1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
% \iffalse
%% File: l3int.dtx Copyright (C) 1990-1998 LaTeX3 project
%
%<*dtx>
\ProvidesFile{l3int.dtx}
%</dtx>
%<package>\NeedsTeXFormat{LaTeX2e}
%<package>\ProvidesPackage{l3int}
%<driver> \ProvidesFile{l3int.drv}
% \fi
% \ProvidesFile{l3int.dtx}
[1998/04/20 v1.0c L3 Experimental Integer module]
%
% \iffalse
%<*driver>
\documentclass{l3doc}
\begin{document}
\DocInput{l3int.dtx}
\end{document}
%</driver>
% \fi
%
%
% \GetFileInfo{l3int.dtx}
% \title{The \textsf{l3int} package\thanks{This file
% has version number \fileversion, last
% revised \filedate.}\\
% Counters}
% \author{\Team}
% \date{\filedate}
% \maketitle
%
% \section{Counters}
%
% \LaTeX3 maintains two type of integer registers for internal use.
% One (associated with the name "int") uses the builtin counter
% registers of \TeX{} and is therefore relatively fast and one
% (associated with the name "fint" for fake counter) that implements the
% operations within the \TeX{} macro language and is therefore much
% slower in processing. This type of counter is also far more restricted
% in its range.
%
% The fake counter should be used for variables that are not accessed
% very often since this saves the important fast internal registers
% (\TeX{} has only 255 of those). For example, all allocation routines
% in \LaTeX3 make use of fake counters to remember the values of recent
% allocated register numbers etc.
%
% Since all functions for both types are very similar (they usually
% differ only in the initial "f") we describe them together. But
% remember that you need to use "fint" variables when using "fint"
% functions.
%
% \subsection{Functions}
%
% \begin{function}{%
% \int_new:N |
% \int_new:c |
% \fint_new:N |
% }
% \begin{syntax}
% "\int_new:N" <int>
% "\fint_new:N" <fint>
% \end{syntax}
% Defines <int> to be a new variable of type "int". There is no way to
% define constant counters with these functions.
% \begin{texnote}
% "\int_new:N" is the equivalent to plain \TeX{}'s \tn{newcount}.
% However, the internal register allocation is done differently.
% \end{texnote}
% \end{function}
%
% \begin{function}{%
% \int_incr:N |
% \int_gincr:N |
% \int_gincr:c |
% \fint_incr:N |
% \fint_gincr:N |
% }
% \begin{syntax}
% "\int_incr:N" <int>
% "\fint_incr:N" <fint>
% \end{syntax}
% Increments <int> by one. For global variables the global versions
% should be used.
% \end{function}
%
% \begin{function}{%
% \int_decr:N |
% \int_gdecr:N |
% \int_gdecr:c |
% \fint_decr:N |
% \fint_gdecr:N |
% }
% \begin{syntax}
% "\int_decr:N" <int>
% "\fint_decr:N" <fint>
% \end{syntax}
% Decrements <int> by one. For global variables the global versions
% should be used.
% \end{function}
%
% \begin{function}{%
% \int_set:Nn |
% \int_set:cn |
% \int_gset:Nn |
% \int_gset:cn |
% \fint_set:Nn |
% \fint_gset:Nn |
% }
% \begin{syntax}
% "\int_set:Nn" <int> "{" <integer> "}"
% "\fint_set:Nn" <fint> "{" <integer> "}"
% \end{syntax}
% These functions will set the <int> register to the <integer> value.
% \end{function}
%
% \begin{function}{%
% \fint_set_eq:NN |
% \fint_gset_eq:NN |
% }
% \begin{syntax}
% "\fint_set_eq:NN" <fint1> <fint2>
% \end{syntax}
% Fast form for
% \begin{syntax}
% "\fint_set:No" <fint1> "{\fint_use:N" <fint2> "}"
% \end{syntax}
% when <fint2> is known to be a variable of fake counter. Note that a
% corresponding function for real counters is not implemented since the
% "\int_set:Nn" function does this operation sufficiently when then second
% argument is a <int> instead of "{"<integer>"}" value.
% \end{function}
%
% \begin{function}{%
% \int_add:Nn |
% \int_add:cn |
% \int_gadd:Nn |
% \fint_add:Nn |
% \fint_gadd:Nn |
% }
% \begin{syntax}
% "\int_add:Nn" <int> "{" <integer> "}"
% "\fint_add:Nn" <fint> "{" <integer> "}"
% \end{syntax}
% These functions will add to the <int> register the value <integer>. If
% the second argument is a <int> register too, the surrounding braces
% can be left out.
%
% It not allowed to use a <fint> instead of the <integer>. If a fake
% counter should be used as the second argument one needs to turn the
% <fint> first into an <integer> by applying "\fint_use:N".
% \end{function}
%
% \begin{function}{%
% \int_sub:Nn |
% \int_gsub:Nn |
% \fint_sub:Nn |
% \fint_gsub:Nn |
% }
% \begin{syntax}
% "\int_gsub:Nn" <int> "{" <integer> "}"
% "\fint_gsub:Nn" <fint> "{" <integer> "}"
% \end{syntax}
% These functions will subtract from the <int> register the value
% <integer>. If the second argument is a <int> register too, the
% surrounding braces can be left out.
%
% It is not allowed to use a <fint> instead of the <integer>. If a fake
% counter should be used as the second argument one needs to turn the
% <fint> first into an <integer> by applying "\fint_use:N".
% \end{function}
%
% \begin{function}{%
% \int_use:N |
% \int_use:c |
% \fint_use:N |
% }
% \begin{syntax}
% "\int_use:N" <int>
% "\fint_use:N" <fint>
% \end{syntax}
% This function returns the integer value kept in <int> in a way
% suitable for further processing. Be sure to use "\fint_use:N" if you
% are accessing the value of a fake counter because otherwise your
% result will be to some surprise to you (there is no check).
% \begin{texnote}
% The function "\int_use:N" could be implemented directly as the \TeX{}
% primitive "\tex_the:D" which is also responsible to produce the values for
% other internal quantities. We have chosen to use individual functions
% for counters, dimenions etc.\ to allow checks and to make the code
% more selfexplaining.
% \end{texnote}
% \end{function}
%
% \subsection{Formatting a counter value}
%
% \begin{function}{\int_to_arabic:n |
% \int_to_alph:n |
% \int_to_Alph:n |
% \int_to_roman:n |
% \int_to_Roman:n |
% \int_to_symbol:n |
% }
% \begin{syntax}
% "\int_to_alph:n" "{" <integer> "}"
% "\int_to_alph:n" <int>
% "\int_to_alph:n" "{" "\fint_use:N" <fint> "}"
% \end{syntax}
% If some <integer> or the the current value of a <int> should be
% displayed or typeset in a special ways (e.g., as uppercase roman
% numerals) these function can be used. We need braces if the argument
% is a simple <integer>, they can be omitted in case of a <int>.
%
% To format <fint>s with these functions it is necessary to turn the
% value of the <fint> first into an <integer> by applying "\fint_use:N"
% within the argument braces.
%
% All functions are fully expandable and will therefore produce the
% correct output when used inside of deferred writes, etc.
% \begin{texnote}
% These are more or less the internal \LaTeX2 functions \tn{@arabic},
% \tn{@alph}, \tn{Alph}, \tn{@roman}, \tn{@Roman}, and \tn{@fnsymbol}
% except that "\int_to_symbol:n" is also allowed outside math mode.
% \end{texnote}
% \end{function}
%
% \subsection{Variable and constants}
%
% \begin{variable}{%
% \c_int_max |
% \c_fint_max |
% }
% Constant that denote the maximum value which can be stored in a <int>
% or <fint> register.
% \end{variable}
%
% \begin{variable}{%
% \c_minus_one |
% \c_zero |
% \c_one |
% \c_two |
% \c_three |
% \c_sixteen |
% \c_twohundred_fifty_five |
% \c_twohundredfiftysix |
% \c_thousand |
% \c_ten_thousand |
% \c_twenty_thousand |
% }
% Set of constants denoting useful values.
% \begin{texnote}
% Most of these constants have been available under \LaTeX2 under names
% like \tn{tw@}, \tn{thr@@} etc.
% \end{texnote}
% \end{variable}
%
% \begin{variable}{%
% \l_tmpa_int |
% \l_tmpb_int |
% \l_tmpc_int |
% \g_tmpa_int |
% \g_tmpb_int |
% }
% Scratch register for immediate use. They are not used by conditionals
% or predicate functions.
% \end{variable}
%
%
% \section{Integer registers}
%
%
% We start by ensuring that the required packages are loaded.
% \begin{macrocode}
%<package&!check>\RequirePackage{l3basics}\par
%<package&check>\RequirePackage{l3chk}\par
%<*package>
% \end{macrocode}
%
% Functions that support \LaTeX's user accessible counters should be
% added here, too. But first the internal counters.
%
% \begin{macro}{\int_incr:N}
% \begin{macro}{\int_decr:N}
% \begin{macro}{\int_gincr:N}
% \begin{macro}{\int_gdecr:N}
% Incrementing and decrementing of integer registers is done with
% the following functions.
% \begin{macrocode}
\def_new:Npn \int_incr:N #1{\tex_advance:D#1\c_one
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_decr:N #1{\tex_advance:D#1\c_minus_one
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gincr:N {
% \end{macrocode}
% We make sure that a local variable is not updated globally by
% changing the internal test (i.e.\ |\chk_local_or_pref_global:N|) before
% making the assignment. This is done by |\pref_global_chk:| which also
% issues the necessary |\pref_global:D|. This is not very efficient, but
% this code will be only included for debugging purposes. Using
% |\pref_global:D| in front of the local function is better in the
% production versions.
% \begin{macrocode}
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_incr:N}
\def_new:Npn \int_gdecr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_decr:N}
% \end{macrocode}
% With the |\int_add:Nn| functions we can shorten the above code.
% If this makes it too slow \ldots
% \begin{macrocode}
\def:Npn \int_incr:N #1{\int_add:Nn#1\c_one}
\def:Npn \int_decr:N #1{\int_add:Nn#1\c_minus_one}
\def:Npn \int_gincr:N #1{\int_gadd:Nn#1\c_one}
\def:Npn \int_gdecr:N #1{\int_gadd:Nn#1\c_minus_one}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_new:N}
% \begin{macro}{\int_new:c}
% Allocation of a new internal counter is already done above. Here we define
% the next likely variant.
% \begin{macrocode}
\def_new:Npn \int_new:N {} % but since we don't distribute
\let:NN \int_new:N \newcount % allocation better nick the LaTeX one ...
\def_new:Npn \int_new:c {\exp_args:Nc \int_new:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_set:Nn}
% \begin{macro}{\int_set:cn}
% \begin{macro}{\int_gset:Nn}
% \begin{macro}{\int_gset:cn}
% Setting counters is again something that I would like to make
% uniform at the moment to get a better overview.
% \begin{macrocode}
\def_new:Npn \int_set:Nn #1#2{#1#2\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gset:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_set:Nn }
\def_new:Npn \int_set:cn {\exp_args:Nc \int_set:Nn }
\def_new:Npn \int_gset:cn {\exp_args:Nc \int_gset:Nn }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_add:Nn}
% \begin{macro}{\int_add:cn}
% \begin{macro}{\int_gadd:Nn}
% \begin{macro}{\int_sub:Nn}
% \begin{macro}{\int_gsub:Nn}
% Adding and substracting to and from a counter \ldots
% We should think of using these functions
% \begin{macrocode}
\def_new:Npn \int_add:Nn #1#2{
\tex_advance:D#1#2\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn\int_add:cn{\exp_args:Nc\int_add:Nn}
\def_new:Npn \int_sub:Nn #1#2{
\tex_advance:D#1-#2\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \int_gadd:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_add:Nn }
\def_new:Npn \int_gsub:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\int_sub:Nn }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\int_use:N}
% \begin{macro}{\int_use:c}
% Here is how counters are accessed:
% \begin{macrocode}
\let_new:NN \int_use:N \tex_the:D
\def_new:Npn \int_use:c #1{\int_use:N \cs:w#1\cs_end:}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\int_gincr:c}
% \begin{macro}{\int_gdecr:c}
% We also need \ldots
% \begin{macrocode}
\def_new:Npn \int_gincr:c {\exp_args:Nc \int_gincr:N}
\def_new:Npn \int_gdecr:c {\exp_args:Nc \int_gdecr:N}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\l_tmpa_int}
% \begin{macro}{\l_tmpb_int}
% \begin{macro}{\l_tmpc_int}
% \begin{macro}{\g_tmpa_int}
% \begin{macro}{\g_tmpb_int}
% We provide two local and two global scratch counters, maybe we
% need more or less. Instead of using the allocation routines we
% partly allocate them by hand.
% \begin{macrocode}
\chk_new_cs:N \l_tmpa_int
% \end{macrocode}
% If it turns out that we don't need local counters then this
% register should be used for global counter. We might also think of
% using the |\l_last_alloc_fint| as a scratch register.
% \begin{macrocode}
\tex_countdef:D\l_tmpa_int 255
\int_new:N \l_tmpb_int
\int_new:N \l_tmpc_int
\int_new:N \g_tmpa_int
\int_new:N \g_tmpb_int
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\c_minus_one}
% \begin{macro}{\c_zero}
% \begin{macro}{\c_one}
% \begin{macro}{\c_two}
% \begin{macro}{\c_three}
% \begin{macro}{\c_four}
% \begin{macro}{\c_sixteen}
% \begin{macro}{\c_thirty_two}
% \begin{macro}{\c_twohundred_fifty_five}
% \begin{macro}{\c_twohundred_fifty_six}
% \begin{macro}{\c_thousand}
% \begin{macro}{\c_ten_thousand}
% \begin{macro}{\c_ten_thousand_one}
% \begin{macro}{\c_ten_thousand_two}
% \begin{macro}{\c_ten_thousand_three}
% \begin{macro}{\c_ten_thousand_four}
% \begin{macro}{\c_twenty_thousand}
% \begin{macro}{\c_int_max}
% And the usual constants, others are still missing. Please, make
% every constant a real constant at least for the moment. We can
% easily convert things in the end when we have found what
% constants are used in critical places and what not.
% \begin{macrocode}
\tex_chardef:D \c_zero = 0 \scan_stop:
\tex_chardef:D \c_one = 1 \scan_stop:
\tex_chardef:D \c_two = 2 \scan_stop:
\tex_chardef:D \c_three = 3 \scan_stop:
\tex_chardef:D \c_four = 4 \scan_stop:
\tex_chardef:D \c_sixteen = 16 \scan_stop:
\tex_chardef:D \c_thirty_two = 32 \scan_stop:
\tex_chardef:D \c_twohundred_fifty_five = 255 \scan_stop:
\tex_mathchardef:D \c_twohundred_fifty_six = 256 \scan_stop:
\tex_mathchardef:D \c_thousand = 1000 \scan_stop:
\tex_mathchardef:D \c_ten_thousand = 10000 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_one = 10001 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_two = 10002 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_three = 10003 \scan_stop:
\tex_mathchardef:D \c_ten_thousand_four = 10004 \scan_stop:
\tex_mathchardef:D \c_twenty_thousand = 20000 \scan_stop:
% already defined ...
%\int_new:N \c_minus_one
% \c_minus_one = -1
% \end{macrocode}
% The |\c_int_max| will be defined internally as the largest
% dimen.
% \begin{macrocode}
%\int_new:N \c_int_max
% \c_int_max = 2147483647
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% Show token usage:
% \begin{macrocode}
%</package>
%<*showmemory>
\showMemUsage
%</showmemory>
% \end{macrocode}
%
%
% \section{Fake registers}
%
% Fake registers are registers which implement \m{counter}s,
% \m{dimen}s, etc.\ which aren't used often and therefore don't need
% to run efficiently. One possible way of using them is to prepare certain
% registers this way, but |\let:NN| the mutator functions to real
% \m{counter}s as long as we have a sufficient number available. Now
% if we are making real large formats (by adding Pic\TeX, for example)
% we can turn them easily into fake registers and everything will work
% as before (only a bit slower).
%
%
% I haven't implemented anything besides counters so far, but \m{dimen}
% and \m{skip} present no principal problem and should probably be
% added.
%
% \subsection{Fake counters}
%
% \begin{macro}{\fint_new:N}
% A fake counter is internally a \m{muskip} register. A count value
% \m{x} is saved as \m{x}|mu| (more exactly as \m{x}|.0mu|) in this
% register. This means that fake counter values are far more
% restricted then usual counters, the largest value is 16383,
% i.e.\ the |pt| part of \TeX{}'s largest \m{dimen}. This could be
% changed by using more complicated conversion routines, but it
% might be all right in usual applications.
%
% Of course, we should make sure that we don't reach the borders,
% otherwise the user will be faced by the surprising message that
% some dimension got to large. (Not done yet).
% \begin{macrocode}
%<*package>
\let_new:NN \fint_new:N \newmuskip % nicked from LaTeX
% \end{macrocode}
% \end{macro}
%
%
% \begin{macro}{\fint_use:N}
% \begin{macro}{\fint_use_aux:w}
% To use the value of a fake counter we have to get rid of |.0mu| in
% an expandable way, since we want to allow constructions like
% \begin{verbatim}
% \if_num:w\fint_use:N \l_test_fint > 55\scan_stop: ...
%\end{verbatim}
% The simplest way I came up with (not much thinking behind) was
% using parameter matching.
% \begin{macrocode}
\def_new:Npn \fint_use:N {\exp_after:NN\fint_use_aux:w\the_internal:D}
% \end{macrocode}
% In the |\fint_use_aux:w| function we remove the |.0mu| and pass the
% the result back into the input stream. The only thing we
% have to think of, is that both |mu| have category code 12 when
% they are returned by |\the_internal:D|.
% \begin{macrocode}
\tex_lccode:D`\!=`\m \tex_lccode:D`\?=`\u
\tex_lowercase:D{\def_new:Npn \fint_use_aux:w #1.0!?{#1}}
\tex_lccode:D`\!=0\scan_stop: \tex_lccode:D`\?=0\scan_stop:
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\fint_set:Nn}
% \begin{macro}{\fint_gset:Nn}
% The way both routines are set up, the second argument might be
% either a \m{normal integer}, or an internal register.
% \begin{macrocode}
\def_new:Npn \fint_set:Nn #1#2{#1#2~mu\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \fint_gset:Nn{
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_set:Nn}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \begin{macro}{\fint_set_eq:NN}
% \begin{macro}{\fint_gset_eq:NN}
% We can easily set two fake counters equal to each other, but if
% fake counters and real counters are used, we have to use the
% slower |set| functions.
% \begin{macrocode}
\def_new:Npn \fint_set_eq:NN #1#2{#1#2
%<*check>
\chk_local_or_pref_global:N #1\chk_var_or_const:N #2
%</check>
}
\def_new:Npn \fint_gset_eq:NN {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_set_eq:NN}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\fint_add:Nn}
% \begin{macro}{\fint_gadd:Nn}
% \begin{macro}{\fint_sub:Nn}
% \begin{macro}{\fint_gsub:Nn}
% Adding and substracting; we make use of the fact that internally
% \TeX{} always use the same primitives to advance a register.
% \begin{macrocode}
\def_new:Npn \fint_add:Nn #1#2{\int_add:Nn#1{#2mu}}
\def_new:Npn \fint_gadd:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_add:Nn}
\def_new:Npn \fint_sub:Nn #1#2{\int_sub:Nn#1{#2mu}}
\def_new:Npn \fint_gsub:Nn {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_sub:Nn}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\fint_incr:N}
% \begin{macro}{\fint_gincr:N}
% \begin{macro}{\fint_decr:N}
% \begin{macro}{\fint_gdecr:N}
% Incrementing and decrementing the fake counters:
% \begin{macrocode}
\def_new:Npn \fint_incr:N #1{\advance:D#1\c_one mu\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \fint_decr:N #1{\advance:D#1\c_minus_one mu\scan_stop:
%<*check>
\chk_local_or_pref_global:N #1
%</check>
}
\def_new:Npn \fint_gincr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_incr:N}
\def_new:Npn \fint_gdecr:N {
%<*check>
\pref_global_chk:
%</check>
%<-check> \pref_global:D
\fint_decr:N}
% \end{macrocode}
% This can be achieved with less tokens but extra expansions:
% \begin{macrocode}
\def:Npn \fint_incr:N #1{\fint_add:Nn#1\c_one}
\def:Npn \fint_decr:N #1{\fint_add:Nn#1\c_minus_one}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\c_fint_max}
% A constant, denoting the largest possible value for fake counters.
% \begin{macrocode}
\tex_mathchardef:D\c_fint_max=16383 \scan_stop:
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Fake skip registers}
%
% One has to convert simply from the \m{x}|pt| |plus| \m{y}|pt| |minus|
% \m{z}|pt| representation produced by |\the_internal:D|, to the
% corresponding |mu| representation. Complications arise from the
% possibility that |plus| and/or |minus| is not present,\footnote{This
% can be catched by adding a suitable constant and removing the
% corresponding constant in the other representation.} and by the
% possibility that the stretch or shrink component is a |fil| unit.
%
% \subsection{Fake dimen registers}
%
% I suppose this could be viewed as a subcase of the skip registers.
% See later section for a fake fake version for the moment.
%
%
% \subsection{Allocation routines}
%
% Counters are rare goods in \TeX{} and we are near the limit, if
% for example \LaTeX{} and Pic\TeX{} are merged. Therefore we should
% be careful not to throw away counter registers unnecessarily. One
% place for instance, where we can save some of them are the
% allocation routines. Instead of using counters we maintain the
% number of the last allocated register in a fake counter.
%
%
% \begin{macrocode}
%</package>
%<*showmemory>
\showMemUsage
%</showmemory>
% \end{macrocode}
|