File: exer7-8.tex

package info (click to toggle)
texlive-doc 2009-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 192,004 kB
  • ctags: 4,774
  • sloc: perl: 12,760; xml: 11,870; makefile: 1,033; lisp: 394; sh: 229; awk: 205; java: 159; sed: 4
file content (10 lines) | stat: -rw-r--r-- 402 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
\documentclass{article}
\setlength{\textwidth}{135mm}
\begin{document}
\noindent
The gamma function $\Gamma(x)$ is defined as
\[ \Gamma(x)\equiv\lim_{n\to\infty}\prod_{\nu=0}^{n-1}\frac{n!n^{x-1}}{x+\nu}
	    = \lim_{n\to\infty}\frac{n!n^{x-1}}{x(x+1)(x+2)\cdots(x+n-1)}
	    \equiv\int_0^\infty e^{-t}t^{x-1}\,dt \]
The integral definition is valid only for $x>0$ (2nd Euler integral).
\end{document}