1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
|
%&LaTeX
\def\AmS{{$\mathcal A$\kern-.1667em
\lower.5ex\hbox{$\mathcal M$}\kern-.125em$\mathcal S$}}
\documentclass{article}
\usepackage{nath}
\nathstyle{geometry}
\mathindent=4pc
\makeatletter
\def \@listI{\leftmargin 3ex \topsep 4pt \partopsep 0pt
\itemsep 0pt \parsep 0pt \listparindent 0pt}
\makeatother
\def\To#1\endTo{\hbox to 4cm{$\displayed{#1}$\hss} \hbox{$#1$}}
\newcounter{p}
\def\sect#1{\refstepcounter{p} \paragraph{\S\arabic{p}. #1.}}
\def\capt#1#2{{\small Table #1: #2}}
\def\stuff#1{\hbox{\vrule height 1.5ex depth .3ex width 0ex}%
\raise .6mm\vbox{\hrule width #1 height .5mm}}
\setbox0\hbox{\tt ????}
\catcode`\?=0
\def????{\leavevmode\hbox to\wd0{\hss\it stuff\/\hss}}
\def\sref"#1"{\S\ref{#1}}
\def\refname{{\normalsize\bf References}}
\begin{document}
\title{A Short Guide to Nath}
\author{M. Marvan}
\date{14 February 2003}
\maketitle
%\end{document}
\sect{Annotation}
Nath is a \LaTeX\ style to separate presentation and content in mathematical
typography.
The style delivers a particular context-dependent presentation on the
basis of a rather coarse context-independent notation.
Although essentially backward compatible with \LaTeX,
Nath aims at producing traditional math typography even from sources
devoid of aesthetic ambitions.
Its name is derived from ``{\it na\/}tural ma{\it th\/} notation''
(see~\cite{EuroTeX}).
\sect{License}
Nath is a free software distributed under the terms of the GNU General
Public License, see \verb"http://www.gnu.org/copyleft/gpl.html".
\sect{Usage}
To install Nath, put the \verb"nath.sty" file into the \TeX\ input
directory.
A \LaTeX~2.09 document may start like
\begin{verbatim}
\documentstyle[nath]{article}
\end{verbatim}
Under \LaTeX~2$_{\varepsilon}$, the effect is achieved with
\begin{verbatim}
\documentclass{article}
\usepackage{nath}
\end{verbatim}
Nath does not introduce any new fonts.
See \sref "OtherPackages" for combining Nath and other \LaTeX\
styles.
\sect{Local options} \label{LocalOptions}
A few Nath options may be set in the body of a document.
The command \verb"\nathstyle" accepts a list of arguments of the form
`{\it name\/}\verb"="{\it value}' or `{\it name}'; the latter having the
same meaning as `{\it name\/}\verb"=on"'.
Currently supported options are
\verb"geometry" (see \sref"Delimiters"),
\verb"tensors" (see \sref"Tensors"),
\verb"leqno" (see \sref"EquationNumbering"),
and \verb"silent" (see \sref"ErrorsWarnings").
\sect{Errors and warnings}\label{ErrorsWarnings}
Nath errors are visualized by $\natherrormark$ (or whatever is
\verb"\natherrormark") placed where the error manifests itself
(which may look misplaced).
Unlike errors, Nath warnings appear only in the \verb"log" file and
do so only if the local option (see \sref"LocalOptions") \verb"silent"
is set to \verb"on".
Be aware that once admissible constructions may produce \TeX\ errors now.
E.g., superfluous braces may be harmful in math formulas except
around macro arguments.
Therefore, \verb"{" and \verb"}" should be used just where something
(a~sub- or superscript, a numerator, a denominator, and similar)
begins or ends.
\sect{Math modes}\label{MathModes}
\Nath\ uses two distinct math modes.
The single dollar sign \verb"$" invokes the {\it in-line\/} mode.
The double dollar sign \verb"$$" as well as other math environments
invoke the {\it display\/} mode.
Observe the difference:
\verb"$(1 + \frac xy)^2$" typesets as $(1 + \frac xy)^2$, while
\begin{verbatim}
$$
(1 + \frac xy)^2
$$
\end{verbatim}
typesets as
$$
(1 + \frac xy)^2,
$$
even though the notation is one and the same.
Commands \verb"\inline" and \verb"\displayed" force either mode
on a subexpression.
Sub- and superscripts are normally typeset in in-line mode; but
\begin{verbatim}
$$
(\sum_{i=1}^n x_i^p)^{\displayed{\frac 1p}}
$$
\end{verbatim}
produces the {\it display} mode in the {\it script\/} size:
\nathstyle{debug}
$$
(\sum_{i=1}^n x_i^p)^{\displayed{\frac 1p}}.
$$
Never leave delimiters un\verb"\displayed" in these cases.
The four math style switches of \TeX\ newly refer only to the
{\it size} of math expressions:
\verb"\scriptstyle" and \verb"\scriptscriptstyle" to the script
and second-level-script size of the {\it current\/} size;
\verb"\textstyle" is void; whereas \verb"\displaystyle" has a special
meaning in the context of the principle of smallest fences
(see~\sref "DisplayedFractions").
\sect{Fractions} \label{Fractions}
Fractions indicate division in a very broad sense
(cf.~$\frac{\partial f}{\partial x}$) and may occur in three shapes:
$$
\text{built-up \ } \frac AB,
\qquad
\text{piece } \hbox{ $\frac 12$},
\qquad
\text{solidus } \hbox{ $\frac AB$}.
$$
\Nath\ provides a single universal command \verb"\frac"
(besides of the obvious slash, `\verb"/"').
The resulting shape is determined by special algorithms
(see~\cite{EuroTeX}).
\sect{Displayed fractions} \label{DisplayedFractions}
Non-numeric fractions come out as built up.
According to what we call the {\it principle of smallest fences},
numeric fractions are typeset built up if and only if this does not
extend any paired delimiters.
E.g.,
\begin{verbatim}
$$
(\frac 12 + x)(\frac 12 + \frac 1x)
$$
\end{verbatim}
results in
$$
(\frac 12 + x)(\frac 12 + \frac 1x).
$$
One can circumvent the rule in two possible ways.
\paritem{(i)}
In order to force a built-up fraction, place \verb"\displaystyle" anywhere
within the nearest pair of delimiters.
E.g.,
$$
(\frac 12 + x\displaystyle)(\frac 12 + \frac 1x)
$$
results from
\begin{verbatim}
$$
(\frac 12 + x\displaystyle)(\frac 12 + \frac 1x)
$$
\end{verbatim}
\paritem{(ii)}
In order to force a case fraction, insert an extra pair of invisible
delimiters. E.g.,
$$
\int x\,dx = \left. \frac12 x^2 \right.
$$
results from
\begin{verbatim}
$$
\int x\,dx = \left. \frac12 x^2 \right.
$$
\end{verbatim}
{\it Compound fractions} have their numerator and denominator in display
mode:
$$
\frac{1 + \frac xy}{1 - \frac xy}.
$$
One can, of course, force the in-line mode. Namely,
\begin{verbatim}
$$
\frac{\inline{1 + \frac xy}}{\inline{1 - \frac xy}}
$$
\end{verbatim}
or, even better,
\begin{verbatim}
\newcommand\ifrac[2]{\frac{\inline{#1}}{\inline{#2}}}
$$
\ifrac{1 + \frac xy}{1 - \frac xy}
$$
\end{verbatim}
(cf. \sref"UserDefinitions") typesets as
\newcommand\ifrac[2]{\frac{\inline{#1}}{\inline{#2}}}
$$
\ifrac{1 + \frac xy}{1 - \frac xy}.
$$
\sect{In-line fractions}
A \verb"\frac" with numeric arguments results in a case fraction, such
as the Bernoulli number $B_{12} = -\frac {691}{2730}$.
Otherwise we get a solidus fraction and parentheses are added whenever
needed for preservation of the mathematical meaning.
E.g.,
\begin{verbatim}
$\frac{\frac ab}{\frac cd}$
\end{verbatim}
produces $\frac{\frac ab}{\frac cd}$.
Examples below present one and the same expression in display and in-line
mode.
Roughly speaking, Nath assumes that binary operations other than slash
have less binding power than the slash,
$$
\To \frac{a + b}{c + d} \endTo, \\
\To \frac {\frac {a \cdot b}{c} \cdot d}{c \cdot d} \endTo, \\
\To x + \frac ab \endTo.
$$
In particular, this rule applies to the binary operations of commutative
algebra:
$$
\To \frac AB \otimes \frac CD \endTo, \\
\To \frac{A \otimes B}{C \otimes D} \endTo,
$$
even though existing tradition may be different in this particular case.
On the other side, {\it juxtaposition} has more binding power than the
slash:
$$
\To \frac ab \frac cd \endTo, \\
\To \frac {\partial}{\partial x} \frac fg \endTo, \\
\To d\frac uv \endTo, \\
\To \frac {\partial^3 f}{\partial x \,\partial y^2} \endTo, \\
\To \frac a{bc} \endTo.
$$
Nath only avoids inserting parentheses between a
fraction and a numeric coefficient, e.g.,
$$
\To -\frac uv + 2\frac uv - \frac 12 \frac ab \endTo,
$$
unless there is a danger of confusion, e.g.,
$$
\To 2\frac {\pm u}{v} \endTo.
$$
In case of loose juxtaposition between operator and its argument,
there is no obvious winner, thus
$$
\To \frac{\sin x}{2} + \sin\frac x2\endTo.
$$
Of course, no parentheses will be inserted when they are already present
in one or another form:
$$
\To A [\frac uv]^2 \endTo, \\
\To \frac{(x,y)}{\lVert x \rVert\,\lVert y \rVert} \endTo
$$
(the last example uses \verb"\lVert x \rVert \, \lVert y \rVert" in the
denominator).
Grouping prevents Nath from adding parentheses around the whole fraction:
\verb"$a{\frac bc}$" typesets as $a{\frac bc}$, otherwise as $a\frac bc$.
To be on the safe side, avoid superfluous braces in math formulas
(cf.~\sref"ErrorsWarnings").
To disable parentheses around the numerator or denominator,
a pair of invisible parentheses is needed:
\verb"$\frac{\left.\sin x\right.}{\cos x}$" typesets as
$\frac{\left.\sin x\right.}{\cos x}$, otherwise as
$\frac{\sin x}{\cos x}$.
An important remark is due.
Professional typographers generally follow the rule that `$a/bc$ means
$a$ divided by $bc$.'
Still some mathematicians (especially those with a programming background)
argue that if juxtaposition denotes multiplication, then $a/bc$ means
$a/b \cdot c$, which is $(a/b) \cdot c$ by the commonly accepted rules of
precedence.
However, $ab$ and $a \cdot b$ are different notations and it is the
notation what matters in typography.
Yet the AIP style manual~\cite{AIP} is cautious enough to say just:
``do not write $\frac 1{3x}$ unless you mean $\frac 1{(3x)}$.''
Altogether, notation $a/bc$ is considered ambiguous by a nonignorable part
of the mathematical community.
Then, at least, the choices made by Nath are known, traditional, and easy
to remember.
And, of course, it is never unwise to display difficult fractions.
\sect{Delimiters} \label{Delimiters}
\TeX's \verb"\left" and \verb"\right" produce rather poor results,
especially when overused or underused.
Under natural notation, every fence is a left or right delimiter by its
very nature, and delimiters do their best to match the material enclosed:
$$
\frac M
{(1 - \frac {x_1 + \cdots + x_n + pZ} r)
(1 - p \frac{\frac{\partial Z}{\partial x_2} + \cdots
+ \frac{\partial Z}{\partial x_n}} \rho)}.
$$
For matching purposes, every Nath mathematical object is assigned an
auxiliary height and depth; sub- and superscripts as well as accents
do not contribute to these dimensions, hence ``small parts'' may exceed
the fences:
$$
(\tilde P - \tilde Q)
(1 + \prod_{i = 1}^{\lfloor \sqrt n \rfloor} p_i)^2.
$$
Needless to say, line breaks are allowed between delimiters. E.g.,
$$
\sin 2nx = 2n \cos x [\sin x \\
\qquad + \sum_{k = 1}^n (-4)^k
\frac{(n^2 - 1^2)(n^2 - 2^2) \dots (n^2 - k^2)}{(2k - 1)!}
\sin^{2k - 1} x]
$$
results from the simple
\begin{verbatim}
$$
\sin 2nx = 2n \cos x [\sin x \\
\qquad + \sum_{k = 1}^n (-4)^k
\frac{(n^2 - 1^2)(n^2 - 2^2) \dots (n^2 - k^2)}{(2k - 1)!}
\sin^{2k - 1} x]
$$.
\end{verbatim}
The modifiers \verb"\left" and \verb"\right" still
must be used with symmetric delimiters (e.g., vertical lines $\vert$ and
$\Vert$) or when intended to override the
natural disposition (e.g., \verb"\left]").
%
The newly introduced modifiers \verb"\double" and \verb"\triple" create
double and triple delimiters. E.g.,
\verb"$\double[u_1,\dots,u_n\double]$" produces
$\double[u_1,\dots,u_n\double]$.
The {\it middle delimiters\/}, such as
\verb"\mid" and \verb"\middle|" for $\mid$,
\verb"\Mid" and \verb"\double|" for $\Mid$, and
\verb"\triple|" for $\triple|$,
have the size of the nearest outer pair of delimiters.
For example:
$$
\{ (x_i) \in R^\infty \mid \sum_{i = 1}^\infty x_i^2 = 1\}.
$$
With nested delimiters, there are two ways to ensure that outer delimiters
come out bigger than inner ones.
In display mode this is controlled by a count \verb"\delimgrowth".
Setting the \verb"\delimgrowth" to $n$ makes (approx.)
every $n$th delimiter bigger.
One should set \verb"\delimgrowth=1" when a display contains many
vertical bars (and insert extra \verb"\," between adjacent right and
left bars).
In in-line mode, the {\it command} \verb"\big" has the effect that the
next entered level of delimiters is set in big size (in the sense of
plain \TeX).
It is not necessary that the \verb"\big" is immediately followed by a
delimiter; and \verb"\bigg" is an abbreviation for \verb"\big\big".
For instance, \verb"$\Delta\big \frac 1{f(x)}$" produces
$\Delta\big \frac 1{f(x)}$; in this way one can enlarge implicit
delimiters such as those induced by the command \verb"\frac".
It is an error to place a \verb"\big" within delimiters that are not big
themselves.
Unbalanced delimiters may be present in an in-line formula
(as is usual in tensor calculus --- cf. \sref"Tensors"), but then cannot
be resized.
Table 1 lists paired delimiters.
\begin{table}
\normalsize
\label{tab_delim}
\begin{center}
\vskip 2ex
\begin{tabular}{ll|ll}
\multicolumn{2}{c}{Left delimiters}
& \multicolumn{2}{c}{Right delimiters}
\\
\hline
\verb"(" & $($
& \verb")" & $)$
\\
\verb"[",\verb"\lbrack" & $[$
& \verb"]",\verb"\rbrack" & $]$
\\
\verb"\{", \verb"\lbrace" & $\{$
& \verb"\}", \verb"\rbrace" & $\}$
\\
\verb"<", \verb"\langle" & $<$
& \verb">", \verb"\rangle" & $>$
\\
\verb"\lfloor" & $\lfloor$
& \verb"\rfloor" & $\rfloor$
\\
\verb"\lceil" & $\lceil$
& \verb"\rceil" & $\rceil$
\\
\verb"\lvert", \verb"\left|" & $\left|\right.$
& \verb"\rvert", \verb"\right|" & $\left.\right|$
\\
\verb"\lBrack", \verb"\double[" & $\double[\right.$
& \verb"\rBrack", \verb"\double]" & $\left.\double]$
\\
\verb"\lAngle", \verb"\double<" & $\double<\right.$
& \verb"\rAngle", \verb"\double>" & $\left.\double>$
\\
\verb"\lFloor" & $\lFloor$
& \verb"\rFloor" & $\rFloor$
\\
\verb"\lCeil" & $\lCeil$
& \verb"\rCeil" & $\rCeil$
\\
\verb"\lVert", \verb"\ldouble|" & $\ldouble|\rdouble.$
& \verb"\rvert", \verb"\rdouble|" & $\ldouble.\rdouble|$
\\
\verb"\triple[" & $\triple[\right.$
& \verb"\triple]" & $\left.\triple]$
\\
\verb"\triple<" & $\triple<\right.$
& \verb"\triple>" & $\left.\triple>$
\\
\verb"\ltriple|" & $\ltriple|$
& \verb"\rtriple|" & $\rtriple|$
\end{tabular}
\vskip 2ex
\end{center}
\capt{1}{Paired delimiters}
\end{table}
To enable \verb"<" and \verb">" as a notation for angle braces,
one must set \verb"\nathstyle{geometry}"
(this misusage of notation is common in geometry and math physics).
As symbols of ordering, $\lt$ and $\gt$ can be always accessed through
`\verb"\lt"' and `\verb"\gt"'.
While in math modes, brackets \verb"[", \verb"]"
never denote optional arguments.
This helps to avoid common \LaTeX\ misinterpretations, as with
\verb"\\[".
On the other side, {\it grouping} interspersed with delimiters --- once
harmless --- is a serious defect now (cf.~\sref"ErrorsWarnings").
E.g., \verb"({x)}" derails \TeX\ if used in display mode.
%(Braces around a macro argument are safe.)
\sect{Operators} \label{Operators}
Nath typsets \verb"\lambda\mathop{\rm id} - g" as
$$\lambda\mathop{\rm id} - g,$$
whereas \TeX\ would put uneven spacing around the
minus sign: \hbox{$\lambda \old{mathop}{\rm id} - g$},
erroneously considering the minus sign a unary operator
(by \cite[rule~5 on p.~442]{texb}).
In subscripts of big operators, \verb"\\" is allowed and starts a new
line, e.g.,
\begin{verbatim}
$$
\sum_{i,j \in K \\ i \ne j} a_{ij}
$$
\end{verbatim}
prints as
$$
\sum_{i,j \in K \\ i \ne j} a_{ij}.
$$
Within math, the exclamation mark \verb"!" alone ensures suitable
spacing around factorials: \verb"C^n_k = \frac{n!}{(n - k)!k!}"
typesets as $C^n_k = \frac{n!}{(n - k)! k!}$ or
$$
C^n_k = \frac{n!}{(n - k)! k!}.
$$
May be doubled: $(2n)!! = n! 2^n$.
Finally, integral signs stick one to another unless something else
intervenes:
\begin{verbatim}
$$
\int\int\int_M dV.
$$
\end{verbatim}
produces
$$
\int\int\int_M dV.
$$
\sect{Abbreviations} \label{Abbreviations}
According to typographic tradition, names of variables that are
abbreviations should be typeset in roman, for which
Nath offers a handy notation: abbreviations are letter strings
starting from the back quote~`\verb"`"'.
E.g., \verb"$`e^{\pi`i}$" and \verb"$`ad_x y$" typeset as
$`e^{\pi`i} = -1$ and $`ad_x y$, respectively.
Strings containing more than one letter, such as \verb"`span",
become math operators.
Until now they must have been declared in advance with some additional
care to avoid conflicts (\verb"\span" is a \TeX\ primitive).
Some more examples:
$$
H' = H_{`symm}' + H_{`antisymm}', \\
\bar f = f|_{`int U}, \\
a = `const_1, \\
G = `SO(n).
$$
\sect{Roots} \label{Roots}
Nath's \verb"\sqrt" differs in several aspects.
Firstly, its vertical size never depends on the presence of subscripts:
$$
\sqrt{a} + \sqrt{a_j}.
$$
%\end{document}
Secondly, nested \verb"\sqrt"'s are aligned at the top:
$$
\cos\frac \pi{10} = \frac 14 \sqrt{10 + 2 \sqrt 5}.
$$
(Compare it with the \TeX's
$$
\cos\frac \pi{10} = \frac 14 \old{sqrt}{10 + 2 \old{sqrt} 5}.\text{)}
$$
Thirdly, no optional arguments are allowed.
\LaTeX's \verb"\sqrt[3]{x}" must be replaced with
\verb"\root{3}{x}" to produce $\root{3}{x}$.
\sect{Special symbols} \label{SpecialSymbols}
Nath introduces \verb"\vin" and \verb"\niv" as names of the important
symbols `$\vin$' and `$\niv$' not included in any standard math font.
Arrows \verb"\to", \verb"\ot", \verb"\otto", and \verb"\mapsto" are
expandable and descriptable via sub- and superscripts.
Thus,
\begin{verbatim}
$$
A \to^f_{\text{isomorphism}} B, \qquad a \mapsto^f a'
$$
\end{verbatim}
gives
$$A \to^f_{\text{isomorphism}} B, \qquad a \mapsto^f a'.$$
The command \verb"\adot" denotes the centered dot to be used a
an argument placeholder, as in $f(\adot)$ or $g(\adot,\adot)$.
\sect{Horizontal braces} \label{HorizontalBraces}
The upper and lower horizontal braces are created with
\verb"\underbrace{"{\it expression\/}\verb"}_{"{\it label\/}\verb"}"
and
\verb"\overbrace{"{\it expression\/}\verb"}_{"{\it label\/}\verb"}",
respectively.
For instance,
\begin{verbatim}
$$
f^n(x) = \underbrace{f(f(\dots f(}_{n \text{ times}}x) \dots))
$$
\end{verbatim}
results in
\delimgrowth = 1
$$
f^n(x) = \underbrace{f(f(\dots f(}_{n \text{ times}}x) \dots))
$$
Observe that the construction does not interfere with the displayed mode
of delimiters.
\sect{Accents} \label{Accents}
Hat, tilde, and bar accents are extensible and grow wider with the size of
the accented material:
$$
\hat a + \hat{ab} + \hat{abc}.
$$
When these accents outreach their limit of extensibility, they take the
superscript position:
$$
\hat{a + b + c}.
$$
A sequence of accents goes from top to down or from right to left.
For instance,
\verb"\hat\bar a +" \verb"\hat\bar{ab} +" \verb"\hat\bar{abc}" gives
$$
\hat\bar a + \hat\bar{ab} + \hat\bar{abc},
$$
whereas \verb"\hat\bar{a + b + c}" typesets as
$$
\hat\bar{a + b + c}.
$$
All kinds of things may happen if braces intervene as in
\verb"\bar{\bar{ab}}".
Let us note that \verb"\bar" is not arbitrarily extensible, unlike
\verb"\overline".
For instance, \verb"\hat{\overline{a + b + c}}" gives
$\hat{\overline{a + b + c}}$
(over- and underlines and arrows are {\it not\/} accents).
Over a single character, there is no limit on the number and type of
accents in the sequence; e.g.,
$$
\hat\ddot\tilde W
$$
results from \verb"\hat\ddot\tilde W".
Over an expression, a non-extensible accent, like \verb"\dot",
makes others non-extensible as well.
Thus, \verb"\hat{ab} +" \verb"\dot{ab} +" \verb"\dot\hat{ab} +"
\verb"\hat\dot{ab}" gives
$$
\hat{ab} + \dot{ab} + \dot\hat{ab} + \hat\dot{ab}.
$$
\sect{Arrays} \label{Arrays}
Entries are typeset in display mode:
$$
\left|\,
\begin{array}{cc} x & 1 \\ 1 & \frac 1x \end{array}
\,\right| = 0.
$$
Moreover, arrays grow smaller when used in sub- and superscripts:
$$
`e^{\displayed{(\begin{matrix} a & b \\ c & d \end{matrix})}}.
$$
A \verb"matrix" environment differs from \verb"array" in that it does not
have any preamble.
As a special case, \verb"\binom{"{\it m}\verb"}{"{\it n}\verb"}"
creates the binomial coefficient $\binom mn$.
\sect{Tensors} \label{Tensors}
With \verb"\nathstyle{tensors}", first-level sub- and superscripts to
ordinary symbols occupy predetermined positions.
Thus,
\nathstyle{tensors}
$$
A^{[k} B^{l]}_{(k} C_{l)}
$$
\nathstyle{tensors=off}
results from
\begin{verbatim}
\nathstyle{tensors=on}
$$
A^{[k} B^{l]}_{(k} C_{l)}
$$
\end{verbatim}
(unbalanced delimiters are allowed in in-line style).
\sect{Displayed formulas} \label{DisplayedFormulas}
Displayed formulas are indented by \verb"\mathindent" of default
value of 4\,pc.
With \verb"\mathindent" set to a negative length, displayed formulas
are centered.
Formulas enclosed between double dollars \verb"$$" are unnumbered.
Alternatively one may enclose them between \verb"\[" and \verb"\]".
Ends of lines (any formula may be multiline) are marked with
\verb"\\".
Nath does not support automatic line breaks (as does the Downes style
\cite{downes}).
E.g., \verb"$$ ???? = ????, \\ ???? = ????. $$" typesets as a left-aligned
multiline formula (the punctuation is important, see~\sref "Punctuation"):
$$
\stuff{2cm} = \stuff{5cm}, \\ \stuff{4cm} = \stuff{2cm}.
$$
To achieve finer arrangements, one may begin every continuation line with
a number of \verb"\quad"'s; e.g.,
two in front of a binary relation, three in front of a binary operation:
\begin{verbatim}
$$
???? = ???? + (???? \\
\qqquad + ????) \\
\qquad = ???? \\
\qquad = ???? .
$$
\end{verbatim}
gives
$$
\stuff{4cm} = \stuff{1cm} + (\stuff{2cm} \\
\qqquad + \stuff{5cm}) \\
\qquad = \stuff{7cm} \\
\qquad = \stuff{6cm}\,.
$$
\sect{Walls} \label{Walls}
Walls represent a simple and convenient tool to achieve better
visual appearance of complex displayed equations.
The syntax is \verb"\wall ???? \\" \verb"???? \\" $\cdots$
\verb"\\ ???? \return",
and can be arbitrarily nested.
The \verb"\wall" makes every next line to start at the
``wall'' until removed by \verb"\return".
For instance,
\begin{verbatim}
$$
????
\wall = ???? + (\wall - ???? \\
+ ????)
\return
= ???? \\
= ????.
\return
$$
\end{verbatim}
gives
$$
\stuff{1cm}
\wall = \stuff{1cm} + (\wall - \stuff{4cm}
\\
+ \stuff{5cm}) \return
= \stuff{7cm} \\
= \stuff{6cm}\,. \return
$$
The typical placement of \verb"\wall" is in front of a relation symbol
or immediately after an opening delimiter anywhere in the left half
of a formula.
A simple alternative is \verb"\padded{"{\it A}\verb"}", which prefixes
each continuation line with {\it A} until stopped by \verb"\return".
Typically, {\it A} is a kern:
\begin{verbatim}
$$
\padded\qquad \padded\quad ???? = ???? + (???? \\
+ ???? \\
+ ????)
\return
= ???? \\
= ????
\return
$$
\end{verbatim}
gives
$$
\padded\qquad \padded\quad \stuff{4cm} = \stuff{1.5cm} + (\stuff{2cm} \\
+ \stuff{6cm} \\
+ \stuff{5cm})
\return
= \stuff{7cm} \\
= \stuff{4cm}\,.
\return
$$
With short formulas it may be easier to prefix each line with explicit
\verb"\quad"'s as we did in \sref "DisplayedFormulas".
See \sref"Punctuation" on the interplay between walls and punctuation.
\sect{Alignments} \label{Alignments}
Unfortunately, display mode of delimiters interferes badly with alignments
unless every cell is balanced (as is, e.g., with matrices).
The recommended solution is to fill the cells with balanced
wall/return blocks. E.g.,
\begin{verbatim}
\begin{eqnarray*}
???? &=& \wall ???? \\
+ ???? \\
+ ????,
\return
\\
???? &=& ????
\end{eqnarray*}
\end{verbatim}
produces
\begin{eqnarray*}
\stuff{5mm} &=& \wall \stuff{7cm} \\
+ \stuff{7cm} \\
+ \stuff{3cm},
\return
\\
\stuff{3mm} &=& \stuff{5cm}.
\end{eqnarray*}
Walls save \verb"&"'s and ensure vertical
centering of the equation numbers (see \sref"EquationNumbering").
\sect{Equation numbering} \label{EquationNumbering}
A formula enclosed between \verb"\begin{equation}" and \verb"\end{equation}"
obtains a single number (the value of \verb"\theequation") on the right.
Putting the command \verb"\numbered" inside of an unnumbered formula has
the same effect:
\begin{verbatim}
$$
????. \numbered
$$
\end{verbatim}
results in
$$
\stuff{8cm}. \numbered \label{numbered}
$$
Alternatively, \verb"\eqno{"$A$\verb"}" makes $A$ the equation number.
In emergency, the equation number goes one line below the formula:
\begin{equation} \label{long}
\stuff{10cm}
\end{equation}
We already know that any formula may be multiline.
If so, the equation number is centered:
\begin{equation}
\stuff{8cm}, \label{short1} \\
\stuff{7cm}. \label{short2}
\end{equation}
To have centered numbers within the \verb"eqnarray" environment, use
wall/return blocks as described in~\sref "Alignments" (but then
the equation numbers may be overwritten with the formula content without
warning).
There is also the \verb"eqns" environment, which puts a number on
each line:
\begin{eqns}
\stuff{8cm}, \label{short3} \\
\stuff{7cm}. \label{short4}
\end{eqns}
It also uses larger and breakable interline space.
Multiline blocks then may be created by using the walls (\sref"Walls").
Equation numbering is normally determined by \verb"\theequation".
The environment \verb"subabc" introduces a subordinate numbering by letters,
\begin{subabc}
\begin{equation}
A = B, \label{A}
\end{equation}
no matter how many numbered equations are enclosed,
\begin{equation}
C = D. \label{C}
\end{equation}
\end{subabc}
This output was obtained from
\begin{verbatim}
\begin{subabc}
\begin{equation}
A = B, \label{A}
\end{equation}
no matter how many numbered equations are enclosed,
\begin{equation}
C = D. \label{C}
\end{equation}
\end{subabc}
\end{verbatim}
After \verb"\end{subabc}", the original numbering mode is restored:
\begin{equation}
E = F. \label{E}
\end{equation}
Every numbered equation should be referred to somewhere, hence it should
have a label --- a warning (\sref"ErrorsWarnings") is issued if it does not.
To put equation numbers on the left, call either the documentstyle
option \verb"leqno" or the local option \verb"\nathstyle{leqno}".
\sect{Items} \label{Items}
Lay typographers tend to overuse list environments.
Rather than list items, numbered statements so often encountered in theorems
and definitions may be alternatively formatted as numbered paragraphs.
Nath's command \verb"\paritem{"{\it item label\/}\verb"}" starts a numbered
paragraph and may occur even within a displayed formula.
Our next example demonstrates this:
\bigskip\noindent
The following statements on a real function $f$ are equivalent:
\paritem{(i)} $f$ is continuous;
$$
\paritem{(ii)} f(\lim_{i\to\infty} x_i) = \lim_{i\to\infty} f(x_i)
$$
for every converging sequence $x_i$.
In a left-numbered formula, \verb"\paritem" supersedes the numbering
and a warning is issued.
\sect{Punctuation} \label{Punctuation}
Nath provides a simple tool to encourage line breaks after punctuation in
in-line mode.
Namely, \verb*"\ " denotes a breakable space no matter where it is used.
Therefore, \verb"$a = b,\ c = d$" will break after the comma,
$a = b,\ c = d$, rather than after the `\,$=$\,' sign.
The inclination to break is measured by \verb"\punctpenalty"
(if a positive integer less than 10000).
Three dots are denoted by \verb"\dots".
In some contexts, their proper place is at the level of math axis,
e.g., $a_1 + \dots + a_n$.
Nath uses a very simple rule --- the dots are not raised if and only
if they follow a comma or a semicolon.
Accordingly, we have $a_1, \dots, a_n$ and $a_1; \dots; a_n$.
Punctuation after displayed formulas is important for recognizing
continuing lines.
Without punctuation, what seems to be a system of equations
$$
U_x = AU \\
-U_y = BU
$$
may well be a chain of them:
$$
U_x = AU
-U_y = BU.
$$
To disambiguate your notation, be sure to insert comma (or semicolon
or full stop or \verb"\text") at the end of each line that is not continued:
$$
U_x = AU, \\
-U_y = BU.
$$
(Observe that the minus sign starting the second line is typeset closer
to $U$ --- becomes a unary operator.)
\sect{Spacing} \label{Spacing}
Nath's displayed formulas use frozen spacing (\TeX's ``skips'' and ``glues''
neither stretch nor shrink).
While it is seldom useful to stretch a displayed formula, one may
wish to shrink formulas too wide to fit between the margins.
Within the \verb"tight" environment, displayed formulas occupy slightly less
horizontal space.
E.g.,
$$
\sin^6 x =
-\frac 1{32} \cos 6x + \frac 3{16} \cos 4x
- \frac{15}{32} \cos 2x + \frac 5{16}
$$
becomes
\begin{tight}
$$
\sin^6 x =
-\frac 1{32} \cos 6x + \frac 3{16} \cos 4x
- \frac{15}{32} \cos 2x + \frac 5{16}
$$
\end{tight}
if written as
\begin{verbatim}
\begin{tight}
$$
\sin^6 x =
-\frac 1{32} \cos 6x + \frac 3{16} \cos 4x
- \frac{15}{32} \cos 2x + \frac 5{16}
$$
\end{tight}
\end{verbatim}
Striving for safe defaults, Nath sets even interword spaces in text.
\TeX perts may wish to call \verb"\nonfrenchspacing"
(see~\cite[p. 74]{texb}) to achieve a century-old look.
\sect{User definitions} \label{UserDefinitions}
Feel free to introduce your own commands by using \verb"\newcommand"
or \verb"\def".
We already gave a useful example of \verb"\ifrac"
in~\sref"DisplayedFractions".
Here is another example:
A first-order partial derivative suitable for all math modes and sizes
can be introduced via
\begin{verbatim}
\newcommand\pd[2]{\frac{\partial#1}{\partial#2}}
\end{verbatim}
We then have
\newcommand\pd[2]{\frac{\partial#1}{\partial#2}}%
$\big(\pd f x \pd g y)^2$ or $`e^{(\pd f x \pd g y)^2}$ or
$$
(\pd f x \pd g y)^2
$$
from one and the same \verb"(\pd f x \pd g y)^2".
The price is that fragile commands occurring inside in-line math may
have to be protected (any in-line mode material must be considered a
``moving argument'').
Nath commands are robust by design and need no \verb"\protect"ing.
When encountering a mysterious error, such as ``undefined command
\verb"\wrapfrac@",'' fragile commands are to be blamed.
Besides \verb"\protect", Nath offers \verb"\makerobust", a command
that takes an already assigned control sequence as argument and makes
it robust.
\sect{Efficiency}
Nath helps to prevent wasting human work on something that can
be done by computer.
On average, \LaTeX\ runs about three times slower with Nath than
without it, depending on the complexity of math formulas.
\sect{Other packages} \label{OtherPackages}
Nath is not guaranteed to be compatible with other \LaTeX\ packages.
However, some combinations turn out to be safe and useful.
For example, when starting a \LaTeX~2.09 document with
\begin{verbatim}
\documentstyle[amssymb,nath]{article}
\end{verbatim}
or a \LaTeX~2$_{\varepsilon}$ document with
\begin{verbatim}
\documentclass{article}
\usepackage{amssymb,nath}
\end{verbatim}
one invokes \verb"amssymb", a component of the famous \AmS-\LaTeX\
package from the American Mathematical Society, thereby introducing a
wider range of mathematical symbols.
Users can also enable text mode \verb"amsmath" commands by starting a
\LaTeX~2$_{\varepsilon}$ document with
\begin{verbatim}
\usepackage{amsmath,nath}
\end{verbatim}
(math mode commands must be those of Nath).
\sect{Commands of enhanced functionality}
\def??#1??{\if#1**\else{\rm#1}\fi}
\def\sref.#1.{\S\ref{#1}}
\def\ct.#1.{\cite{#1}}
\def\mpst{$\mapsto$}
\def\vn{$\vin$}
\def\nv{$\niv$}
\catcode`\Z=14
\setbox0\hbox{\verb*"\ "}
\def\u{\leavevmode\box0}
A number of math commands have been redefined;
\verb"\old{"{\it command\/}\verb"}" often provides access
to what \verb"\"{\it command\/} was before Nath redefined it
(see the source code of this guide for examples).
Here is the list of all enhanced and newly introduced commands:
\begin{verbatim}
?u ??a breakable space in math (?sref.Spacing.)??
\\ ??see ?sref.Operators. and ?sref.DisplayedFormulas.??
\abbreviation ??a long form of?? ` ??in math (?sref.Abbreviations.)??
\adot ??argument placeholder (?sref.SpecialSymbols.)??
\arraycolsep ??macro, formerly a dimension register (?sref.Arrays.)??
\big ??making inline delimiters bigger Z
(?sref.Delimiters.)??
\bigg ??same as?? \big\big ??(?sref.Delimiters.)??
\biggg ??same as?? \big\big\big ??(?sref.Delimiters.)??
\biggl ??same as?? \big\big\left
\bigl ??same as?? \big\left
\binom ??binomial coefficient (?sref.Arrays.)??
\delimgrowth ??see ?sref.Delimiters.??
\displayed ??forcing displayed math mode (?sref.MathModes.)??
\double ??doubling a delimiter (?sref.Delimiters.)??
\eqno ??equation number (?sref.EquationNumbering.)??
\natherrormark ??a mark to visualize nath errors Z
(?sref.ErrorsWarnings.)??
\factorial ??long form of?? ! ??in math (?sref.Operators.)??
\fbox ??making frame around a subformula??
\frac ??fraction (?sref.Fractions.)??
\gt ??greater than sign (?sref.Delimiters.)??
\hat ??attaching hat accent (?sref.Accents.)??
\inline ??forcing in-line math mode (?sref.MathModes.)??
\int ??integral sign (?sref.Operators.)??
\langle ??left angle bracket (?sref.Delimiters.)??
\lAngle ??left double angle bracket (?sref.Delimiters.)??
\lbrace ??left brace (?sref.Delimiters.)??
\lbrack ??left bracket (?sref.Delimiters.)??
\lBrack ??left double bracket (?sref.Delimiters.)??
\lceil ??left ceiling bracket (?sref.Delimiters.)??
\lCeil ??left double ceiling bracket (?sref.Delimiters.)??
\ldouble ??left doubling (?sref.Delimiters.)??
\left ??left modifier (?sref.Delimiters.)??
\lfloor ??left floor bracket (?sref.Delimiters.)??
\lFloor ??left double floor bracket (?sref.Delimiters.)??
\lnull ??left invisible fence (?sref.Delimiters.)??
\lt ??less than sign (?sref.Delimiters.)??
\ltriple ??left tripling (?sref.Delimiters.)??
\lvert ??left vertical line (?sref.Delimiters.)??
\lVert ??left double vertical line (?sref.Delimiters.)??
\mapsto ??sizeable `?mpst' (?sref.SpecialSymbols.)??
\mathop ??see ?sref.Operators.??
\mathstrut ??see ?ct.texb.??
\mid ??middle vertical line (?sref.Delimiters.)??
\Mid ??middle double vertical line (?sref.Delimiters.)??
\middle ??middle modifier (?sref.Delimiters.)??
\Nath ??logo??
\nathstyle ??local options (?sref.LocalOptions.)??
\niv ??the symbol `?nv' (?sref.SpecialSymbols.)??
\nonumber ??suppresses equation number (?sref.EquationNumbering.)??
\numbered ??forces equation number (?sref.EquationNumbering.)??
\old ??see the beginning of this section??
\ot ??sizeable left arrow (?sref.SpecialSymbols.)??
\otto ??sizeable left-right arrow (?sref.SpecialSymbols.)??
\overbrace ??horizontal braces over unbalanced math material?? Z ??(?sref.HorizontalBraces.)??
\overleftarrow ??left arrow over an expression??
\overleftrightarrow ??left-right arrow over an expression??
\overline ??overline an expression (?sref.Accents.)??
\overrightarrow ??right arrow over an expression??
\padded ??like a wall, with every next line padded (?sref.Walls.)??
\paritem ??numbered statement (?sref.Items.)??
\punctpenalty ??penalty inserted after punctuation in math Z
(?sref.Punctuation.)??
\quad ??1em space (?sref.DisplayedFormulas.)??
\qquad ??2em space (?sref.DisplayedFormulas.)??
\qqquad ??3em space (?sref.DisplayedFormulas.)??
\rangle ??right angle bracket (?sref.Delimiters.)??
\rAngle ??right double angle bracket (?sref.Delimiters.)??
\rbrace ??right brace (?sref.Delimiters.)??
\rbrack ??right bracket (?sref.Delimiters.)??
\rBrack ??right double bracket (?sref.Delimiters.)??
\rceil ??right ceiling bracket (?sref.Delimiters.)??
\rCeil ??right double ceiling bracket (?sref.Delimiters.)??
\rdouble ??right doubling (?sref.Delimiters.)??
\return ??ends?? \wall ??and?? \padded ??(?sref.Walls.)??
\right ??right modifier (?sref.Delimiters.)??
\rfloor ??right floor bracket (?sref.Delimiters.)??
\rFloor ??right double floor bracket (?sref.Delimiters.)??
\rnull ??right invisible fence (?sref.Delimiters.)??
\root ??arbitrary root (?sref.Roots.)??
\rtriple ??right tripling (?sref.Delimiters.)??
\rvert ??right vertical line (?sref.Delimiters.)??
\rVert ??right double vertical line (?sref.Delimiters.)??
\scriptscriptstyle ??setting size to second next level script size??
\scriptstyle ??setting size to next level script size??
\sqrt ??square root (?sref.Roots.)??
\stackrel ??as in ?LaTeX??
\text ??text within math??
\tilde ??attaching tilde accent (?sref.Accents.)??
\to ??sizeable right arrow (?sref.SpecialSymbols.)??
\triple ??tripling a delimiter (?sref.Delimiters.)??
\underbrace ??horizontal braces under unbalanced math material?? Z ??(?sref.HorizontalBraces.)??
\underleftarrow ??left arrow under an expression??
\underleftrightarrow ??left-right arrow under an expression??
\underline ??underline an expression??
\underrightarrow ??right arrow under an expression??
\vin ??the symbol `?vn' (?sref.SpecialSymbols.)??
\wall ??begin a wall/return block (?sref.Walls.)??
\end{verbatim}
Redefined and new environments:
\begin{verbatim}
array ??see ?sref.Arrays.??
cases ??as in ?TeX??
eqnsabc eqns ??within?? subabc
eqnarray ??as in ?LaTeX??
eqnarray* ??as in ?LaTeX??
eqnarrayabc eqnarray ??within?? subabc
eqns ??a pile of equations (?sref.EquationNumbering.)??
equation ??as in ?LaTeX??
matrix ??see ?sref.Arrays.??
subabc ??subnumbering by letters (?sref.EquationNumbering.)??
tight ??tighter spacing (?sref.Spacing.)??
\end{verbatim}
The following characters are active, retaining their previous meaning:
\verb"$",~\verb"^",~\verb"_".
Other characters become active in math mode:
\begin{verbatim}
( ??see ?sref.Delimiters.??
) ??see ?sref.Delimiters.??
[ ??see ?sref.Delimiters.??
] ??see ?sref.Delimiters.??
< ??see ?sref.Delimiters.??
> ??see ?sref.Delimiters.??
, ??see ?sref.Punctuation.??
; ??see ?sref.Punctuation.??
! ??see ?sref.Operators.??
` ??see ?sref.Abbreviations.??
\end{verbatim}
Commands that became obsolete are still preserved in reduced form for
backward compatibility:
\begin{verbatim}
\Big ??ignored??
\Bigg ??ignored??
\Biggl ??same as?? \left
\biggm ??same as?? \middle
\Biggm ??same as?? \middle
\biggr ??same as?? \right
\Biggr ??same as?? \right
\Bigl ??same as?? \left
\bigm ??same as?? \middle
\Bigm ??same as?? \middle
\bigr ??same as?? \right
\Bigr ??same as?? \right
\mathchoice ??useless??
\mathpalette ??useless??
\textstyle ??ignored??
\end{verbatim}
The following \TeX\ commands are disabled:
\begin{verbatim}
\atop
\over
\choose
\end{verbatim}
The following \LaTeX\ environment is disabled:
\begin{verbatim}
math
\end{verbatim}
New ifs (correspond to local options):
\begin{verbatim}
\ifgeometry ??see ?sref.Delimiters.??
\ifleqno ??see ?sref.EquationNumbering.??
\ifsilent ??see ?sref.ErrorsWarnings.??
\iftensors ??see ?sref.Tensors.??
\end{verbatim}
New dimension registers:
\begin{verbatim}
\arraycolsepdim ??former?? \arraycolsep
\displaylineskiplimit
\mathindent ??see ?sref.DisplayedFormulas.??
\mex ??a prorated?? ex
\paritemwd ??see ?sref.Items.??
\end{verbatim}
New skips (self-explanatory):
\begin{verbatim}
\displaybaselineskip
\displaylineskip
\interdisplayskip
\intereqnsskip
\beloweqnsskip
\end{verbatim}
New boxes:
\begin{verbatim}
\sizebox ??delimiters match it (?sref.Delimiters.)??
\end{verbatim}
Moreover, Nath takes box and token registers on the fly.
\sect{Final remarks} \label{FinalRemarks}
Nath is a scientific software intended to assist and ease the process
of scientific publication.
By disburdening the encoding of mathematics, Nath tries to uphold
\TeX's position as a language suitable for both scientific and
typographic purposes --- especially if alternatives are still elusive.
Nath is provided as it is; only bug reports and serious discussion
should go to \verb"M.Marvan@"\verb"math.slu.cz".
\setbox0\hbox{\tt kkkk}
\def????{\leavevmode\hbox to\wd0{\hss\it stuff\/\hss}}
\sect{Release 2003} \label{Release2003}
Fixing several bugs, a new release is available since February 2003.
As a new feature, Nath takes care of the interline spacing in arrays.
There is a new dimension register \verb"\arrayrowsepdim" to hold the
minimal interline space.
Also, the default setting of \verb"\doublerulesep" is \verb"\arrayrulewidth",
so that horizontal lines produced by successive \verb"\hline"'s
stick one to another, and similarly for the vertical lines:
$$
\begin{array}{||ccc||}
\hline\hline
p & q & r \\
\hline
1 & 1 & 0 \\
1 & 0 & 0 \\
\frac12 & 1 & 0 \\
\hline\hline
\end{array}
$$
These changes do not affect the \verb"tabular" environment.
The \verb"\padded" command now applies to continuation lines only.
For example
$$
\padded{\qquad}
\stuff{3cm} = \stuff{3.5cm} \\
- \stuff{6cm}, \\
\stuff{4cm} = \stuff{1.5cm} \\
- \stuff{7cm}, \\
\stuff{2cm} = (\stuff{2cm}, \\
-\stuff{2cm}).
\return
$$
is produced by a single \verb"\padded"--\verb"\return" pair:
\begin{verbatim}
\padded{\qquad}
???? = ???? \\
- ????, \\
???? = ???? \\
- ????, \\
???? = (????, \\
-????).
\return
\end{verbatim}
(Commas that occur within delimiters do not start a new equation.)
Some errors still survive.
In particular, double accents do not work with MathTime fonts.
\begin{thebibliography}{9}
\small
\bibitem{AIP}
{\it AIP Style Manual}, 4th edition
(Amer. Inst. Physics, New York, 1990).
\bibitem{downes}
M. Downes, Breaking equations, {\it TUGboat} 18 (1997) 182--194.
\bibitem{texb}
D.E. Knuth, {\it The \TeX book} (Addison Wesley, Reading, 1984).
\bibitem{EuroTeX}
M. Marvan, Natural \TeX\ notation in mathematics,
in: Proc. Conf. {\it Euro\TeX\ 2001}, Kerkrade, 23--27 September 2001;
online {\tt www.ntg.nl/eurotex/marvan-3.pdf}.
\end{thebibliography}
\end{document}
|