1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
\documentclass[12pt]{article}
\usepackage{bussproofs}
\usepackage{amssymb}
\usepackage{latexsym}
% This is the "centered" symbol
\def\fCenter{{\mbox{\Large$\rightarrow$}}}
% Optional to turn on the short abbreviations
\EnableBpAbbreviations
% \alwaysRootAtTop % makes proofs upside down
% \alwaysRootAtBottom % -- this is the default setting
\begin{document}
\thispagestyle{empty}
When the {\tt bussproofs.sty} code was first written, the
only documention for the {\tt bussproofs} style was in the
comments at the beginning of the style file {\tt bussproofs.sty}.
But recently (July 2004), Peter Smith has written an excellent
exposition of {\tt bussproofs.sty}, presently available
at
\begin{center}
\tt
http://www.phil.cam.ac.uk/teaching\_staff/Smith/LaTeX/nd.html
\end{center}
The present document is
a sample \LaTeX{} file that was created for testing
purposes while writing the {\tt bussproofs} code and you might
find that it useful as an example of how to
use special features of the style.
Author: Sam Buss \hspace*{1in} Email: {\tt sbuss@ucsd.edu}.
\vspace*{0.25in}
Here is some text.
\begin{center}
\Axiom$\Gamma^\prime\fCenter\Delta,A,A$
\LeftLabel{Weakening}\RightLabel{}
\UnaryInf$\lnot A,\Gamma^\prime \fCenter \Delta, A$
\LeftLabel{.}\RightLabel{\small $\lor$:right}
\UnaryInf$\lnot A,\lnot A,\Gamma^\prime \fCenter \Delta$
\LeftLabel{eigenvariable $x$}\RightLabel{$\forall$:right}
\UnaryInf$\Gamma \fCenter \Delta$
\DisplayProof
\end{center}
Here is more text.
\begin{prooftree}
\alwaysDashedLine
\alwaysDoubleLine
\Axiom$\Delta\fCenter\Pi$
\Axiom$\Gamma^\prime\fCenter\Delta,A$
\dottedLine
\singleLine
\UnaryInf$\lnot A,\Gamma^\prime \fCenter \Delta$
\UnaryInf$\lnot A,\lnot A,\Gamma^\prime \fCenter \Delta$
\singleLine
\UnaryInf$\Gamma \fCenter \Delta$
\BinaryInf$\Gamma,\Pi,A \fCenter \Delta, \Delta,B$
\Axiom$\fCenter\mbox{\rm Hi there}$
\singleLine
\BinaryInf$\Gamma\fCenter\Delta$
\end{prooftree}
\begin{center}
\alwaysDoubleLine
\AX$\Delta\fCenter\Pi$
\AX$\Gamma^\prime\fCenter\Delta,A$
\singleLine
\UI$\lnot A,\Gamma^\prime \fCenter \Delta$
\UI$\lnot A,\lnot A,\Gamma^\prime \fCenter \Delta$
\singleLine
\UI$\Gamma \fCenter \Delta$
\LL{.}\RightLabel{$\lor$:left}
\BI$\Gamma,\Pi,A \fCenter \Delta, \Delta,B$
\AXC{Hi there}
\singleLine
\BI$\Gamma\fCenter\Delta$
\DisplayProof
\end{center}
The above examples show `displayed' proofs.
On the other hand,
for putting proofs inline instead of displayed,
it is also permissable to put proofs into text rather than into
centered environments. For example, one can write a proof right
here:
\centerAlignProof %Which ever one of these is LAST sets the vertical alignment
\bottomAlignProof %Try commenting out all but one of these three lines.
\normalAlignProof
\Axiom$\Gamma^\prime\fCenter\Delta,A$
\doubleLine
\UnaryInf$\lnot A,\Gamma^\prime \fCenter \Delta$
\UnaryInf$\lnot A,\lnot A,\Gamma^\prime \fCenter \Delta$
\doubleLine
\UnaryInf$\Gamma \fCenter \Delta$
\Axiom$\Delta\fCenter\Pi$
\kernHyps{-.5in}\insertBetweenHyps{\hskip-.25in}
\BinaryInf$\Gamma,\Pi,A \fCenter \Delta, \Delta,B$
\Axiom$\fCenter\mbox{\rm Hi there}$
\doubleLine
\BinaryInf$\Gamma\fCenter\Delta$
\DisplayProof{} %% NOTE THE USE OF "{}"
although of course the proof is quite big compared to the text.
There is no reason you could not add \verb+\subscriptstyle+ or \verb+\small+
commands to the lines of the proofs to shrink things down.
The previous proof looks strange because it is illustrated the usage
of \verb+\kernHyps+ and \verb+\insertBetweenHyps+. Finally
a 3-ary inference with a usage of \verb+\noLine+ is:
\begin{prooftree}
\AxiomC{$A\lor B$}
\AxiomC{$[A]$}
\noLine
\UnaryInfC{$C$}
\AxiomC{$[B]$}
\noLine
\UnaryInfC{$C$}
\TrinaryInfC{$C$}
\end{prooftree}
Two more examples:
\begin{center}
\AxiomC{A,B} \AxiomC{C} \BIC{A-B-C}
\AXC{good} \AXC{bad} \BIC{$\frac{good}{bad}$A}
\BIC{done}
\DP
\end{center}
\begin{center}
\Axiom$\fCenter A,B$ \Axiom$\fCenter C$ \BI$\fCenter A-B-C$
\AX$\fCenter good$ \AX$\fCenter bad$ \BI$\fCenter\frac{good}{bad}A$
\BI$\fCenter done$
\DP
\end{center}
Small labels can be created as in the third proof below:
\[
\AxiomC{A}
\RightLabel{1}
\UnaryInfC{$\bot$}
\DisplayProof
\quad
\AxiomC{A}
\RightLabel{(2)}
\UnaryInfC{$\bot$}
\DisplayProof
\quad
\AxiomC{A}
\RightLabel{\scriptsize(3)}
\UnaryInfC{$\bot$}
\DisplayProof
\quad
\AxiomC{A}
\LeftLabel{(4)}
\UnaryInfC{$\bot$}
\DisplayProof
\]
Arnold's example of inline proof: The figure
\AxiomC{$\dots\Gamma_\iota\dots(\iota\in I)$}
\RightLabel{$I$}
\UnaryInfC{$\Gamma$}
\DisplayProof{}
is called ...
%% NOTE THE USE OF "{}" after \DisplayProof to keep LaTeX from eating subsequent spaces!
\bigskip
\noindent{\bf Upside down proofs}
Proofs can be rendered upside down. For instance the proof above with
a 3-ary inference can be made upside down by giving the command
\verb+\rootAtTop+. This is useful if you want your proof trees to have
their root at the top.
\alwaysRootAtTop % Henceforth puts the root at the top
\begin{prooftree}
\AxiomC{$A\lor B$}
\AxiomC{$[A]$}
\noLine
\UnaryInfC{$C$}
\AxiomC{$[B]$}
\noLine
\UnaryInfC{$C$}
\TrinaryInfC{$C$}
\end{prooftree}
To make the change permanent for the rest of your document, use the
command \verb+\alwaysRootAtTop+
\bigskip
\noindent
Another upside-down example, from Alex Hertel:
\bigskip
\hbox{\kern-2cm%
\tiny
\rootAtTop
\AxiomC{$= 1$}
\noLine
\UnaryInfC{$( ( (1 \wedge 1) \vee 0 ) \vee ( (0 \wedge 0) \vee 0 ) )$}
\AxiomC{$= 1$}
\noLine
\UnaryInfC{$( ( (1 \wedge 1) \vee 1 ) \vee ( (0 \wedge 0) \vee 1 ) )$}
\LeftLabel{$[0/z]$}
\RightLabel{$[1/z]$}
\BinaryInfC{$\forall z ( ( (1 \wedge 1) \vee z ) \vee ( (0 \wedge 0) \vee z ) )$}
\RightLabel{$[0/y]$}
\UnaryInfC{$\exists y \forall z ( ( (1 \wedge \neg y) \vee z ) \vee ( (0 \wedge y) \vee z ) )$}
\RightLabel{$[0/y]$}
\UnaryInfC{$\exists y \forall z ( ( (1 \wedge \neg y) \vee z ) \vee ( (0 \wedge y) \vee z ) )$}
\AxiomC{$= 1$}
\noLine
\UnaryInfC{$( ( (0 \wedge 0) \vee 0 ) \vee ( (1 \wedge 1) \vee 0 ) )$}
\AxiomC{$= 1$}
\noLine
\UnaryInfC{$( ( (0 \wedge 0) \vee 1 ) \vee ( (1 \wedge 1) \vee 1 ) )$}
\LeftLabel{$[0/z]$}
\RightLabel{$[1/z]$}
\BinaryInfC{$\forall z ( ( (0 \wedge 0) \vee z ) \vee ( (1 \wedge 1) \vee z ) )$}
\RightLabel{$[1/y]$}
\UnaryInfC{$\exists y \forall z ( ( (0 \wedge \neg y) \vee z ) \vee ( (1 \wedge y) \vee z ) )$}
\LeftLabel{$[0/x]$}
\RightLabel{$[1/x]$}
\BinaryInfC{$\forall x \exists y \forall z ( ( (\neg x \wedge \neg y) \vee z ) \vee ( (x \wedge y) \vee z ) )$}
\DisplayProof
} % End of \hbox
\bigskip
\alwaysRootAtBottom
Testing of quaternary and quinary inferences (a bit scrunched due a use of
\verb+\insertBetweenHyps+):
\begin{prooftree}
\insertBetweenHyps{\hskip-1em}
\AxiomC{$A^B$}
\Axiom$A_B\fCenter A_{B_C}$
\Axiom$A^B\fCenter A^{B^C}$
\Axiom$A^{B^C}\fCenter A^{B^{C^D}}$
\Axiom$A^{B^{C^D}}\fCenter A^{B^{C^{D^E}}}A^{B^{C^{D^E}}}$
\QuinaryInf$X\fCenter XXXXX$
\UnaryInf$YYYY\fCenter Y$
\insertBetweenHyps{\hskip-1em}
\Axiom$A^B\fCenter A^{B^C}$
\Axiom$A^{B^C}\fCenter A^{B^{C^D}}$
\Axiom$A^{B^{C^D}}\fCenter A^{B^{C^{D^E}}}A^{B^{C^{D^E}}}$
\QuaternaryInf$X\fCenter XXXXX$
\UnaryInf$YYYY\fCenter Y$
\end{prooftree}
\alwaysRootAtTop
Testing of quaternary and quinary inferences (a bit scrunched due a use of
\verb+\insertBetweenHyps+):
\begin{prooftree}
\insertBetweenHyps{\hskip-1em}
\AxiomC{$A^B$}
\Axiom$A_B\fCenter A_{B_C}$
\Axiom$A^B\fCenter A^{B^C}$
\Axiom$A^{B^C}\fCenter A^{B^{C^D}}$
\Axiom$A^{B^{C^D}}\fCenter A^{B^{C^{D^E}}}A^{B^{C^{D^E}}}$
\QuinaryInf$X\fCenter XXXXX$
\UnaryInf$YYYY\fCenter Y$
\insertBetweenHyps{\hskip-1em}
\Axiom$A^B\fCenter A^{B^C}$
\Axiom$A^{B^C}\fCenter A^{B^{C^D}}$
\Axiom$A^{B^{C^D}}\fCenter A^{B^{C^{D^E}}}A^{B^{C^{D^E}}}$
\QuaternaryInf$X\fCenter XXXXX$
\UnaryInf$YYYY\fCenter Y$
\end{prooftree}
\begin{prooftree}
\insertBetweenHyps{\hskip-1em}
\Axiom$A^B\fCenter A^{B^C}$
\Axiom$A^{B^C}\fCenter A^{B^{C^D}}$
\Axiom$A^{B^{C^D}}\fCenter A^{B^{C^{D^E}}}A^{B^{C^{D^E}}}$
\TrinaryInf$X\fCenter XXXXX$
\end{prooftree}
\newenvironment{proof}{\begin{trivlist}\item[]{\bf Proof\ }}%
{\end{trivlist}}
\newenvironment{proofX}{\noindent{\bf Proof\ }}%
{}
\begin{proofX}
\begin{prooftree}
\Axiom$A^{B^C}\fCenter A^{B^{C^D}}$
\Axiom$A^{B^{C^D}}\fCenter A^{B^{C^{D^E}}}A^{B^{C^{D^E}}}$
\BinaryInf$X\fCenter XXXXX$
\end{prooftree}
\end{proofX}
\newbox\gnBoxA
\newdimen\gnCornerHgt
\setbox\gnBoxA=\hbox{$\ulcorner$}
\global\gnCornerHgt=\ht\gnBoxA
\newdimen\gnArgHgt
\def\Godelnum #1{%
\setbox\gnBoxA=\hbox{$#1$}%
\gnArgHgt=\ht\gnBoxA%
\ifnum \gnArgHgt<\gnCornerHgt
\gnArgHgt=0pt%
\else
\advance \gnArgHgt by -\gnCornerHgt%
\fi
\raise\gnArgHgt\hbox{$\ulcorner$} \box\gnBoxA %
\raise\gnArgHgt\hbox{$\urcorner$}}
This last sentence has nothing to do with proof trees, but shows my
macros for G\"odel number delimeters:
$\Godelnum A, \Godelnum B$
$\Godelnum s$
\end{document}
|