1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
% Introductory sample article: intrart.tex
% Typeset with LaTeX format
\documentclass{article}
\usepackage{amsmath,amssymb}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}
\begin{document}
\title{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin\thanks{Research supported
by the NSF under grant number~23466.}\\
Computer Science Department\\
Winnebago, Minnesota 23714\\
menuhin@ccw.uwinnebago.edu}
\date{March 15, 1995}
\maketitle
\begin{abstract}
In this note we prove that there exist \emph{complete-simple
distributive lattices}, that is, complete distributive
lattices in which there are only two complete congruences.
\end{abstract}
\section{Introduction} \label{S:intro}
In this note we prove the following result:
\begin{theorem}
There exists an infinite complete distributive lattice $K$
with only the two trivial complete congruence relations.
\end{theorem}
\section{The $\Pi^{*}$ construction} \label{S:P*}
The following construction is crucial in our proof of our Theorem:
\begin{definition} \label{D:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Their
$\Pi^{*}$ product is defined as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) =
\Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element.
\end{definition}
\begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
$i$th component is $d$ and all the other components
are $0$.
\end{notation}
See also Ernest~T. Moynahan~\cite{eM57a}.
Next we verify the following result:
\begin{theorem} \label{T:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Let $\Theta$
be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that for all $d \leq c < 1_{i}$,
\begin{equation} \label{E:cong1}
\langle \dots, 0, \dots,\overset{i}{d},
\dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
\emph{Proof.} Since
\begin{equation} \label{E:cong2}
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows
from condition~(C) that
\begin{align} \label{E:cong}
& \langle \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv\\
&\qquad \qquad \quad \bigvee ( \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
\equiv 1 \pmod{\Theta}. \notag
\end{align}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle$, we obtain
\begin{align} \label{E:comp}
0 = & \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
\rangle \wedge \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \equiv\\
&\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
\rangle \pmod{\Theta}, \notag
\end{align}
Using the completeness of $\Theta$ and \eqref{E:comp},
we get:
\[
0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.
\begin{thebibliography}{9}
\bibitem{sF90}
Soo-Key Foo, \emph{Lattice Constructions}, Ph.D. thesis,
University of Winnebago, Winnebago, MN, December 1990.
\bibitem{gM68}
George~A. Menuhin, \emph{Universal Algebra}, D.~van Nostrand,
Princeton-Toronto-London-Mel\-bourne, 1968.
\bibitem{eM57}
Ernest~T. Moynahan, \emph{On a problem of M.~H. Stone}, Acta Math.
Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
\bibitem{eM57a}
Ernest~T. Moynahan, \emph{Ideals and congruence relations in
lattices.~II}, Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
(1957), 417--434.
\end{thebibliography}
\end{document}
|