r-- 499 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
\documentclass{article}
\begin{document}
\noindent
Laurent expansion using $c_n = \frac{1}{2\pi i}
\oint (\zeta-a)^{-n-1}f(\zeta)\,d\zeta$, for every function $f(z)$ the
following representation is valid ($n=0$, $\pm1$, $\pm2$, \ldots)
\[ f(x) = \sum_{n=-\infty}^{+\infty} c_n(z-a)^n
	= \left\{\begin{array}{r}
	  c_0 + c_1(z-a) + c_2(z-a)^2 +\cdots+ c_n(z-a)^n+\cdots\\
	  \mbox{}+c_{-1}(z-a)^{-1} + c_{-2}(z-a)^{-2}+\cdots\\
	  \mbox{}+c_{-n}(z-a)^{-n}+\cdots \end{array}\right. \]
\end{document}