File: exer7-6.tex

package info (click to toggle)
texlive-doc 2009-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 192,004 kB
  • ctags: 4,774
  • sloc: perl: 12,760; xml: 11,870; makefile: 1,033; lisp: 394; sh: 229; awk: 205; java: 159; sed: 4
file content (11 lines) | stat: -rw-r--r-- 512 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
\documentclass{article}
\begin{document}
The union of two sets $\mathcal{A}$ and $\mathcal{B}$ is the set of elements
that are in at least one of the two sets,  and is designated as
$\mathcal{A\cup B}$. This operation is commutative
$\mathcal{A\cup B = B\cup A}$ and associative $\mathcal{(A\cup B)\cup C =
A\cup(B\cup C)}$.  If $\mathcal{A\subseteq B}$, then
$\mathcal{A\cup B = B}$. It then follows that $\mathcal{A\cup A = A}$,
$\mathcal{A\cup\{\emptyset\} = A}$ and $\mathcal{J\cup A = J}$. 

\end{document}