1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
|
% arara: pdflatex
% arara: biber
% arara: pdflatex
% arara: pdflatex
% --------------------------------------------------------------------------
% the CHEMMACROS package
%
% comprehensive support for typesetting chemistry documents
%
% --------------------------------------------------------------------------
% Clemens Niederberger
% --------------------------------------------------------------------------
% https://github.com/cgnieder/chemmacros/
% http://www.mychemistry.eu/forums/forum/chemmacros/
% contact@mychemistry.eu
% --------------------------------------------------------------------------
% If you have any ideas, questions, suggestions or bugs to report, please
% feel free to contact me.
% --------------------------------------------------------------------------
% Copyright 2011-2016 Clemens Niederberger
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
%
% The Current Maintainer of this work is Clemens Niederberger.
% --------------------------------------------------------------------------
\documentclass[load-preamble+]{cnltx-doc}
\usepackage[utf8]{inputenc}
\usepackage[compatibility=newest]{chemmacros}
\setcnltx{
package = {chemmacros},
info = {comprehensive support for typesetting chemistry documents},
url = http://www.mychemistry.eu/forums/forum/chemmacros/ ,
authors = Clemens Niederberger ,
email = contact@mychemistry.eu ,
abstract = {%
\centering
\includegraphics{chemmacros-logo.pdf}
\par
} ,
quote-format = \small\biolinumLF ,
add-cmds = {
abinitio, activatechemgreekmapping, AddRxnDesc, anti, aq, aqi,
ba, bond, bridge,
cd, ch, changechemgreeksymbol, charrow, chcpd, chemabove, chemalpha,
chembeta, ChemCleverefSupport, chemdelta, chemDelta,
ChemFancyrefSupport, chemformula@bondlength, chemgamma, ChemModule,
chemomega, chemphi, chemPhi, chemsetup, chlewis, chname , cip, cis, ch,
CNMR,
data, DeclareChemArrow, DeclareChemBond, DeclareChemBondAlias,
DeclareChemCharge, DeclareChemEqConstant, declarechemgreekmapping,
DeclareChemIUPAC, DeclareChemIUPACShorthand, DeclareChemLatin,
DeclareChemNMR, DeclareChemNucleophile, DeclareChemPartialCharge,
DeclareChemParticle, DeclareChemPhase, DeclareChemReaction,
DeclareChemState,
delm, delp, Delta, dexter, Dfi,
el, ElPot, endo, entgegen, Enthalpy, enthalpy, entropy,
fdelm, fdelp, fmch, fminus, fpch, fplus, fscrm, fscrp,
gas, ghs, ghslistall, ghspic, gibbs, gram,
hapto, HNMR, Helmholtz, hydrogen,
IfChemCompatibilityF, IfChemCompatibilityT, IfChemCompatibilityTF, insitu,
invacuo, isotope, iupac,
Ka, Kb, Kw,
laevus, Lfi, listofreactions, lqd,
makepolymerdelims, mch, mega, meta, mhName,
NewChemArrow, NewChemBond, NewChemBondAlias,
NewChemCharge, NewChemEqConstant, newchemgreekmapping, NewChemIUPAC,
NewChemIUPACShorthand, NewChemLatin, NewChemMacroset, NewChemNMR,
NewChemNucleophile, NewChemPartialCharge, NewChemParticle, NewChemPhase,
NewChemReaction, NewChemState,
newman, nitrogen, NMR, Nu, Nuc,
orbital, ortho, ox, OX, oxygen,
para, pch, per, pH, phase, phosphorus, photon, pKa, pKb, pOH, pos,
positron, Pot, ProvideChemArrow, ProvideChemBond, ProvideChemCharge,
ProvideChemEqConstant, ProvideChemIUPAC, ProvideChemIUPACShorthand,
ProvideChemLatin, ProvideChemNMR, ProvideChemNucleophile,
ProvideChemPartialCharge, ProvideChemParticle, ProvideChemPhase,
ProvideChemReaction,
ProvideChemState, prt,
Rad, redox, RemoveChemIUPACShorthand, RenewChemArrow, RenewChemBond,
RenewChemCharge, RenewChemEqConstant, renewchemgreekmapping,
RenewChemIUPAC, RenewChemIUPACShorthand, RenewChemLatin, RenewChemNMR,
RenewChemNucleophile, RenewChemPartialCharge, RenewChemParticle,
RenewChemPhase, RenewChemState,
Sf, scrm, scrp, second, selectchemgreekmapping, setchemformula,
ShowChemArrow, ShowChemBond, sld, Sod, state, sulfur,
trans,
usechemmodule,
val,
zusammen
} ,
add-silent-cmds = {
addplot,
bottomrule,
cancel, cdot, ce, cee, celsius, centering, chemfig, chemname, clap,
cnsetup, code, color, cstack, cstsetup,
DeclareInstance, DeclareSIUnit, definecolor, draw,
electronvolt, endtikzpicture,
footnotesize,
glqq, grqq,
hertz, hspace,
includegraphics, intertext, IUPAC,
joule,
kelvin, kilo,
latin, lc, lewis, Lewis, liquid, ltn,
metre, midrule, milli, mmHg, mole,
nano, nicefrac, num, numrange,
ominus, oplus,
percent, pgfarrowsdeclarealias, pgfarrowsrenewalias,
renewtagform, rightarrow,
sample, scriptscriptstyle, setatomsep, setbondoffset, sfrac, shade,
shadedraw, shorthandoff, si, SI, sisetup, square, subsection,
textcolor, textendash, textsuperscript, tikz, tikzpicture, tiny, toprule,
upbeta, upeta, upgamma, usetikzlibrary,
volt, vphantom, vspave,
xspace,
z@, z@skip
} ,
index-setup = { othercode = \footnotesize , level = \section } ,
makeindex-setup = { columns = 2 , columnsep = 1em }
}
\usepackage{booktabs,array,longtable}
\usepackage{chemfig,cancel,varioref,csquotes}
\usepackage[
a4paper,
top = .1\paperheight,
bottom = .1\paperheight,
left = .2\paperwidth,
right = .1\paperwidth
]{geometry}
\expandafter\def\csname libertine@figurestyle\endcsname{LF}
\usepackage[libertine]{newtxmath}
\expandafter\def\csname libertine@figurestyle\endcsname{OsF}
\usepackage[biblatex]{embrac}
\ChangeEmph{[}[,.02em]{]}[.055em,-.08em]
\ChangeEmph{(}[-.01em,.04em]{)}[.04em,-.05em]
\usepackage[accsupp]{acro}
\acsetup{
long-format = \scshape ,
short-format = \scshape
}
\DeclareAcronym{ghs}{
short = ghs ,
long = Globally Harmonized System of Classification and Labelling of
Chemicals ,
pdfstring = GHS ,
accsupp = GHS
}
\DeclareAcronym{eu}{
short = EU ,
long = European Union ,
pdfstring = EU ,
accsupp = EU
}
\DeclareAcronym{iupac}{
short = iupac ,
long = International Union of Pure and Applied Chemistry ,
pdfstring = IUPAC ,
accsupp = IUPAC
}
\DeclareAcronym{UN}{
short = un ,
long = United Nations ,
pdfstring = UN ,
accsupp = UN
}
\DeclareAcronym{dvi}{
short = dvi ,
long = device independent file format ,
pdfstring = DVI ,
accsupp = DVO
}
\DeclareAcronym{pdf}{
short = pdf ,
long = portable document file ,
pdfstring = PDF ,
accsupp = PDF
}
\DeclareAcronym{id}{
short = id ,
long = identification string ,
pdfstring = ID ,
accsupp = ID
}
\chemsetup{
modules = {all,polymers} ,
greek = newtx ,
formula = chemformula ,
chemformula/format = \libertineLF
}
\usepackage{siunitx}
\sisetup{
detect-mode=false,
mode=text,
text-rm=\libertineLF
}
\usepackage{filecontents}
\defbibheading{bibliography}{\section{References}}
\addbibresource{\jobname.bib}
\begin{filecontents*}{\jobname.bib}
@book{iupac:greenbook,
author = {E. Richard Cohan and Tomislav Cvita\v{s} and Jeremy G. Frey and
Bertil Holmstr\"om and Kozo Kuchitsu and Roberto Marquardt and Ian Mills and
Franco Pavese and Martin Quack and J\"urgen Stohner and Herbert L. Strauss and
Michio Takami and Anders J Thor} ,
title = {``Quantities, Symbols and Units in Physical Chemistry'', \acs{iupac}
Green Book} ,
shorttitle = {The \acs{iupac} Green Book} ,
sorttitle = {Quantities, Symbols and Units in Physical Chemistry} ,
indexsorttitle = {Quantities, Symbols and Units in Physical Chemistry} ,
edition = {3rd Edition. 2nd Printing} ,
year = {2008} ,
publisher = {\acs{iupac} \&\ RSC Publishing, Cambridge}
}
@book{iupac:redbook,
author = {Neil G. Connelly and Ture Damhus and Richard M. Hartshorn and
Alan T. Hutton} ,
title = {``Nomenclature of Inorganic Chemistry'', \acs{iupac} Red Book} ,
shorttitle = {The \acs{iupac} Red Book} ,
sorttitle = {Nomenclature of Inorganic Chemistry} ,
indexsorttitle = {Nomenclature of Inorganic Chemistry} ,
year = {2005} ,
publisher = { \acs{iupac} \&\ RSC Publishing, Cambridge} ,
isbn = {0-85404-438-8}
}
@book{iupac:bluebook,
author = {R. Panico and W. H. Powell and J-C. Richer},
title = {``Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F,
and H'', \acs{iupac} Blue Book},
shorttitle = {The \acs{iupac} Blue Book} ,
sorttitle = {Nomenclature of Organic Chemistry} ,
indexsorttitle = {Nomenclature of Organic Chemistry} ,
edition = {\mkbibacro{draft}},
date = {2004-10-07},
url =
{http://old.iupac.org/reports/provisional/abstract04/BB-prs310305/CompleteDraft.pdf},
urldate = {2013-07-07}
}
@misc{eu:ghsystem_regulation,
author = {{The European Parliament and The Council of the European Union}},
sortname = {European Parliament and The Council of the European Union} ,
title = {Regulation (EC) No 1272/2008 of the European Parliament and of
the Council} ,
subtitle = {on classification, labelling and packaging of substances and
mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and
amending Regulation (EC) No 1907/2006} ,
journal = {Official Journal of the European Union} ,
date = {2008-12-16}
}
@online{unece:ghsystem_implementation,
author = {{United Nations Economic Commission for Europe}} ,
title = {GHS Implementation} ,
url =
{http://www.unece.org/trans/danger/publi/ghs/implementation_e.html} ,
urldate = {2012-03-20} ,
date = {2012-03-20}
}
@online{mychemistry:chemmacros-dev,
author = {Clemens Niederberger} ,
title = {chemmacros development} ,
url = {http://www.mychemistry.eu/2015/06/chemmacros-development/} ,
urldate = {2015-07-16} ,
date = {2015-06-14}
}
@online{mychemistry:modular-chemmacros,
author = {Clemens Niederberger} ,
title = {modular chemmacros} ,
url = {http://www.mychemistry.eu/2015/06/modular-chemmacros/} ,
urldate = {2015-07-16} ,
date = {2015-06-08}
}
@online{mychemistry:chemmacros-update-how,
author = {Clemens Niederberger} ,
title = {a new chemmacros -- but how?} ,
url = {http://www.mychemistry.eu/2015/07/a-new-chemmacros-but-how/} ,
urldate = {2015-07-16} ,
date = {2015-07-15}
}
\end{filecontents*}
\DeclareInstance{xfrac}{chemformula-text-frac}{text}
{
scale-factor = 1 ,
denominator-bot-sep = -.2ex ,
denominator-format = \scriptsize #1 ,
numerator-top-sep = -.2ex ,
numerator-format = \scriptsize #1 ,
slash-right-kern = .05em ,
slash-left-kern = .05em
}
\usetikzlibrary{calc,positioning,decorations.pathmorphing,patterns}
% \newpackagename\chemmacros{chemmacros}
\newcommand*\chemmacrosversion{\csname c_chemmacros_version_number_tl\endcsname}
\newpackagename\chemformula{chemformula}
\newpackagename\ghsystem{ghsystem}
\newpackagename\chemgreek{chemgreek}
\renewcommand*\AmS{\hologo{AmS}}
\newcommand*\TikZ{Ti\textit{k}Z}
\newcommand*\tablehead[1]{\textrm{\bfseries#1}}
\providecommand*\XyM{%
X\kern-.30em
\smash{\raise.50ex\hbox{\char'7}}%
\kern-.30em M%
}
\providecommand*\XyMTeX{\XyM\kern-.1em\TeX}
% \NewChemPhase{\aqi}{aq,$\infty$}% aqueous solution at infinite dilution
% \NewChemPhase{\cd}{cd}% condensed phase
% \NewChemPhase{\lc}{lc}% liquid crystal
\newname\hensel{Martin Hensel}
\newname\pedersen{Bj\o rn Pedersen}
\newcommand*\iupaccs[3][]{%
\command{#2}[\quad\iupac{\csuse{#2}}]
#3\ifblank{#1}{}{\ifblank{#3}{}{ }An alias for this command is \cs{#1}.}%
}
% \undef\module
% \undef\moduleidx
\newidxcmd\chemmodule{\code{#1}}[ (module)]
\newidxcmd\tikzdecoration{\code{#1}}[ (\TikZ\ decoration)]
\AtEndPreamble{%
\pdfstringdefDisableCommands{%
\def\chemmodule*#1{\textquotedblleft#1\textquotedblright}%
}%
}
\newidxcmd\sym{\code{#1}}[ (symbol)]
\makeatletter
\def\cnltx@bash@listings@style{
language = bash,
basicstyle = {\sourceformat\color{black}},
% numbers = left,
% numberstyle = \tiny,
xleftmargin = 1em,
numbersep = .75em,
gobble = \cnltx@gobble ,
columns = fullflexible,
literate =
{ä}{{\"a}}1
{ö}{{\"o}}1
{ü}{{\"u}}1
{Ä}{{\"A}}1
{Ö}{{\"O}}1
{Ü}{{\"U}}1
{ß}{{\ss}}1 ,
breaklines = true,
keepspaces = true,
breakindent = 1em,
commentstyle = \color{comment},
keywordstyle = \color{black}\bfseries ,
stringstyle = \color{black} ,
showstringspaces = false ,
morekeywords = texdoc
}
\cnltx@expandargs(nx)\lstdefinestyle
{bash}
{\expandonce\cnltx@bash@listings@style}
\newcommand*\prompt{}
\patchcmd\lst@NewLine
{\hbox{}}% search
{\hbox{}\prompt}% replace
{}% success
{}% failure
\newsourcecodeenv[
code-only,
sourcecode-options={style=bash},
pre-code=\def\prompt{\textasciitilde\space\$\space}
]{bash}
\makeatother
\renewcommand*\dictumauthorformat[1]{#1}
\renewcommand*\raggeddictumtext{}
\newcommand*\TF{\textcolor{red}{\uline{\code{\textcolor{cs}{\textit{TF}}}}}}
\makeatletter
\newrobustcmd*\explcsformat[1]{%
\code{\textbackslash\textcolor{cs}{\detokenize{#1}}}%
}
\newidxcmd\explcs{\explcsformat{#1}}[ (expl3)]
\cnltx@deflistitem{\cnltx@explcommand}{\explcs}
\renewenvironment{commands}
{%
\let\command\cnltx@command
\let\explcommand\cnltx@explcommand
\cnltxlist
}
{\endcnltxlist}
\newenvironment{tikzcode}
{%
\def\arrowtip{\@cnltx@option@item\code}%
\cnltxlist
}
{\endcnltxlist}
\newrobustcmd*\showenv[1]{\beginenv*\code{\{}\env{#1}\code{\}}}
\makeatother
\ExplSyntaxOn
\cs_new_protected:Npn \chemboldchecks #1
{
\seq_set_map:NNn \l_tmpa_seq \l__chemmacros_if_bf_seq { \code {##1} }
\seq_use:Nnnn \l_tmpa_seq {,~} {,~} {~#1~}
}
\ExplSyntaxOff
\AtBeginDocument{\renewcommand*\reftextfaraway[1]{starting on page~\pageref{#1}}}
\begin{document}
\part{Preliminaries}
\section{Licence, Requirements and \textsc{README}}\label{sec:licence-requ-readme}
\license
\chemmacros\ loads the packages \pkg{expl3}~\cite{bnd:l3kernel} and
\pkg{xparse}~\cite{bnd:l3packages}. Depending on your usage other packages
will be loaded. They are mentioned when the corresponding module using the
package is described.
\section{Motivation and Background}\label{sec:motiv-backgr}
This package grew from a small collection of personal helper macros back
in~2010 into a rather big package supporting various different chemical
typesetting tasks. I hope I have achieved the following points with this
package:
\begin{itemize}
\item Intuitive usage as far as the syntax of the commands is concerned.
\item A comprehensive set of macros! If there are any needs you might have
with respect to typesetting of chemistry which is not supported by this
package\footnote{Not including needs already solved by other packages such
as \pkg{chemnum} or \pkg{chemfig}.} then let me know so \chemmacros\ can
be extended.
\item The commands shall not only make typesetting easier and faster but
also the document source more readable with respect to semantics
(\code{\cs{ortho}-dichlorobenzene} is easier to read and understand than
\code{\cs*{textit}\Marg{o}-dichlorobenzene}); the first variant in my
opinion also is more in the spirit of \LaTeXe.
\item As much customizability as I could think of so every user can adapt
the commands to his or her own wishes. Every now and then users have
wishes which can't be solved with the available options. Almost always
I'll add options then. If you find something please contact me, see
section~\vref{sec:sugg-bug-reports}.
\item Default settings that are compliant with the recommendations of the
\acf{iupac}.
\end{itemize}
Especially the last point in the past needed some pushing from users to get
things right in many places. If you find anything not compliant with
\ac{iupac} recommendations please contact me, see
section~\vref{sec:sugg-bug-reports}. Don't forget to add references for the
corresponding \ac{iupac} recommendation.
\section{The Structure of \chemmacros}\label{sec:structure-chemmacros}
\subsection{General Structure}
Since version~5.0 the \chemmacros\ package has a strictly modular
structure\sinceversion{5.0}. On the one hand this eases maintenance but it
will also allow for easy and quick extension in the future. In a way it is a
logical consequence from \chemmacros' history: since version~2.0, \ie, since
the fall of~2011 \chemmacros\ already had modular options.
The different modules of \chemmacros\ are divided into two groups:
\begin{enumerate}
\item Internal modules which provide underlying functionality or basic
functionality which is not of direct interest from a user perspective but
might be if you plan to write a module yourself (see
section~\ref{sec:own-modules} for details).
\item User modules which provide all the stuff for typesetting.
\end{enumerate}
Both groups each are subdivided into two groups: preloaded modules and modules
which have to be loaded by the programmer (internal modules) or by the
document author (user modules). Those modules are described in
parts~\ref{part:preloaded-modules} (preloaded modules)
and~\ref{part:additional-modules} (additional modules) of this manual.
The above means that not all functionality is available per default. If you
want to load \emph{all} modules no matter what then you can say:
\begin{sourcecode}
\usechemmodule{all}
\end{sourcecode}
or
\begin{sourcecode}
\chemsetup{modules=all}
\end{sourcecode}
which will load all modules which are part of \chemmacros\ (also see
section~\vref{sec:all-module}). Own modules (see
section~\vref{sec:own-modules}) are \emph{not} loaded through this, though,
and still have to be loaded additionally.
In part~\vref{part:preloaded-modules} the preloaded modules are described,
first the user modules then the internal ones, in
part~\vref{part:additional-modules} the other available modules are described,
again the user modules first. In each section the modules are described in
an alphabetical order.
\subsection{Using \chemmacros' Options}\label{sec:using-chemm-opti}
Prior to v5.0 \chemmacros\ had quite a number of package options.
\chemmacros\ v5.0 or higher has none! All of \chemmacros' options are set
using the command
\begin{commands}
\command{chemsetup}[\oarg{module}\marg{option list}]
\chemmacros' setup command.
\end{commands}
When an option is described then in the left margin the module the option
belongs to is denoted. This looks something like this:
\begin{options}
\keyval{option}{value}\Module{module}\Default
Description of \option{option}. The module is printed in the left margin.
The default value to the right is the setting the option has when
\chemmacros\ is loaded. This can be an explicit setting but the option
can also be empty.
\keychoice{choice-option}{list,of,\default{choices}}\Module{module}\Default{list}
Description of \option{choice-option}. A choice option can only be used
with a predefined list of values. If one of the values is underlined it
means that the option can be used without value in which case the
underlined value is chosen. If no value is underlined then a value
\emph{has} to be given by the user.
\keybool{boolean-option}\Module{module}\Default{true}
Description of \option{boolean-option}. A boolean option is a choice
option with exactly the two values \code{true} and \code{false}. If the
option is called without value then the underlined value is chosen (which
is always \code{true} for a boolean option).
\end{options}
An option or list of options belonging to a module \chemmodule{module} can be
set in two ways:
\begin{sourcecode}
% first possibility:
\chemsetup[module]{
option1 = value ,
option2 = value
}
% second possibility:
\chemsetup{
module/option1 = value ,
module/option2 = value
}
\end{sourcecode}
The second way allows to set options belonging to different modules with one
call of \cs{chemsetup}.
\subsection{Support Package \chemformula}
\chemformula\ provides means of typesetting chemical formulas and reactions.
You will see its macros \cs{ch} and \cs{chcpd} every now and then in this
manual. When using \chemmacros\ you can consider the \chemformula\
package~\cite{pkg:chemformula} to be loaded as \chemmacros\ makes use of it in
various places. \chemmacros\ and \chemformula\ are tightly intertwined.
Nevertheless you should be able to use the \pkg{mhchem}~\cite{pkg:mhchem}
package with \chemmacros. Please see section~\vref{sec:using-mhchem} for
details and \latin{caveat}s. \emph{The recommendation is to use
\chemformula.}
A historical note: \chemformula\ started as a part of \chemmacros\ in
January~2012. Since July~2013 it is a completely independent package -- from
\chemformula's point of view. It is maintained independently and has a manual
of its own.
\subsection{Upgrading from version $<5.0$}
People upgrading from versions $<5.0$ will find that almost everything they
know from earlier versions is the same in versions $\geq5.0$. But there are
important and \emph{breaking} differences:
\begin{itemize}
\item \chemmacros\ has no package options any more, all options are set via
\cs{chemsetup}, also see section~\vref{sec:using-chemm-opti}.
\item Not all of the features are available per default any more, for some
the corresponding module has to be loaded explicitly, see
section~\ref{sec:general-options}. If suddenly some commands or
environments seem to be undefined this is the most likely reason.
\item Some option modules have been renamed (\eg, \module*{iupac} is now
\module{nomenclature}). If you experience strange errors when you upgrade
your document this is the most likely source.
\item The command family \cs*{NewChem\ldots}, \cs*{RenewChem\ldots} and
\cs*{DeclareChem\ldots} has a new member \cs*{ProvideChem\ldots}.
\item In \cs{iupac} the macro \cs*{-} no longer gives a dash with breaking
point. Instead \sym*{-} can be used directly\footnote{\cs*{-} is provided
up to and including v5.2 but is dropped in higher versions.}.
\item The macro \cs{ox} has another default behaviour (\keyis{pos}{super})
and the starred version has another effect (\keyis{pos}{top}) than the
same macro in earlier versions. Now the default behaviour follows
\acs{iupac} recommendations. A second change is that the atom is now
treated as a \chemformula\ input (this depends on the setting of the
\option{formula} option, see~\vref{sec:chemformula-module}).
\item The syntax of \cs{NewChemReaction} and friends is now different from
what it used to be. If you have defined your own reaction environments
you need to adapt!
\item \chemmacros\ offers a macro \cs{state} which is similar to but
different from the earlier macro \cs*{State}. \cs*{State} is deprecated.
There are also differences in the syntax of \cs{enthalpy} \vs\ the earlier
\cs*{Enthalpy}, \cs{entropy} \vs\ \cs*{Entropy} and \cs{gibbs} \vs\
\cs*{Gibbs}. The uppercase versions are deprecated. The macro
\cs{NewChemState} also has a different syntax now.
\item At various places in the code improvements and fixes have been made,
too many to list them here. You should keep an open eye and first of all
read the manual closely.
\end{itemize}
\subsection{Compatibility Mode}
\subsubsection{For Users}
It is actually not true that \chemmacros' has no package options any more. It
has one very important package option:
\begin{options}
\keychoice{compatibility}{\meta{num},newest,latest}\Default{\chemmacrosversion}
Let's you specify the version number of \chemmacros\ you want to use. Any
version earlier than 5.0 will load v4.7. \ie, the last version before
\chemmacros\ got its modular structure\footnote{Mostly: the loaded v4.7
has got a few fixes}. Not using the option will always load the newest
version. Please note that you only can specify the \emph{number} of the
version. For a version \enquote{5.2c} you can only set compatibility mode
\enquote{5.2} but not specify the subrelease.
Both values \code{newest} and \code{latest} will choose the latest version
available.
\end{options}
In your document you can check for the compatibility mode. For the following
functions it is important to understand the rules: \emph{greater} means
\emph{newer}. The version number is \emph{not} a usual decimal number! The
syntax for \meta{num} is \meta{major}\code{.}\meta{minor}. This means that a
version 5.11 is \emph{newer} than a version 5.7! In the same way \emph{less}
means \emph{older}. As last example: 5.10 is \emph{newer} (greater) than 5.1.
\begin{commands}
\command{IfChemCompatibilityTF}[\marg{comp}\marg{num}\marg{true}\marg{false}]
Checks the value given through the option \option{compatibility} against
\meta{num} using \meta{comp} and either leaves \meta{true} or \meta{false}
in the input stream. \meta{comp} can be one of \code{<}, \code{<=},
\code{=}, \code{>=} or \code{>}.
\command{IfChemCompatibilityT}[\marg{comp}\marg{num}\marg{true}]
Checks the value given through the option \option{compatibility} against
\meta{num} using \meta{comp} and leaves \meta{true} in the input stream if
the check is logically true. \meta{comp} can be one of \code{<},
\code{<=}, \code{=}, \code{>=} or \code{>}.
\command{IfChemCompatibilityF}[\marg{comp}\marg{num}\marg{false}]
Checks the value given through the option \option{compatibility} against
\meta{num} using \meta{comp} and leaves \meta{false} in the input stream if
the check is logically false. \meta{comp} can be one of \code{<},
\code{<=}, \code{=}, \code{>=} or \code{>}.
\end{commands}
A possible usage:
\begin{sourcecode}
\IfChemCompatibilityT{>=}{5.0}{\usechemmodule{all}}
\end{sourcecode}
Loading \chemmacros\ with \keyis{compatibility}{4.7} also allows to use the
package options from that version:
\begin{sourcecode}
\usepackage[compatibility=4.7,language=german]{chemmacros}
\end{sourcecode}
\subsubsection{For Module Writers}
For future versions the aim is not to make such breaking changes again. While
we never know what the future actually will bring \chemmacros\ now has the
tools for tying code to a version number:
\begin{commands}
\expandable\explcommand{chemmacros_if_compatiblity:nn}[\TF\ \marg{comp}
\marg{num} \marg{true} \marg{false}]
expl3 version of \cs{IfChemCompatibilityTF}.
\end{commands}
In modules one can try adding code for a certain version or range of versions:
\begin{commands}
\command{ChemCompatibility}[\marg{num} \meta{code} \cs{EndChemCompatibility}]
Leaves \meta{code} in the input stream if the compatibility version $x$
given by \option{compatibility} matches \meta{num}
($x=\text{\meta{num}}$).
\command{ChemCompatibilityFrom}[\marg{num} \meta{code} \cs{EndChemCompatibility}]
Leaves \meta{code} in the input stream if the compatibility version $x$
given by \option{compatibility} matches \meta{num} or newer. This means
\meta{num} is the \emph{oldest} version allowed
($x\geq\text{\meta{num}}$).
\command{ChemCompatibilityTo}[\marg{num} \meta{code} \cs{EndChemCompatibility}]
Leaves \meta{code} in the input stream if the compatibility version $x$ given
by \option{compatibility} matches \meta{num} or older. This means
\meta{num} is the \emph{newest} version allowed
($x\leq\text{\meta{num}}$).
\command{ChemCompatibilityBetween}[\marg{num1}\marg{num2} \meta{code}
\cs{EndChemCompatibility}]
Leaves \meta{code} in the input stream if the compatibility version $x$
given by \option{compatibility} lies between \meta{num1} and \meta{num2}
($\text{\meta{num1}}\leq x\leq\text{\meta{num2}}$).
\command{EndChemCompatibility}
This macro \emph{must} end each of the \cs*{ChemCompatibility\ldots}
macros.
\end{commands}
You may refer to the current version of \chemmacros\ with the following
tokenlists:
\begin{commands}
\explcommand{c_chemmacros_date_tl}
The current release date: \enquote{\csname
c_chemmacros_date_tl\endcsname}.
\explcommand{c_chemmacros_version_major_number_tl}
The current major version: \enquote{\csname
c_chemmacros_version_major_number_tl\endcsname}.
\explcommand{c_chemmacros_version_minor_number_tl}
The current minor version: \enquote{\csname
c_chemmacros_version_minor_number_tl\endcsname}.
\explcommand{c_chemmacros_version_number_tl}
The current version number: \enquote{\csname
c_chemmacros_version_number_tl\endcsname}.
\explcommand{c_chemmacros_version_subrelease_tl}
The current sub-release: \enquote{\csname
c_chemmacros_version_subrelease_tl\endcsname}.
\explcommand{c_chemmacros_version_tl}
The current version: \enquote{\csname c_chemmacros_version_tl\endcsname}.
\explcommand{c_chemmacros_info_tl}
The package information: \enquote{\csname
c_chemmacros_info_tl\endcsname}.
\end{commands}
\section{General Options}\label{sec:general-options}
\chemmacros\ has some core options which don't belong to any of the modules
described in parts~\ref{part:preloaded-modules}
and~\ref{part:additional-modules}. Those options have no module denoted in
the left margin next to their descriptions and are also set without specifying
a module:
\begin{sourcecode}
\chemsetup{
option1 = value ,
option2 = value
}
\end{sourcecode}
Two of those options are explained now:
\begin{options}
\keyval{modules}{comma separated list of module names}\Default
With this option you can specify which modules you want to load.
Alternatively you can use \cs{usechemmodule}\marg{comma separated list of
module names}.
\keyval{greek}{mapping}\Default
Explicitly specify which mapping should be used by the \chemgreek\
package~\cite{pkg:chemgreek}. For details about what this means please
refer to section~\vref{sec:greek-module}.
\end{options}
Some internal modules may also define core options, \eg, the \chemmodule{lang}
module, see section~\vref{sec:lang-module}.
\part{The Preloaded Modules}\label{part:preloaded-modules}
\section{User Modules}
\subsection{The \chemmodule*{acid-base} Module}\label{sec:acid-base-module}
Easy representation of \pH, \pKa \ldots
\begin{commands}
\command{pH} \pH
\command{pOH} \pOH
\command{Ka} \Ka, depends on language settings, see
section~\vref{sec:lang-module}. The translations can be adapted.
\command{Kb} \Kb
\command{Kw} \Kw
\command{pKa}[\oarg{num}] \cs{pKa}: \pKa, \cs{pKa}\Oarg{1}: \pKa[1], depends
on language settings, see section~\vref{sec:lang-module}. The translations
can be adapted.
\command{pKb}[\oarg{num}] \cs{pKb}: \pKb, \cs{pKb}\Oarg{1}: \pKb[1]
\command{p}[\marg{anything}] \eg\ \cs{p}\Marg{\cs{Kw}} \p{\Kw}
\end{commands}
\begin{example}[side-by-side]
\Ka\ \Kb\ \pKa\ \pKa[1] \pKb\ \pKb[1]
\end{example}
\begin{cnltxquote}[{\citetitle{iupac:greenbook} \cite[][p.\,103]{iupac:greenbook}}]
The operator \p{} \textelp{} shall be printed in Roman type.
\end{cnltxquote}
There is one option which changes the style the \p{} is typeset, other options
allow to change the subscript of the constants:
\begin{options}
\keychoice{p-style}{italics,slanted,upright}\Module{acid-base}\Default{upright}
Set the style of the \p{} operator.
\keyval{K-acid}{text}\Module{acid-base}\Default{\cs{ChemTranslate}\Marg{K-acid}}
The subscript to \cs{Ka} and \cs{pKa}.
\keyval{K-base}{text}\Module{acid-base}\Default{\cs{ChemTranslate}\Marg{K-base}}
The subscript to \cs{Kb} and \cs{pKb}.
\keyval{K-water}{text}\Module{acid-base}\Default{\cs{ChemTranslate}\Marg{K-water}}
The subscript to \cs{Kw}.
\keyval{eq-constant}{text}\Module{acid-base}\Default{K}
The\sinceversion{5.4} symbol of the constants.
\end{options}
\begin{example}
\pH, \pKa \par
\chemsetup[acid-base]{p-style=slanted} \pH, \pKa \par
\chemsetup[acid-base]{p-style=italics} \pH, \pKa
\end{example}
As you can see the default subscripts of \cs{Kw}, \cs{Ka} and \cs{Kb} are
lowercase letters. The literature is inconclusive about if this is the right
way or if uppercase letters should be preferred. In textbooks the uppercase
variant usually seems to be used while journals seem to prefer the lowercase
variant. \chemmacros' default follows the usage in
\citetitle{iupac:greenbook}~\cite{iupac:greenbook}. If you want to change
this you have two possibilities:
\begin{example}
% this works only in the preamble:
% \DeclareTranslation{English}{K-acid}{\mathrm{A}}% use your language here
% alternative:
\chemsetup{acid-base/K-acid=\mathrm{A}}% overwrites language dependent settings
\pKa
\end{example}
The\sinceversion{5.4} constants \Ka, \Kb, and \Kw\ were defined using the
following commands:
\begin{commands}
\command{NewChemEqConstant}\marg{cs}\marg{name}\marg{subscript}
Define the constant \meta{cs} with the name \meta{name} and the subscript
\meta{subscript}. This also defines the default translation with the key
\meta{name} using \meta{subscript} as fallback translation (see
section~\vref{sec:lang-module} for details). It also defines the option
\meta{name} for setting the subscript.
\command{RenewChemEqConstant}\marg{cs}\marg{name}\marg{default appearance}
The same as \cs{NewChemEqConstant} but renews an existing command.
\command{DeclareChemEqConstant}\marg{cs}\marg{name}\marg{default appearance}
The same as \cs{NewChemEqConstant} but overwrites existing commands.
\command{ProvideChemEqConstant}\marg{cs}\marg{name}\marg{default appearance}
The same as \cs{NewChemEqConstant} but doesn't throw an error if \meta{cs}
already exists.
\end{commands}
This is how \cs{Ka} is defined:
\begin{sourcecode}
\NewChemEqConstant \Ka {K-acid} { \mathrm{a} }
\end{sourcecode}
\subsection{The \chemmodule*{charges} Module}\label{sec:charges-module}
The \chemmodule{charges} module loads the module \chemmodule{chemformula}.
\subsubsection{Charge Symbols}
\begin{commands}
\command{fplus} \fplus\ formal positive charge
\command{fminus} \fminus\ formal negative charge
\command{scrp} \scrp\ scriptstyle positive charge (\eg, for usage in
\pkg{chemfig}'s~\cite{pkg:chemfig} formulas).
\command{scrm} \scrm\ scriptstyle negative charge (\eg, for usage in
\pkg{chemfig}'s formulas).
\command{fscrp} \fscrp\ scriptstyle formal positive charge (\eg, for usage
in \pkg{chemfig}'s formulas).
\command{fscrm} \fscrm\ scriptstyle formal negative charge (\eg, for usage
in \pkg{chemfig}'s formulas).
\command{fsscrp} \fsscrp\ scriptscriptstyle formal positive charge (\eg, for
usage in \pkg{chemfig}'s formulas).
\command{fsscrm} \fsscrm\ scriptscriptstyle formal negative charge (\eg, for
usage in \pkg{chemfig}'s formulas).
\end{commands}
\subsubsection{Ion Charges}\label{sec:ion-charges}
Simple displaying of (real) charges. It is worth noting that these commands
really are relicts from a time when \chemmacros\ tried hard to be compliant
with \pkg{mhchem} and \chemformula\ didn't exist, yet. They are still
provided for backwards compatibility but \emph{my recommendation is to use}
\cs{ch} (see the documentation of the \chemformula\
package~\cite{pkg:chemformula}) \emph{and forget about these commands:}
\begin{commands}
\command{pch}[\oarg{number}]
positive charge
\command{mch}[\oarg{number}]
negative charge
\command{fpch}[\oarg{number}]
formal positive charge
\command{fmch}[\oarg{number}]
formal negative charge
\end{commands}
\begin{example}[side-by-side]
A\pch\ B\mch[3] C\fpch[2] D\fmch
\end{example}
\subsubsection{Partial Charges and Similar Stuff}\label{sec:part-charg-simil}
The next ones probably are seldomly needed but nevertheless useful:
\begin{commands}
\command{delp} \delp\ partial positive charge
\command{delm} \delm\ partial negative charge
\command{fdelp} \fdelp\ partial formal positive charge
\command{fdelm} \fdelm\ partial formal negative charge
\end{commands}
These macros for example can be used with the \cs{ox} command (see
section~\vref{sec:redox-module}) or with the \pkg{chemfig} package:
\begin{example}
\chemsetup{
charges/circled = all,
redox/parse = false,
redox/pos = top
}
\ch{"\ox{\delp,H}" -{} "\ox{\delm,Cl}"} \hspace*{1cm}
\chemfig{\chemabove[3pt]{\lewis{246,Br}}{\delm}-\chemabove[3pt]{H}{\delp}}
\end{example}
\subsubsection{Charge Options}
\begin{options}
\keychoice{circled}{formal,\default{all},none}\Module{charges}\Default{formal}
\chemmacros\ uses two different kinds of charges which indicate the usage
of real ($+/-$) and formal (\fplus/\fminus) charges. The option
\code{formal} distinguishes between them, option \code{none} displays them
all without circle, option \code{all} circles all.
\keychoice{circletype}{chem,math}\Module{charges}\Default{chem}
This option switches between two kinds of circled charge symbols:
\cs{fplus} \fplus/\cs{fminus} \fminus\ (\code{chem}) and
\verbcode+$\oplus$+ $\oplus$/\verbcode+$\ominus$+ $\ominus$ (\code{math}).
\keyval{partial-format}{\LaTeX\ code}\Module{charges}\Default{\cs*{tiny}}
Code which formats the macros defined with \cs{NewChemPartialCharge} (see
section~\ref{sec:own-charge-macros}).
\end{options}
\subsubsection{Own Charge Macros}\label{sec:own-charge-macros}
Just in case the existing macros don't fit you needs there are commands for
defining new ones or modifying the existing ones. These commands define
macros like those described in section~\vref{sec:ion-charges}.
\begin{commands}
\command{NewChemCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Raises an error if \meta{cs} already
exists.
\command{RenewChemCharge}[\marg{cs}\marg{charge symbol}]
Redefines a new macro \meta{cs}. Raises an error if \meta{cs} doesn't
exist.
\command{DeclareChemCharge}[\marg{cs}\marg{charge symbol}]
Defines a macro \meta{cs}. Silently overwrites \meta{cs} if it exists.
\command{ProvideChemCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Does nothing if \meta{cs} already exists.
\end{commands}
An example of usage is the definition of the existing ion charge macros:
\begin{sourcecode}
\NewChemCharge\fpch{\fplus}
\NewChemCharge\fmch{\fminus}
\end{sourcecode}
These commands define macros like those described in
section~\vref{sec:part-charg-simil}.
\begin{commands}
\command{NewChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Raises an error if \meta{cs} already
exists.
\command{RenewChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Redefines a new macro \meta{cs}. Raises an error if \meta{cs} doesn't
exist.
\command{DeclareChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Defines a macro \meta{cs}. Silently overwrites \meta{cs} if it exists.
\command{ProvideChemPartialCharge}[\marg{cs}\marg{charge symbol}]
Defines a new macro \meta{cs}. Does nothing if \meta{cs} already exists.
\end{commands}
An example of usage is the definition of the existing partial charge macros:
\begin{sourcecode}
\NewChemPartialCharge\fdelp{\fplus}
\NewChemPartialCharge\fdelm{\fminus}
\end{sourcecode}
\subsection{The \chemmodule*{nomenclature} Module}\label{sec:nomenclature-module}
The \chemmodule{nomenclature} module loads the \chemmodule{tikz} module. It
also loads the package \pkg{scrlfile} which is part of the
\KOMAScript\ bundle~\cite{bnd:koma-script}.
\subsubsection{The \cs*{iupac} Command}
Similar to the \pkg{bpchem} package~\cite{pkg:bpchem} \chemmacros\ provides a
command\footnote{The idea and initial implementation is shamelessly borrowed
from \pkg{bpchem} by \pedersen.} for typesetting \ac{iupac} names. Why is
that useful? \ac{iupac} names can get very long. So long indeed that they
span over more than two lines, especially in two-column documents. This means
they must be allowed to be broken more than one time. This is what the
following command does.
\begin{commands}
\command{iupac}[\marg{IUPAC name}]
Inside this command use \sym{\textbar} indicate a breaking point
\sym{\textasciicircum} as a shortcut for \cs*{textsuperscript}. \sym{-},
\sym{(} and \sym{)} allow words to be broken while still allow the rest of
word to be hyphenated, likewise \sym{[} and \sym{]}.
\end{commands}
\begin{example}
\begin{minipage}{.4\linewidth}
\iupac{%
Tetra|cyclo[2.2.2.1^{1,4}]-un|decane-2-dodecyl-%
5-(hepta|decyl|iso|dodecyl|thio|ester)%
}
\end{minipage}
\end{example}
The \cs{iupac} command is more of a semantic command. In many cases you can
achieve (nearly) the same thing by using \cs*{-} instead of \sym{\textbar},
and \cs*{textsuperscript} instead of \sym{\textasciicircum} without
\cs{iupac}. There are some important differences, though:
\begin{itemize}
\item The character \sym{-} inserts a small space before the hyphen and
removes a small space after it. Also usually words with hyphens are only
allowed to break at the hyphen. Inside \cs{iupac} the hyphen will not
prevent further hyphenation. The amount of inserted space can be
customized.
\item The character \sym{\textbar} not only prevents ligatures but also
inserts a small space. The amount of inserted space can be customized.
\item The characters \sym{(} and \sym{)} allow the word to be hyphenated and
don't prevent further hyphenation, likewise \sym{[} and \sym{]}.
\item \sinceversion{5.3}The character \sym{'} is printed as \cs{chemprime}.
\end{itemize}
\begin{example}[side-by-side]
\huge\iupac{2,4-Di|chlor|pentan} \par
2,4-Dichlorpentan
\end{example}
\begin{commands}
\command{chemprime}
Prints\sinceversion{5.3} a prime character in superscript position. It is
defined as \verbcode+\ensuremath{{}^{\prime}}+.
\end{commands}
The spaces inserted by \sym{-} and \sym{\textbar} can be
customized.
\begin{options}
\keyval{hyphen-pre-space}{dim}\Module{nomenclature}\Default{.01em}
Set the space that is inserted before the hyphen set with \sym{-}.
\keyval{hyphen-post-space}{dim}\Module{nomenclature}\Default{-.03em}
Set the space that is inserted after the hyphen set with \sym{-}.
\keyval{break-space}{dim}\Module{nomenclature}\Default{.01em}
Set the space inserted by \sym{\textbar}.
\end{options}
The command \cs{iupac} serves another purpose, too, however. Regardless of
the setting of the \option{iupac} option (see below) all the commands
presented in this section are always defined \emph{inside} \cs{iupac}. Quite
a number of the naming commands have very general names: \cs{meta}, \cs{D},
\cs{E}, \cs{L}, \cs{R}, \cs{S}, \cs{trans} and so forth\footnote{Please read
section~\vref{sec:one-letter-commands} before you consider using the
one-letter commands}. This means they either are predefined already (\cs{L}
\L) or are easily defined by another package or class (the \pkg{cool} package
defines both \cs{D} and \cs{E}, for example). In order to give you control
which commands are defined in which way, there is the option \option{iupac}:
\begin{options}
\keychoice{iupac}{auto,restricted,strict}\Module{nomenclature}\Default{auto}
Take care of how \ac{iupac} naming commands are defined.
\end{options}
It has three modes:
\begin{itemize}
\item \keyis{iupac}{auto}: if the commands are \emph{not} defined by any
package or class you're using they are available generally, otherwise only
\emph{inside} \cs{iupac}.
\item \keyis{iupac}{restricted}: all naming commands are \emph{only} defined
inside \cs{iupac}. If the commands are defined by another package they of
course have that meaning outside. They're not defined outside otherwise.
\item \keyis{iupac}{strict}: \chemmacros\ overwrites any other definition and
makes the commands available throughout the document. Of course the
commands can be redefined (but only in the document body). They will still
be available inside \cs{iupac} then.
\end{itemize}
Table~\vref{tab:iupac_modes} demonstrates the different modes.
\begin{table}
\centering
\caption{Demonstration of \option*{iupac}'s modes.}\label{tab:iupac_modes}
\begin{tabular}{lccc}
\toprule
& auto & restricted & strict \\
\midrule
\cs{L} & \L & \L & \iupac{\L} \\
\cs{iupac}\Marg{\cs{L}} & \iupac{\L} & \iupac{\L} & \iupac{\L} \\
\cs{D} & \D & --- & \D \\
\cs{iupac}\Marg{\cs{D}} & \iupac{\D} & \iupac{\D} & \iupac{\D} \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Macros Defined (Not Only) For Usage in \cs*{iupac}}
\paragraph{One-letter Macros}\label{sec:one-letter-commands}
For some of the macros explained in this section one-letter commands are
defined -- with a \latin{caveat} in mind, though: they are not actively
recommended. One-letter commands seldomly have meaningful names and often
they've also been defined by other packages. This means they make
collaboration more difficult than it needs to be and are a source for package
conflicts. \chemmacros\ solves the latter problem by only providing them
inside the argument of \cs{iupac}. The one exception \chemmacros\ makes is
the command \cs{p} (for things like \pH) which is and will remain an official
command (see section~\vref{sec:acid-base-module}). For all other one-letter
macros alternatives with more meaningful names exist.
\paragraph{Greek Letters}\label{par:greek_letters}
Greek letters in compound names are typeset upright. Here are a few examples
for the existing macros:
\begin{commands}
\command{chemalpha}[\quad\chemalpha]
Upright lowercase alpha
\command{chembeta}[\quad\chembeta]
Upright lowercase alpha
\command{chemgamma}[\quad\chemgamma]
Upright lowercase alpha
\command{chemdelta}[\quad\chemdelta]
Upright lowercase alpha
\end{commands}
There exist two commands for each of the twenty-four Greek letters: a
lowercase and an uppercase version (\cs{chemalpha} and \cs{chemAlpha}). Those
commands are actually provided by the \chemgreek\ package. For more details
read section~\vref{sec:greek-module} and also refer to \chemgreek's
documentation.
There are a number of one-letter commands that some people may find convenient
to use which use above mentioned commands to print Greek letters inside
\cs{iupac}. They're listed in table~\vref{tab:iupac-greek-shortcuts}.
\begin{table}
\centering
\caption{\acs*{iupac} shortcuts for Greek letters.}
\label{tab:iupac-greek-shortcuts}
\begin{tabular}{*9l}
\toprule
macro &
\cs{a} & \cs{b} & \cs{g} & \cs{d} &
\cs{k} & \cs{m} & \cs{n} & \cs{w} \\
\midrule
letter &
\iupac{\a} & \iupac{\b} & \iupac{\g} & \iupac{\d} &
\iupac{\k} & \iupac{\m} & \iupac{\n} & \iupac{\w} \\
\bottomrule
\end{tabular}
\end{table}
\begin{example}
\iupac{5\chemalpha-androstan-3\chembeta-ol} \par
\iupac{\chemalpha-(tri|chloro|methyl)-\chemomega
-chloro|poly(1,4-phenylene|methylene)}
\end{example}
\paragraph{Hetero Atoms and added Hydrogen}
Attachments to hetero atoms and added hydrogen atoms are indicated by italic
letters~\cite{iupac:greenbook}. \chemmacros\ defines a few macros for the
most common ones.
\begin{commands}
\iupaccs[H]{hydrogen}{The italic H for hydrogen.}
\iupaccs[O]{oxygen}{The italic O for oxygen.}
\iupaccs[N]{nitrogen}{The italic N for nitrogen.}
\iupaccs[Sf]{sulfur}{The italic S for sulfur.}
\iupaccs[P]{phosphorus}{The italic P for phosphorus.}
\end{commands}
\begin{example}[side-by-side]
\iupac{\nitrogen-methyl|benz|amide}
\iupac{3\hydrogen-pyrrole}
\iupac{\oxygen-ethyl hexanethioate}
\end{example}
\paragraph{Cahn-Ingold-Prelog}\label{par:cip}
\begin{commands}
\command{cip}[\marg{conf}]
Typeset Cahn-Ingol-Prelog descriptors, \eg: \cs{cip}\Marg{R,S}
\cip{R,S}. \meta{conf} may be a csv list of entries.
\iupaccs[R]{rectus}{The rectus descriptor.}
\iupaccs[S]{sinister}{The sinister descriptor.}
\end{commands}
Both these commands and the entgegen/zusammen descriptors get a small
additional amount of kerning after the closing parenthesis. This amount can
be changed through the following option:
\begin{options}
\keyval{cip-kern}{dim}\Module{nomenclature}\Default{.075em}
Set the amount of kerning after the closing parenthesis.
\end{options}
\paragraph{Fischer}
\begin{commands}
\iupaccs[D]{dexter}{The dexter descriptor.}
\iupaccs[L]{laevus}{The laevus descriptor.}
\end{commands}
\paragraph{cis/trans, zusammen/entgegen, syn/anti \& tert}
\begin{itemize}
\item \cs{cis} \iupac{\cis} \quad \cs{trans} \iupac{\trans}
\item \cs{fac} \iupac{\fac} \quad \cs{mer} \iupac{\mer}
\item \cs{sin} \iupac{\sin} \quad \cs{ter} \iupac{\ter}
\item \cs{zusammen} \iupac{\zusammen} \quad \cs{entgegen} \iupac{\entgegen}
\item \cs{syn} \iupac{\syn} \quad \cs{anti} \iupac{\anti}
\item \cs{tert} \iupac{\tert}
\end{itemize}
An alias for \cs{entgegen} is \cs{E} and an alias for \cs{zusammen} is
\cs{Z}.
\paragraph{ortho/meta/para}
\begin{center}
\cs{ortho} \iupac{\ortho} \quad
\cs{meta} \iupac{\meta} \quad
\cs{para} \iupac{\para}
\end{center}
Although these commands are provided I like to cite
\citetitle{iupac:bluebook}~\cite{iupac:bluebook}:
\begin{cnltxquote}[{\cite[][p.\,90]{iupac:bluebook}}]
The letters \iupac{\ortho}, \iupac{\meta}, and \iupac{\para} have been used
in place of \textit{ortho}, \textit{meta}, and \textit{para}, respectively,
to designate the 1,2-, 1,3-, and 1,4- isomers of disubstituted benzene.
This usage is strongly discouraged and is not used in preferred \acs{iupac}
names.
\end{cnltxquote}
\paragraph{Absolute Configuration}
\begin{commands}
\command{Rconf}[\oarg{letter}]
\cs{Rconf}: \Rconf \quad \cs{Rconf}\oarg{}: \Rconf[]
\command{Sconf}[\oarg{letter}]
\cs{Sconf}: \Sconf \quad \cs{Sconf}\oarg{}: \Sconf[]
\end{commands}
\paragraph{Coordination Chemistry}
\chemmacros\ provides a few commands useful in coordination chemistry:
\begin{commands}
\command{bridge}[\marg{num}\quad\bridge{3}]
Denote bridging ligand connection.
\command{hapto}[\marg{num}\quad\hapto{5}]
Denote hapticity.
\command{dento}[\marg{num}\quad\dento{2}]
Denote denticity.
\end{commands}
\begin{example}
Ferrocene = \iupac{bis(\hapto{5}cyclo|penta|dienyl)iron} \par
\iupac{tetra-\bridge{3}iodido-tetrakis[tri|methyl|platinum(IV)]}
\end{example}
Two options allow customization:
\begin{options}
\keychoice{bridge-number}{sub,super}\Module{nomenclature}\Default{sub}
Appends the number as a subscript or superscript, depending on the choice.
The \ac{iupac} recommendation is the subscript~\cite{iupac:redbook}.
\keybool{coord-use-hyphen}\Module{nomenclature}\Default{true}
Append a hyphen to \cs{hapto}, \cs{dent} and \cs{bridge} or don't.
\end{options}
\paragraph{Examples}
\begin{example}
\iupac{\dexter-Wein|s\"aure} =
\iupac{\cip{2S,3S}-Wein|s\"aure} \par
\iupac{\dexter-($-$)-Threose} =
\iupac{\cip{2S,3R}-($-$)-2,3,4-Tri|hydroxy|butanal} \par
\iupac{\cis-2-Butene} =
\iupac{\zusammen-2-Butene}, \par
\iupac{\cip{2E,4Z}-Hexa|diene} \par
\iupac{\meta-Xylol} =
\iupac{1,3-Di|methyl|benzene}
\end{example}
\subsubsection{Own \cs*{iupac} Macros And Shorthands}
If you find any commands missing you can define them using
\begin{commands}
\command{NewChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already.
\command{ProvideChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already only if
the corresponding \ac{iupac} macro is not defined, yet.
\command{RenewChemIUPAC}[\marg{cs}\marg{declaration}]
Redefine an existing \ac{iupac} command that is in any case defined inside
of \cs{iupac} regardless if \meta{cs} is defined elsewhere already.
\command{DeclareChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already. This
silently overwrites an existing \ac{iupac} macro definition.
\command{LetChemIUPAC}[\marg{cs1}\marg{cs2}]
Defines \meta{cs1} to be an alias of \meta{cs2}.
\end{commands}
A command defined in this way will obey the setting of the option
\option{iupac}. This means any existing command is only overwritten with
\keyis{iupac}{strict}. However, \cs{NewChemIUPAC} will \emph{not} change the
definition of an existing \ac{iupac} naming command but issue an error if the
\ac{iupac} naming command already exists. \cs{DeclareChemIUPAC} \emph{will}
overwrite an existing \ac{iupac} command.
\begin{example}
\NewChemIUPAC\endo{\textsc{endo}}
\RenewChemIUPAC\anti{\textsc{anti}}
\iupac{(2-\endo,7-\anti)-2-bromo-7-fluoro|bicyclo[2.2.1]heptane}
\end{example}
\cs{RenewChemIUPAC} allows you to redefine the existing \ac{iupac} naming
commands.
\begin{example}[side-by-side]
\iupac{\meta-Xylol} \par
\RenewChemIUPAC\meta{\textup{m}}
\iupac{\meta-Xylol}
\end{example}
There's also a way for defining new \ac{iupac} shorthands or changing the
existing ones:
\begin{commands}
\command{NewChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Defines a new \ac{iupac} shorthand. Inside \cs{iupac} it will be equal to
using \meta{control sequence}. This throws an error if \meta{shorthand
token} is already defined.
\command{RenewChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Redefines an existing \ac{iupac} shorthand. This throws an error if
\meta{shorthand token} is not defined, yet.
\command{DeclareChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Defines a new \ac{iupac} shorthand or redefines an existing one.
\command{ProvideChemIUPACShorthand}[\meta{shorthand token}\meta{control sequence}]
Provides a new \ac{iupac} shorthand. Does nothing if \meta{shorthand
token} is already defined.
\command{RemoveChemIUPACShorthand}[\meta{shorthand token}]
Deletes an existing \ac{iupac} shorthand.
\end{commands}
\subsubsection{Latin Phrases}
\chemmacros\ provides a command for typesetting latin phrases:
\begin{commands}
\command{latin}[\oarg{options}\marg{phrase}]
Typesets \meta{phrase} according to the option \option{format} described
below.
\command{insitu}[\quad\insitu]
\command{invacuo}[\quad\invacuo]
\command{abinitio}[\quad\abinitio]
\end{commands}
If you additionally load \pkg{chemstyle}~\cite{pkg:chemstyle} said package
will \emph{not} define its own \cs{latin}.
% The package \pkg{chemstyle}~\cite{pkg:chemstyle} provides the command
% \cs{latin} to typeset common latin phrases in a consistent way. \chemmacros\
% defines a similar \cs{latin} only if \pkg{chemstyle} has \emph{not} been
% loaded and additionally provides these commands:
% \begin{center}
% \cs{insitu} \insitu \quad
% \cs{abinitio} \abinitio \quad
% \cs{invacuo} \invacuo
% \end{center}
% \emph{If the package \pkg{chemstyle} has been loaded they are defined using
% \pkg{chemstyle}'s \cs{latin} command. This means that then the appearance
% depends on \pkg{chemstyle}'s option \code{abbremph}.}
The last three commands mentioned above are defined through
\begin{commands}
\command{NewChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase. Gives an error if \meta{cs} already exists.
\command{DeclareChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase. Silently redefined existing macros.
\command{RenewChemLatin}[\marg{cs}\marg{phrase}]
Redefine an existing latin phrase. Gives an error if \meta{cs} doesn't
exist.
\command{ProvideChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase only if \meta{cs} doesn't exist.
\end{commands}
\begin{example}[side-by-side]
\NewChemLatin\ltn{latin text}\ltn
\end{example}
You can change the appearance with this option:
\begin{options}
\keyval{format}{definition}\Module{nomenclature}\Default{\cs*{emph}}
\changedversion{5.7}Sets the format for the latin phrases.
\end{options}
\subsection{The \chemmodule*{particles} Module}\label{sec:particles-module}
The \chemmodule{particles} module loads the modules \chemmodule{charges} and
\chemmodule{chemformula}.
\subsubsection{Provided Particle Macros}
The \chemmodule{particles} defines a number of macros which can be used for
typesetting common particles in the running text. Most of them don't make
much sense in \pkg{chemformula}~\cite{pkg:chemformula}'s \cs{ch}, though,
which doesn't mean that they can't be used there, of course:
\begin{center}
\cs{el} \el\ \cs{prt} \prt\ \cs{ntr} \ntr\ \cs{Hyd} \Hyd\ \cs{Oxo} \Oxo\
\cs{water} \water\ \cs{El} \El\ \cs{Nuc} \Nuc\ \cs{ba} \ba
\end{center}
All of these macros are defined using \pkg{chemformula}'s \cs{chcpd}. The
details are explained in section~\vref{sec:defin-own-part}.
The macros \cs{Nuc} and \cs{ba} are special: they have an optional argument
for the following options:
\begin{options}
\keychoice{elpair}{dots,dash,false}\Module{particles}\Default{false}
Determine how the electron pair of the nucleophiles is displayed. The
electron pair is drawn using \chemformula's \cs{chlewis} macro.
\keyval{space}{dim}\Module{particles}\Default{.1em}
Sets\sinceversion{5.3} the space that is inserted between the electron
pair and the negative charge sign.
\end{options}
Both options can of course also be set with \cs{chemsetup}.
\begin{example}[side-by-side]
\ba[elpair=dots] \Nuc[elpair=dash]
\chemsetup[particles]{elpair=false}
\ba\ \Nuc
\end{example}
\subsubsection{Defining Own Particle Macros}\label{sec:defin-own-part}
There are two sets of macros, one for defining particles and one for defining
nucleophiles.
\begin{commands}
\command{NewChemParticle}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Raises an error if \meta{cs} already
exists.
\command{RenewChemParticle}[\marg{cs}\marg{formula}]
Redefines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Raises an error if \meta{cs} doesn't
exist.
\command{DeclareChemParticle}[\marg{cs}\marg{formula}]
Defines a macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Silently overwrites \meta{cs} if it
exists.
\command{ProvideChemParticle}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Does nothing if \meta{cs} already
exists.
\end{commands}
An example of usage is the definition of the existing particle macros:
\begin{sourcecode}
\NewChemParticle\el {e-}
\NewChemParticle\prt{p+}
\NewChemParticle\ntr{n^0}
\end{sourcecode}
The following set defines macros like \cs{Nuc}
\begin{commands}
\command{NewChemNucleophile}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
input (this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Raises an error if \meta{cs} already exists.
\command{RenewChemNucleophile}[\marg{cs}\marg{formula}]
Redefines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Raises an error if \meta{cs} doesn't exist.
\command{DeclareChemNucleophile}[\marg{cs}\marg{formula}]
Defines a macro \meta{cs}. \meta{formula} is any valid \chemformula\
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Silently overwrites \meta{cs} if it exists.
\command{ProvideChemNucleophile}[\marg{cs}\marg{formula}]
Defines a new macro \meta{cs}. \meta{formula} is any valid \chemformula\
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}). Note that \meta{formula} will get a
trailing negative charge! Does nothing if \meta{cs} already exists.
\end{commands}
An example of usage is the definition of the existing nucleophile macros:
\begin{sourcecode}
\NewChemNucleophile\Nuc{Nu}
\NewChemNucleophile\ba {ba}
\end{sourcecode}
A macro defined this way will have an optional argument for the
\option{elpair} option.
\subsection{The \chemmodule*{phases} Module}\label{sec:phases-module}
The \chemmodule{phases} module loads the \chemmodule{chemformula} modul.
\subsubsection{Basics}
These commands are intended to indicate the phase of a compound.
\begin{center}
\cs{sld} \sld \quad \cs{lqd} \lqd \quad \cs{gas} \gas \quad \cs{aq} \aq
\end{center}
\begin{example}
\ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\par
To make it complete: NaCl\aq.
\end{example}
The \ac{iupac} recommendation to indicate the state of aggregation is to put
it in parentheses after the compound \cite{iupac:greenbook}. However, you
might want to put it as a subscript which is also very common.
\begin{cnltxquote}[{\citetitle{iupac:greenbook}~\cite[][p.\,54]{iupac:greenbook}}]
The \textelp{} symbols are used to represent the states of aggregation of
chemical species. The letters are appended to the formula in parentheses
and should be printed in Roman (upright) type without a full stop (period).
\end{cnltxquote}
There are two options to customize the output:
\begin{options}
\keychoice{pos}{side,sub}\Module{phases}\Default{side}
Switch the position of the phase indicator.
\keyval{space}{dim}\Module{phases}\Default{.1333em}
Change the default spacing between compound a phase indicator if
\keyis{pos}{side}. A \TeX\ dimension.
\end{options}
\begin{example}
\chemsetup[phases]{pos=sub}
\ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\par
To make it complete: NaCl\aq.
\end{example}
All those phase commands have an optional argument:
\begin{example}[side-by-side]
\ch{H2O "\lqd[\SI{5}{\celsius}]"}
\end{example}
There is also a generic phase command:
\begin{commands}
\command{phase}[\marg{phase}]
If you need a phase indicator just once or twice. You can use it to
denote a phase for which there is no phase command, yet.
\end{commands}
\subsubsection{Define Own Phases}
Depending on the subject of your document you might need to indicate other
states of aggregation. You can easily define them.
\begin{commands}
\command{NewChemPhase}[\marg{cs}\marg{symbol}]
Define a new phase command. See section~\vref{sec:lang-depend} for a way
to define language dependent settings. Gives an error if \meta{cs}
already exists.
\command{DeclareChemPhase}[\marg{cs}\marg{symbol}]
Define a new phase command. See section~\vref{sec:lang-depend} for a way to
define language dependent settings. Overwrites previous definitions of
\meta{cs}.
\command{RenewChemPhase}[\marg{cs}\marg{symbol}]
Redefine an existing phase command. See section~\vref{sec:lang-depend} for
a way to define language dependent settings. Gives an error if \meta{cs}
is not defined.
\command{ProvideChemPhase}[\marg{cs}\marg{symbol}]
Define a new phase command. See section~\vref{sec:lang-depend} for a way
to define language dependent settings. Does nothing if \meta{cs} is
already defined.
\end{commands}
\begin{example}
% preamble:
\NewChemPhase\aqi{aq,$\infty$} % aqueous solution at infinite dilution
\NewChemPhase\cd {cd} % condensed phase
\NewChemPhase\lc {lc} % liquid crystal
\ch{NaOH\aqi} \ch{H2O\cd} \ch{U\phase{cr}} \ch{A\lc}\par
\chemsetup[phases]{pos=sub}
\ch{NaOH\aqi} \ch{H2O\cd} \ch{U\phase{cr}} \ch{A\lc}
\end{example}
\subsubsection{Language Dependencies}\label{sec:lang-depend}
For each phase command a translation into the custom language can be defined.
If a phase is declared with \cs{NewChemPhase} no translation exists and
for every \pkg{babel} language the literal string is used that was provided
as a definition. Let's say you define the phase
\begin{sourcecode}
\NewChemPhase\liquid{l}
\end{sourcecode}
and want to add the German translation ``f\/l''. Then you could do
\begin{sourcecode}
\DeclareTranslation{German}{phase-liquid}{f\/l}
\end{sourcecode}
This way, when you use it in a German document using the appropriate
\pkg{babel} option using \cs*{liquid} would correctly translate. For this the
package \pkg{translations}~\cite{pkg:translations} is used. The \acs{id}
always is \code{phase-\meta{csname}} where \meta{csname} is the name of the
phase command you defined without leading backslash.
See section~\vref{sec:lang-module} for predefined translations and general
language options of \chemmacros.
\subsection{The \chemmodule*{symbols} Module}\label{sec:symbols-module}
The \chemmodule{symbols} module defines a few symbols chemists need now and
then. It loads the package \pkg{amstext}~\cite{pkg:amstext}.
\begin{commands}
\command{transitionstatesymbol}
This is self-explaining: \transitionstatesymbol
\command{standardstate}
Again self-explaining: \standardstate
\command{changestate}
The uppercase delta used in \state[superscript=]{H} for example.
\end{commands}
\section{Internal Modules}
\subsection{The \chemmodule*{base} Module}\label{sec:base-module}
The \chemmodule{base} module is the core module of \chemmacros. It defines
some tools which can (and should) be used in other modules. This means this
section is only interesting for you if you plan to write a module yourself
(see section~\vref{sec:own-modules} for details).
This module requires the packages \pkg{bm}~\cite{pkg:bm},
\pkg{amstext}~\cite{pkg:amstext}, and \pkg{etoolbox}~\cite{pkg:etoolbox}.
This module also provides \cs{chemsetup} and the option \option{modules}.
It also provides a number of (expl3) macros which may be used in other
modules. In the macro descriptions below \TF\ denotes that a \code{T}, an
\code{F} and a \code{TF} variant exist. In case of an expandable conditional
(\expandablesymbol) also the predicate variant is available.
\begin{commands}
\expandable\explcommand{chemmacros_if_loaded:nn}[\TF\
\Marg{package|class} \marg{name} \marg{true} \marg{false}]
Checks if package (or class) \meta{name} has been loaded. Also works after
begin document.
\expandable\explcommand{chemmacros_if_package_loaded:n}[\TF\ \marg{name}
\marg{true} \marg{false}]
Checks if package \meta{name} has been loaded. Also works after begin
document.
\expandable\explcommand{chemmacros_if_class_loaded:n}[\TF\ \marg{name}
\marg{true} \marg{false}]
Checks if class \meta{name} has been loaded. Also works after begin
document.
\explcommand{chemmacros_leave_vmode:}
Equivalent of \cs*{leavevmode}.
\explcommand{chemmacros_nobreak:}
Inserts a penalty of \num{10000}.
\explcommand{chemmacros_allow_break:}
Inserts a penalty of \num{0}.
\explcommand{chemmacros_skip_nobreak:N}[ \meta{skip/length variable}]
Insert a horizontal skip where a linebreak is disallowed.
\expandable\explcommand{chemmacros_if_is_int:n}[\TF\ \marg{input} \marg{true}
\marg{false}]
Checks if \meta{input} is an integer or something else.
\explcommand{chemmacros_if_bold:}[\TF\ \marg{true} \marg{false}]
Checks if the current font weight is one of \chemboldchecks{or}.
\explcommand{chemmacros_bold:n}[ \marg{text}]
Checks if the current font weight is bold and if yes places \meta{text} in
\cs*{textbf} if in text mode or in \cs*{bm} if in math mode. If no
\meta{text} simply is placed in the input stream as is.
\explcommand{chemmacros_text:n}[ \marg{text}]
Ensures that \meta{text} is placed in text mode.
\explcommand{chemmacros_math:n}[ \marg{text}]
Ensures that \meta{text} is placed in math mode.
\explcommand{chemmacros_new_macroset:nnn}[ \marg{name} \marg{arg spec}
\marg{internal command call}]
\changedversion{5.3b}A command to define a set of macros
\cs*{NewChem\meta{name}}, \cs*{RenewChem\meta{name}},
\cs*{DeclareChem\meta{name}} and \cs*{ProvideChem\meta{name}} where the
first letter of \meta{name} is converted to uppercase, other letters are
kept unchanged. \meta{arg spec} is any valid argument specification for
\pkg{xparse}'s \\
\cs{DeclareDocumentCommand}~\cite{bnd:l3packages}. \meta{internal command
call} should be a macro which makes definitions \emph{without} error
checks, \ie, define new macros or redefine existing ones like \cs*{def}
does. This macro just should get the arguments passed on to. Have a look
at the example below.
\explcommand{chemmacros_new_environment_macroset:nnn}[ \marg{name} \marg{arg spec}
\marg{internal command call}]
Like \explcs{chemmacros_new_macroset:nnn} but for environments.
\command{NewChemMacroset}[\sarg\marg{name}\marg{arg spec}\marg{internal
command call}]
A non-expl3 version of \explcs{chemmacros_new_macroset:nnn} for \LaTeXe\
programmers. The starred version calls
\explcs{chemmacros_new_environment_macroset:nnn}.
\explcommand{chemmacros_add_cleveref_support:nnnnn}[ \marg{counter}
\marg{singular} \marg{plural} \marg{uppercase singular} \marg{uppercase
plural}]
A\sinceversion{5.6} command to add suiting names for a counter for the
\pkg{cleveref} package's \cs*{cref} commands. This command acts at the
end of the preamble and only if a user hasn't provided definitions with
\cs*{crefname} already.
\command{ChemCleverefSupport}[\marg{counter}\marg{singular}\oarg{uppercase
singular}\marg{plural}\oarg{uppercase plural}]
\sinceversion{5.6}\LaTeXe-version of
\explcs{chemmacros_add_cleveref_support:nnnnn}.
\explcommand{chemmacros_add_fancyref_support:nnn}[ \marg{prefix} \marg{name}
\marg{uppercase name}]
A\sinceversion{5.6} command to add suiting names for a counter for the
\pkg{fancyref} package's \cs*{fref} commands. This command acts at the
end of the preamble and doesn't override definitions made by the users.
\command{ChemFancyrefSupport}[\marg{prefix}\marg{name}\oarg{uppercase name}]
\sinceversion{5.6}\LaTeXe-version of
\explcs{chemmacros_add_fancyref_support:nnnnn}.
\end{commands}
This is how the macros \cs{NewChemParticle}, \cs{RenewChemParticle},
\cs{DeclareChemParticle} and \cs{ProvideChemParticle} were defined:
\begin{sourcecode}
\NewChemMacroset {Particle} {mm}
{ \chemmacros_define_particle:Nn #1 {#2} }
\end{sourcecode}
The following macros strictly speaking are not provided by the
\chemmodule{base} module but this place fits best for their description.
\begin{commands}
\expandable\explcommand{chemmacros_if_module_exist:n}[\TF\ \marg{module}
\marg{true} \marg{false}]
Checks if a file with the correct name for a module \meta{module} can be
found.
\expandable\explcommand{chemmacros_if_module_loaded:n}[\TF\ \marg{module}
\marg{true} \marg{false}]
Checks if the module \meta{module} has already been loaded or not.
\explcommand{chemmacros_load_module:n}[ \marg{module}]
Loads module \meta{module} if it hasn't been loaded, yet.
\explcommand{chemmacros_load_modules:n}[ \marg{csv list of modules}]
Loads every module in \meta{csv list of modules} if they haven't been
loaded, yet. This is the code level variant of \cs{usechemmodule}.
\explcommand{chemmacros_before_module:nn}[ \marg{module} \marg{code}]
Saves\sinceversion{5.1} \meta{code} and inserts it right before
\meta{module} is loaded. If \meta{module} is never loaded then
\meta{code} is never inserted. If \meta{module} already is loaded when
the command is used then \meta{code} also is never inserted.
\explcommand{chemmacros_after_module:nn}[ \marg{module} \marg{code}]
Saves\sinceversion{5.1} \meta{code} and inserts it right after
\meta{module} is loaded. If \meta{module} is never loaded then
\meta{code} is never inserted. If \meta{module} already is loaded when
the command is used then \meta{code} is inserted immediately.
\end{commands}
\subsection{The \chemmodule*{chemformula} Module}\label{sec:chemformula-module}
The \chemmodule{chemformula} module loads the \pkg{amstext}
package~\cite{pkg:amstext} and the \chemmodule{charges} module.
\subsubsection{For Users}
There are different packages which provide means for typesetting chemical
formulas:
\begin{itemize}
\item \pkg{chemformula}~\cite{pkg:chemformula}. This is probably well known
to users of \chemmacros.
\item \pkg{mhchem}~\cite{pkg:mhchem}. This is the \enquote{older brother} of
\chemformula.
\item \pkg{chemfig}~\cite{pkg:chemfig}. The easiest and most complete of the
packages for drawing skeletal formulas.
\item \XyMTeX~\cite{pkg:xymtex}. A very comprehensive alternative for
typesetting chemistry.
\end{itemize}
In order to help authors getting a consistent layout \chemmacros\ does not
make a choice which package to use for typesetting formulas. Although
\chemformula\ is well tested and preferred users can choose other packages if
they like.
this is done with the following general option:
\begin{options}
\keyval{formula}{method}\Default{chemformula}
This\sinceversion{5.1} option let's you choose how chemical formulas are
typeset. Available methods are
\begin{itemize}
\item \pkg{chemformula}
\item \pkg{mhchem}
\item \pkg{chemist}\sinceversion{5.6} (from the \XyMTeX\ bundle)
\item \pkg{chemfig}\sinceversion{5.6}
\end{itemize}
The corresponding package with the same name is loaded.
\end{options}
If you explicitly set this option the corresponding package is loaded
immediately and the method is set up. Otherwise the option will be set by
\chemmacros\ at the end of the preamble.
If\sinceversion{5.2} you load a method package in a way that a unique choice
is possible then \chemmacros\ will set the method accordingly if you haven't
set the option by yourself. If \emph{no} unique choice is possible
\chemmacros\ will raise a warning and choose \pkg{chemformula} regardless if
the package is loaded or not. In this case if you want to use another method
you'll have to choose manually. \emph{All automatic choices only happen at the
end of the preamble}.
\paragraph{Using the \pkg*{chemformula} Package}
If you set \keyis{formula}{chemformula} the \chemmodule{chemformula} module
makes it possible that you can set all \chemformula\ options via the
\cs{chemsetup} command using the module \module{chemformula}, for example:
\begin{sourcecode}
\chemsetup[chemformula]{format=\sffamily}
\end{sourcecode}
Everywhere where \chemmacros\ typesets chemical formulas \chemformula's macros
\cs{chcpd} or \cs{ch} are used, for example in the reaction environments
provided by the \chemmodule{reactions} module.
\emph{This method is the recommended choice!}
\paragraph{Using the \pkg*{mhchem} Package}\sinceversion{5.1}\label{sec:using-mhchem}
If you set \keyis{formula}{mhchem} the \chemmodule{chemformula} module makes
it possible that you can set all of \pkg{mhchem}'s options via the
\cs{chemsetup} command using the module \module{mhchem}, for example:
\begin{sourcecode}
\chemsetup[mhchem]{format=\sffamily}
\end{sourcecode}
Everywhere where \chemmacros\ typesets chemical formulas \pkg{mhchem}'s macro
\cs{ce} is used, for example in the reaction environments provided by the
\chemmodule{reactions} module.
There are some \latin{caveat}s if you use this method:
\begin{itemize}
\item This method has not been extensively tested, yet. There may be errors
and wrong output at unexpected places.
\item Using this method effectively disables the different values of the
\module{particles} option \option{elpair} (see
section~\ref{sec:particles-module}).
\item The different kinds of formal charges provided by the
\chemmodule{charges} module (see section~\ref{sec:ion-charges}) are
disabled. Formal charges always use the math method now.
\item There may also be other incompatibilities (\eg, \pkg{mhchem} has it's
own method of setting upright Greek letters so it may or may not disable
\chemmacros' mechanism).
\end{itemize}
\paragraph{Using the \pkg*{chemfig} Package}\sinceversion{5.6}\label{sec:using-chemfig}
Everywhere where \chemmacros\ typesets chemical formulas \pkg{chemfig}'s macro
\cs{printatom} is used, for example in the reaction environments provided by
the \chemmodule{reactions} module.
There are some \latin{caveat}s if you use this method:
\begin{itemize}
\item This method has not been extensively tested, yet. There may be errors
and wrong output at unexpected places.
\item Using this method effectively disables the different values of the
\module{particles} option \option{elpair} (see
section~\ref{sec:particles-module}).
\item The different kinds of formal charges provided by the
\chemmodule{charges} module (see section~\ref{sec:ion-charges}) are
disabled. Formal charges always use the math method now.
\item The reaction environments by the \chemmodule{reactions} module may
work only to a limited respect. If you plan to use them consider using
methods \pkg{chemformula} or \pkg{mhchem} instead.
\end{itemize}
\paragraph{Using the \pkg*{chemist} Package}\sinceversion{5.6}\label{sec:using-chemist}
Everywhere where \chemmacros\ typesets chemical formulas \pkg{chemist}'s macro
\cs{ChemForm} is used, for example in the reaction environments provided by
the \chemmodule{reactions} module.
There are some \latin{caveat}s if you use this method:
\begin{itemize}
\item This method has not been extensively tested, yet. There may be errors
and wrong output at unexpected places.
\item Using this method effectively disables the different values of the
\module{particles} option \option{elpair} (see
section~\ref{sec:particles-module}).
\item The different kinds of formal charges provided by the
\chemmodule{charges} module (see section~\ref{sec:ion-charges}) are
disabled. Formal charges always use the math method now.
\item The reaction environments by the \chemmodule{reactions} module may
work only to a limited respect. If you plan to use them consider using
methods \pkg{chemformula} or \pkg{mhchem} instead\footnote{On the other
hand \XyMTeX\ (and especially the \pkg{chemist} package) provides quite
a number of chemical reaction environments itself.}.
\end{itemize}
\subsubsection{For Module Writers}
There are two macros for module writers:
\begin{commands}
\explcommand{chemmacros_chemformula:n}[ \marg{formula}]
This is only a wrapper for \cs{chcpd} or \cs{ce}. It is recommended that
module writers use this macro (or a variant thereof) inside of
\chemmacros' macros whenever they want to display a chemical formula.
Writers who prefer traditional \LaTeXe\ programming over expl3 should use
\cs*{chemmacros@formula}.
\explcommand{chemmacros_reaction:n}[ \marg{reaction}]
This is only a wrapper for \cs{ch} or \cs{ce}. It is recommended that
module writers use this macro (or a variant thereof) inside of
\chemmacros' macros whenever they want to display a chemical reaction.
Writers who prefer traditional \LaTeXe\ programming over expl3 should use
\cs*{chemmacros@reaction}.
\end{commands}
\subsection{The \chemmodule*{errorcheck} Module}\label{sec:errorcheck-module}
The\sinceversion{5.2} \chemmodule{errorcheck} module provides some rudimentary
support for giving users more meaningful messages when they use a command or
environment provided by a module that they haven't loaded.
\subsection{The \chemmodule*{greek} Module}\label{sec:greek-module}
The \chemmodule{greek} module loads the \pkg{chemgreek}
package~\cite{pkg:chemgreek}.
This module provides one option:
\begin{options}
\keyval{greek}{mapping}
A valid value is any valid \chemgreek\ \meta{mapping}. \chemmacros\ will
warn you if no mapping has been chosen or if you are using the
\code{default} or the \code{var-default} mapping because this means that
no upright Greek letters are available.
\end{options}
If you load a \chemgreek\ support package which allows an unambiguous choice
of a mapping \chemgreek\ will make this choice automatically. This means if
you say
\begin{sourcecode}
\usepackage{upgreek}
\usepackage{chemmacros}
\end{sourcecode}
then \chemmacros\ will use \pkg{upgreek}'s upright Greek letters. If you
have
\begin{sourcecode}
\usepackage{upgreek}
\usepackage{chemmacros}
\usepackage{textgreek}
\end{sourcecode}
then no unambiguous choice is possible and you should choose a mapping
yourself, for example:
\begin{sourcecode}
\usepackage{upgreek}
\usepackage{chemmacros}
\usepackage{textgreek}
\chemsetup{greek=textgreek}
\end{sourcecode}
For further details on mappings please refer to \chemgreek's manual.
\subsection{The \chemmodule*{lang} Module}\label{sec:lang-module}
The \chemmodule{lang} module provides language support for \chemmacros. It
loads the package \pkg{translations}~\cite{pkg:translations}.
\subsubsection{Information For Users}\label{sec:information-users}
This module defines the following option:
\begin{options}
\keychoice{language}{auto,\meta{language}}\Default{auto}
If set to \code{auto} \chemmacros\ will detect the language used by
\pkg{babel}~\cite{pkg:babel} or \pkg{polyglossia}~\cite{pkg:polyglossia}
automatically, the fallback translation is English and will be used if no
translation for the actual language is available. Any language known to
the \pkg{translations} package is a valid value for \meta{language}.
\end{options}
The language chosen via \option{language} is used for translation of certain
strings in different places all over \chemmacros. They are mentioned in the
places when the corresponding function of \chemmacros\ is explained.
Translation is done with the help of the \pkg{translations} package, available
translation keys are listed in section~\vref{sec:avail-transl-keys}.
\subsubsection{Available Translation Keys}\label{sec:avail-transl-keys}
Table~\vref{tab:translation-keys} lists all predefined translations of the
available keys. \emph{Some of the translations have changed in
version~5.6\changedversion{5.6}.} The \chemmodule{lang} module doesn't
provide the translations themselves -- they are provided by the corresponding
modules. A translation key is a unique string\footnote{That is, a string
using the definition for strings used for expl3, i.e., converted to a series
of category code~12 characters..} of characters. Each key is used to
identify a replacement text which depends on the current language or the
language set through the \option{language} option. For each key at least the
English fallback translation is provided, for most also the German translation
is provided. For a few keys also other translations are provided. If you
find that a translation for your language is missing you can provide it in the
preamble:
\begin{commands}
% \command{DeclareTranslation}[\marg{language}\marg{key}\marg{translation}]
% Defines a translation of key \meta{key} for the language \meta{language}.
% No error will be raised if a translation of \meta{key} already exists.
% This command can only be used in the preamble and is defined by the
% \pkg{translations} package.
\command{DeclareChemTranslation}[\marg{language}\marg{key}\marg{translation}]
\sinceversion{5.6}A command which makes an abstraction from the
\pkg{translations} package. It should be used in documents for adding
missing translations that are needed. This command can only be used in
the preamble.
\command{DeclareChemTranslations}[\marg{key}\Marg{\meta{language} =
\meta{translation}}]
\sinceversion{5.6}A command rather meant for module writers but can be
used by document authors as well, of course. It gets a csv list of
key\slash value pairs of translations. This command can only be used in
the preamble.
\end{commands}
If you send me an email (see section~\vref{sec:sugg-bug-reports}) with the
translations for your language I'll gladly add them to the next release of
\chemmacros!
\emph{Please do not use \pkg{translations}' \cs{DeclareTranslation} for
declaring translations.}
\ForAllChemTranslationsDo{
\appto\chemtranslationtable{\texttt{#1} & #2 & \texttt{\detokenize{#3}} \\}
}
\begin{longtable}{lll}
\caption{Translation keys predefined by \chemmacros\ (except
\code{phase-aqi}, \code{phase-cd} and \code{phase-lc} which were defined
in this document).}
\label{tab:translation-keys} \\
\toprule
\bfseries key & \bfseries language & \bfseries translation \\
\midrule
\endfirsthead
\toprule
\bfseries key & \bfseries language & \bfseries translation \\
\midrule
\endhead
\bottomrule
\endlastfoot
\midrule
& & \hfill\emph{continues} \\
\endfoot
\chemtranslationtable
\end{longtable}
\subsubsection{Information For Module Writers}
In addition to the commands from section~\vref{sec:avail-transl-keys} the
following macros are available:
\begin{commands}
\expandable\explcommand{chemmacros_translate:n}[ \marg{translation key}]
Translates the given key to the language which is detected automatically
or given by the user. Should be used in \chemmacros' macros instead of
\pkg{translations}' \cs*{GetTranslation}.
\explcommand{l_chemmacros_language_tl}
A token list variable that holds the language which is used by
\explcs{chemmacros_translate:n} for translation, \emph{after begin
document}.
\command{ChemTranslate}[\marg{translation key}]
A version of \explcs{chemmacros_translate:n} for those who prefer
traditional \LaTeXe\ programming over expl3.
\explcommand{chemmacros_declare_translation:nnn}[\marg{language}\marg{key}%
\marg{translation}]
The expl3 version of \cs{DeclareChemTranslation}.
\explcommand{chemmacros_declare_translations:nn}[\marg{key}\Marg{\meta{language}
= \meta{translation}}]
The expl3 version of \cs{DeclareChemTranslations}.
\end{commands}
\clearpage
\part{Additional Modules}\label{part:additional-modules}
\section{User Modules}
\subsection{The \chemmodule*{all} \emph{pseudo}-module}\label{sec:all-module}
The \chemmodule{all} module is a pseudo module: it doesn't define any
functionality at all. It does however load all other modules. So you can say
\begin{sourcecode}
\chemsetup{ modules = all }
\end{sourcecode}
to ensure that every module is available. This \emph{will not} load personal
modules!
\subsection{The \chemmodule*{isotopes} Module}\label{sec:isotopes-module}
The \chemmodule{isotope} module loads the \pkg{elements}
package~\cite{pkg:elements}. This module defines one user command:
\begin{commands}
\command{isotope}[\sarg\marg{input}]
\meta{input} can either be the \emph{symbol} of an element or the
\emph{name} of an element. Be aware that \emph{the name is language
dependent}, refer to the manual of the \pkg{elements} package for
details. To be on the safe side use the element symbol.
\meta{input} can also be comma separated list:
\cs{isotope}\Marg{\meta{nuc},\meta{symbol}}. If you leave \meta{nuc} out
then \cs{isotope} will display the most common isotope. Otherwise
\meta{nuc} will be used. If \meta{nuc} is an isotope unknown to the
\pkg{elements} package \cs{isotope} will write a warning to the log file.
The starred variant omits the element number.
\end{commands}
\begin{example}[side-by-side]
\isotope{C}
\isotope*{C}
\isotope{14,C}
\isotope*{14,C}
\end{example}
As input for the element symbol you can choose any of the elements known to
the \pkg{elements} package.
There are options which allow you to determine how the isotope is printed:
\begin{options}
\keychoice{format}{super,side}\Module{isotopes}\Default{super}
Either print the isotope number as superscript or to the right of the
element symbol.
\keyval{side-connect}{input}\Module{isotopes}\Default{-}
Determine what is printed between the element symbol and the isotope
number if \keyis{format}{side}.
\end{options}
\begin{example}[side-by-side]
\isotope{C}
\chemsetup[isotopes]{format=side}
\isotope{C}
\chemsetup[isotopes]{side-connect=}
\isotope{C}
\end{example}
\subsection{The \chemmodule*{mechanisms} Module}\label{sec:mechanisms-module}
The module \chemmodule{mechanisms} loads the package
\pkg{amstext}~\cite{pkg:amstext}. It provides one macro:
\begin{commands}
\command{mech}[\oarg{type}]
Allows to specify the most common reaction mechanisms.
\end{commands}
\meta{type} can have one of the following values:
\begin{commands}
\command{mech}
(empty, no opt. argument) nucleophilic substitution \mech
\command{mech}[\Oarg{1}]
unimolecular nucleophilic substitution \mech[1]
\command{mech}[\Oarg{2}]
bimolecular nucleophilic substitution \mech[2]
\command{mech}[\Oarg{se}]
electrophilic substitution \mech[se]
\command{mech}[\Oarg{1e}]
unimolecular electrophilic substitution \mech[1e]
\command{mech}[\Oarg{2e}]
bimolecular electrophilic substitution \mech[2e]
\command{mech}[\Oarg{ar}]
electrophilic aromatic substitution \mech[ar]
\command{mech}[\Oarg{e}]
elimination \mech[e]
\command{mech}[\Oarg{e1}]
unimolecular elimination \mech[e1]
\command{mech}[\Oarg{e2}]
bimolecular elimination \mech[e2]
\command{mech}[\Oarg{cb}]
unimolecular elimination \enquote{conjugated base}, \ie, via carbanion
\mech[cb]
\end{commands}
\subsection{The \chemmodule*{newman} Module}\label{sec:newman-module}
The \chemmodule{newman} module provides a command for drawing Newman
projections. It loads the \chemmodule{tikz} module.
\begin{commands}
\command{newman}[\oarg{options}\darg{angle}%
\Marg{\meta{1},\meta{2},\meta{3},\meta{4},\meta{5},\meta{6}}]
Create Newman projections. This command uses \TikZ\ internally.
\meta{angle} rotates the back atoms counter clockwise with respect to the
front atoms and is an optional argument. \meta{1} to \meta{6} are the
positions, the first three are the front atoms, the last three the back
atoms.
\end{commands}
\begin{example}
\newman{} \newman(170){}
\newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6}
\end{example}
Several options allow customization:
\begin{options}
\keyval{angle}{angle}\Module{newman}\Default{0}
Default angle.
\keyval{scale}{factor}\Module{newman}\Default{1}
Scale the whole projection by factor \meta{factor}.
\keyval{ring}{tikz}\Module{newman}\Default
Customize the ring with \TikZ\ keys.
\keyval{atoms}{tikz}\Module{newman}\Default
Customize the nodes within which the atoms are set with \TikZ\ keys.
\keyval{back-atoms}{tikz}\Module{newman}\Default
Explicitly customize the nodes of the back atoms with \TikZ\ keys.
\end{options}
\begin{example}
\chemsetup[newman]{angle=45} \newman{}
\newman[scale=.75,ring={draw=blue,fill=blue!20}]{}
\end{example}
\begin{example}
\chemsetup[newman]{atoms={draw=red,fill=red!20,inner sep=2pt,rounded corners}}
\newman{1,2,3,4,5,6}
\end{example}
\begin{example}
\chemsetup[newman]{
atoms = {draw=red,fill=red!20,inner sep=2pt,rounded corners},
back-atoms = {draw=blue,fill=blue!20,inner sep=2pt,rounded corners}
}
\newman{1,2,3,4,5,6} \newman(170){1,2,3,4,5,6}
\end{example}
\subsection{The \chemmodule*{orbital} Module}\label{sec:orbital-module}
The \chemmodule{orbital} module loads the \chemmodule{tikz} module. It
provides the following command to create orbitals:
\begin{commands}
\command{orbital}[\oarg{options}\marg{type}]
Draw an orbital shape of type \meta{type}. This command uses \TikZ\
internally.
\end{commands}
There are the following types available for \meta{type}:
\begin{center}
\code{s} \quad
\code{p} \quad
\code{sp} \quad
\code{sp2} \quad
\code{sp3}
\end{center}
\begin{example}
\orbital{s} \orbital{p} \orbital{sp} \orbital{sp2} \orbital{sp3}
\end{example}
Depending on the type you have different options to modify the orbitals:
\begin{options}
\keychoice{phase}{+,-}\Module{orbital}\Default{+}
changes the phase of the orbital (all types)
\keyval{scale}{factor}\Module{orbital}\Default{1}
changes the size of the orbital (all types)
\keyval{color}{color}\Module{orbital}\Default{black}
changes the color of the orbital (all types)
\keyval{angle}{angle}\Module{orbital}\Default{0}
rotates the orbitals with a p contribution counter clockwise (all types
except \code{s})
\keybool{half}\Module{orbital}\Default{false}
displays only half an orbital (only \code{p})
\end{options}
\begin{example}
\orbital{s} \orbital[phase=-]{s}
\orbital{p} \orbital[phase=-]{p}
\orbital{sp3} \orbital[phase=-]{sp3}
\orbital[angle=0]{p} \orbital[color=red!50]{p}
\orbital[angle=135,scale=1.5]{p} \orbital[half]{p}
\end{example}
Additionally there are two options, with which the \TikZ\ behaviour can be
changed.
\begin{options}
\keybool{overlay}\Module{orbital}
The orbital \enquote{doesn't need space}; it is displayed with the \TikZ\
option \code{overlay}.
\keyval{opacity}{num}\Module{orbital}
The orbital becomes transparent; \meta{value} can have values between
\code{1} (fully opaque) to \code{0} (invisible).
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup[orbital]{
overlay,
p/color = black!70
}
\setbondoffset{0pt}
\chemfig{
?\orbital{p}
-[,1.3]{\orbital[phase=-]{p}}
-[:30,1.1]\orbital{p}
-[:150,.9]{\orbital[phase=-]{p}}
-[4,1.3]\orbital{p}
-[:-150,1.1]{\orbital[phase=-]{p}}?
}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{7mm}
\setbondoffset{0pt}
\chemsetup[orbital]{
overlay ,
opacity = .75 ,
p/scale = 1.6 ,
s/color = blue!50 ,
s/scale = 1.6
}
\chemfig{
\orbital{s}
-[:-20]{\orbital[scale=2]{p}}
{\orbital[half,angle=0]{p}}
{\orbital[angle=170,half]{p}}
{\orbital[angle=-150,half]{p}}
(-[:-150]\orbital{s})-\orbital{s}
}
\vspace{1cm}
\end{example}
\subsection{The \chemmodule*{polymers} Module}\label{sec:polymers-module}
The\sinceversion{5.5} \chemmodule{polymers} module loads the
\chemmodule{nomenclature} and the \chemmodule{tikz} modules.
\subsubsection{Nomenclature}
The \chemmodule{polymers} module defines a number of \ac{iupac} macros for
usage inside \cs{iupac} which are used in polymer chemistry.
\paragraph{Copolymers}
\begin{commands}
\iupaccs[co]{copolymer}{unspecified copolymer.}
\iupaccs[stat]{statistical}{statistical copolymer.}
\iupaccs[ran]{random}{random copolymer.}
\iupaccs[alt]{alternating}{alternating copolymer.}
\iupaccs[per]{periodic}{periodic copolymer.}
\iupaccs{block}{block copolymer.}
\iupaccs{graft}{graft copolymer.}
\end{commands}
\paragraph{Non-linear (Co) Polymers and Polymer Assemblies}
\begin{commands}
\iupaccs{blend}{The blend qualifier.}
\iupaccs{comb}{The comb qualifier.}
\iupaccs[compl]{complex}{The complex qualifier.}
\iupaccs[cyclo]{cyclic}{The cyclic qualifier.}
\iupaccs{branch}{The branch qualifier.}
\iupaccs[net]{network}{The network qualifier.}
\iupaccs[ipn]{ipnetwork}{The interpenetrating network qualifier.}
\iupaccs[sipn]{sipnetwork}{The semi-interpenetrating network qualifier.}
\iupaccs{star}{The star qualifier.}
\end{commands}
\subsubsection{Polymer Denotations in \pkg*{chemfig}'s Molecules}
The \pkg{chemfig} manual proposes some code defining the macros
\cs*{setpolymerdelim} and \cs*{makebraces} which make it possible to add
delimiters to \pkg{chemfig} molecules. The \chemmodule{polymers} module
implements the following macro based on the same idea:
\begin{commands}
\command{makepolymerdelims}[\oarg{options}\marg{height}\oarg{depth}\marg{opening
node}\marg{closing node}]
The value of \meta{depth} is the same as \meta{height} unless it is
specified explicitly. \meta{opening node} and \meta{closing node} are the
names of \TikZ' nodes where the delimites are placed.
\end{commands}
\begin{options}
\keychoice{delimiters}{\Marg{\meta{left}\meta{right}}}\Module{polymers}\Default{[]}
This option demands two tokens as argument, the first being the opening
brace, the second the closing brace. A dot (\code{.}) denotes an empty
delimiter.
\keyval{subscript}{subscript}\Module{polymers}\Default{\$n\$}
Subscript to the right delimiter.
\keyval{superscript}{superscript}\Module{polymers}
Superscript to the right delimiter.
\end{options}
\begin{example}
\setatomsep{2em}
\chemfig{-[@{op,.75}]CH_2-CH(-[6]Cl)-[@{cl,0.25}]}
\makepolymerdelims{5pt}[27pt]{op}{cl}
\chemfig{-[@{op,.75}]CH_2-CH(-[6]Cl)-[@{cl,0.25}]}
\makepolymerdelims[delimiters=()]{5pt}[27pt]{op}{cl}
\end{example}
\subsection{The \chemmodule*{reactions} Module}\label{sec:reactions-module}
The \chemmodule{reactions} module loads the \chemmodule{chemformula} module
and the \pkg{mathtools} package~\cite{pkg:mathtools}.
\subsubsection{Predefined Environments}
You can use these environments for numbered\ldots
\begin{environments}
\environment{reaction}
A single reaction where \chemformula\ code is placed directly in the
environment body. A wrapper around the \env*{equation} environment. The
environment body is parsed with \cs{ch} or \cs{ce} depending on the value
of the \option{formula} option, see
section~\vref{sec:chemformula-module}.
\environment{reactions}
Several aligned reactions. A wrapper around \pkg{amsmath}'s \env*{align}
environment. The environment body is parsed with \cs{ch} or \cs{ce}
depending on the value of the \option{formula} option, see
section~\vref{sec:chemformula-module}.
\end{environments}
\ldots and their starred versions for unnumbered reactions.
\begin{environments}
\environment{reaction*}
A wrapper around the \env*{equation*} environment. The environment body
is parsed with \cs{ch} or \cs{ce} depending on the value of the
\option{formula} option, see section~\vref{sec:chemformula-module}.
\environment{reactions*}
A wrapper around \pkg{amsmath}'s \env*{align*} environment. The
environment body is parsed with \cs{ch} or \cs{ce} depending on the value
of the \option{formula} option, see
section~\vref{sec:chemformula-module}.
\end{environments}
With those environments you can create (un)numbered reaction equations similar
to mathematical equations.
Theses environments use the \env*{equation}/\env*{equation*} environments or
the \env*{align}/\env*{align*} environments, respectively, to display the
reactions.
\begin{example}
Reaction with counter:
\begin{reaction}
A -> B
\end{reaction}
\end{example}
\begin{example}
Reaction without counter:
\begin{reaction*}
C -> D
\end{reaction*}
\end{example}
\begin{example}
Several aligned reactions with counter:
\begin{reactions}
A &-> B + C \\
D + E &-> F
\end{reactions}
\end{example}
\begin{example}
Several aligned reactions without counter:
\begin{reactions*}
G &-> H + I \\
J + K &-> L
\end{reactions*}
\end{example}
If you want to change the layout of the counter tags, you can use
\begin{commands}
\command*{renewtagform}[\marg{tagname}\oarg{format}\marg{left
delimiter}\marg{right delimiter}]
Provided by the \pkg{mathtools} package.
\end{commands}
or use the following options:
\begin{options}
\keyval{tag-open}{left delimiter}\Module{reactions}\Default{\{}
\sinceversion{5.6}The left delimiter.
\keyval{tag-close}{right delimiter}\Module{reactions}\Default{\}}
\sinceversion{5.6}The right delimiter.
\keyval{before-tag}{format}\Module{reactions}\Default
\sinceversion{5.6}Code inserted before the tags.
\end{options}
\begin{example}
\chemsetup[reactions]{
before-tag = R \textbf ,
tag-open = [ ,
tag-close = ]
}
\begin{reaction}
H2O + CO2 <<=> H2CO3
\end{reaction}
\end{example}
The use of \AmS math's \cs{intertext} is possible:
\begin{example}
\begin{reactions}
A + 2 B &-> 3 C + D "\label{rxn:test}"
\intertext{Some text in between aligned reactions}
3 E + F &<=> G + 1/2 H
\end{reactions}
See reaction~\ref{rxn:test}.
\end{example}
If\sinceversion{5.6} you are using either \pkg{cleveref} or \pkg{fancyref} the
\env{reaction} counter is supported already. For \pkg{fancyref} use the
prefix \code{rct}.
\subsubsection{Own Reactions}
You can create new types of reactions with the command:
\begin{commands}
\command{NewChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} will be the name of the new chem environment. \meta{math name} is
the underlying math environment. Gives an error if \meta{name} already
exists.
\command{RenewChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} is the name of the renewed chem environment. \meta{math name} is
the underlying math environment. Gives an error if \meta{name} does not exist.
\command{DeclareChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} will be the name of the chem environment. \meta{math name} is
the underlying math environment.
\command{ProvideChemReaction}[\marg{name}\oarg{number of arguments}\marg{math name}]
\meta{name} will be the name of the new chem environment. \meta{math name} is
the underlying math environment. The new environment is only defined if
it doesn't exist, yet.
\end{commands}
\begin{sourcecode}
\NewChemReaction{reaction} {equation}
\NewChemReaction{reaction*} {equation*}
\NewChemReaction{reactions} {align}
\NewChemReaction{reactions*}{align*}
\end{sourcecode}
Let's suppose, you'd like to have the alignment behaviour of the \env{alignat}
environment for \chemformula\ reactions. You could do the following:
\begin{sourcecode}
\NewChemReaction{reactionsat}[1]{alignat}
\end{sourcecode}
With this the \env{reactionsat} environment is defined.
\begin{example}
\NewChemReaction{reactionsat}[1]{alignat}
\NewChemReaction{reactionsat*}[1]{alignat*}
\begin{reactionsat}{3}
A &-> B &&-> C &&-> D \\
aaaaa &-> bbbbb &&-> ccccc &&-> ddddd
\end{reactionsat}
\begin{reactionsat*}{2}
A &-> B & C &-> D \\
aaaaa &-> bbbbb &\quad{} ccccc &-> ddddd
\end{reactionsat*}
\end{example}
\subsubsection{List of Reactions}
The \chemmodule{reactions} module also provides a command to display a list of
the reactions created with the \env{reaction} environment.
\begin{commands}
\command{listofreactions}
Print a list of reactions.
\end{commands}
\begin{example}
\listofreactions
\end{example}
The output of this list can be modified by two options:
\begin{options}
\keyval{list-name}{name of the
list}\Module{reactions}\Default{\cs*{ChemTranslate}\Marg{{list-of-reactions}}}
Let's you set the name of the list manually. The default name is language
dependent, see section~\vref{sec:lang-module}.
\keyval{list-entry}{prefix to each
entry}\Module{reactions}\Default{\cs*{ChemTranslate}\Marg{reaction}}
Let's you set a prefix to each list entry. The default name is language
dependent, see section~\vref{sec:lang-module}.
\keyval{list-heading-cmd}{code}\Module{reactions}\Default{\cs*{section}\sarg\Marg{\#1}}
The\sinceversion{5.2} macro that is called at the beginning of the list.
Inside of \meta{code} \code{\#1} refers to the actual heading of the list.
The default setting is not entirely true: if a macro \cs*{chapter} is
defined \code{\cs*{chapter}\sarg\Marg{\#1}} is used.
\keybool{tocbasic}\Module{reactions}\Default{false}
\sinceversion{5.6}If you use a \KOMAScript\ class \emph{or} if you load
the \pkg{tocbasic} package \emph{or} if you set this option to \code{true}
the list of reactions will be set up using the \pkg{tocbasic} package.
This \emph{disables} the \option{list-heading-cmd} option. For a
\KOMAScript\ class this means that the list of reactions obeys
\KOMAScript's \option*{listof} option.
\end{options}
Instead of using the option \option{list-name} you also could redefine
\cs{reactionlistname}.
The list lists all reactions with a number and disregards reactions without
number. All reaction environments without star have an optional argument
which let's you add a description (or caption) for the entry in the list.
\begin{example}
\begin{reaction}[Autoprotolyse]
2 H2O <<=> H3O+ + OH-
\end{reaction}
\end{example}
If you use the \env{reactions} environment this will not work, though. In
this case you can use
\begin{commands}
\command{AddRxnDesc}[\marg{description}]
Add a description to a reaction.
\end{commands}
\begin{example}
\begin{reactions}
"\chlewis{0.}{Cl}" + CH4 &
-> HCl + "\chlewis{180.}{C}" H3 \AddRxnDesc{first~step~of~chain} \\
"\chlewis{180.}{C}" H3 + Cl2 &
-> CH3Cl + "\chlewis{0.}{Cl}" \AddRxnDesc{second~step~of~chain}
\end{reactions}
\end{example}
\subsection{The \chemmodule*{redox} Module}\label{sec:redox-module}
The \chemmodule{redox} module loads the modules \chemmodule{tikz} and
\chemmodule{xfrac}. It also loads the packages
\pkg{mathtools}~\cite{pkg:mathtools} and \pkg{relsize}~\cite{pkg:relsize}.
\subsubsection{Oxidation Numbers}\label{sec:oxidation-numbers}
Regarding the typesetting of oxidation numbers
\citetitle{iupac:greenbook}~\cite{iupac:greenbook} says the following:
\begin{cnltxquote}[{\cite[][p.\,50]{iupac:greenbook}}]
Oxidation numbers are denoted by positive or negative Roman numerals or by
zero \textelp{}
\textit{Examples}\quad \ox{7,Mn}, \ox[pos=side]{7,manganese}, \ox{-2,O},
\ox{0,Ni}
\end{cnltxquote}
The following command is provided to set oxidation numbers:
\begin{commands}
\command{ox}[\sarg\oarg{options}\Marg{\meta{number},\meta{atom}}]
Places \meta{number} as right superscript to \meta{atom}; \meta{number}
has to be a (rational) number! \meta{atom} is treated as a \chemformula\
formula, like it would be in \cs{chcpd} (this depends on the setting of
the \option{formula} option, see~\vref{sec:chemformula-module}).
\end{commands}
\begin{example}
\ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{-1,F}
\end{example}
There are a number of options that can be used to modify the typeset result:
\begin{options}
\keybool{parse}\Module{redox}\Default{true}
When \code{false} an arbitrary entry can be used for \code{<number>}.
\keybool{roman}\Module{redox}\Default{false}
Switches from roman to arabic numbers.
\keychoice{pos}{top,super,side}\Module{redox}\Default{super}
\code{top} places \meta{number} above \meta{atom}, \code{super} to the
upper right as superscript and \code{side} to the right and inside
brackets. Both \code{super} and \code{side} follow \ac{iupac}
recommendation, \code{top} does not!
\keybool{explicit-sign}\Module{redox}\Default{false}
Shows the $+$ for positiv numbers and the $\pm$ for $0$.
\keybool{explizit-zero-sign}\Module{redox}\Default{true}
Only\sinceversion{5.4} if both \option{explicit-sign} and
\option{explicit-zero-sign} are set to \code{true} $\pm0$ will be
printed.
\keychoice{decimal-marker}{comma,point}\Module{redox}\Default{point}
Choice for the decimal marker for formal oxidation numbers like \ox{1.2,X}.
\keychoice{align}{center,right}\Module{redox}\Default{center}
Center the oxidation number relative to the atom or right-align it.
\keyval{side-connect}{code}\Module{redox}\Default{\cs*{,}}
Code that is inserted between atom and oxidation number if
\keyis{pos}{side} is used.
\keyval{text-frac}{cs}\Module{redox}\Default{\cs{chemfrac}\Oarg{text}\Marg{\#1}\Marg{\#2}}
The fraction macro that is used for fractions if \keyis{pos}{side} is
used. \meta{cs} must be a macro that takes two mandatory arguments, the
first for the numerator and the second for the denominator.
\keyval{super-frac}{cs}\Module{redox}\Default{\cs{chemfrac}\Oarg{superscript}%
\Marg{\#1}\Marg{\#2}}
The fraction macro that is used for fractions if \keyis{pos}{top} or
\keyis{pos}{super} is used. \meta{cs} must be a macro that takes two
mandatory arguments, the first for the numerator and the second for the
denominator.
\end{options}
\begin{example}[side-by-side]
\ox[roman=false]{2,Ca} \ox{2,Ca} \\
\ox[pos=top]{3,Fe}-Oxide \\
\ox[pos=side]{3,Fe}-Oxide \\
\ox[parse=false]{?,Mn} \\
\ox[pos=top,align=right]{2,Ca}
\end{example}
The \keyis{pos}{top} variant also can be set with the shortcut \cs{ox}\sarg:
\begin{example}[side-by-side]
\ox{3,Fe} \ox*{3,Fe}
\end{example}
Using the \option{explicit-sign} option will always show the sign of the
oxidation number:
\begin{example}
\chemsetup[redox]{explicit-sign = true}
\ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ch{"\ox{0,F}" {}2}
\end{example}
\begin{example}
\chemsetup[redox]{pos=top}
Compare \ox{-1,O2^2-} to \ch{"\ox{-1,O}" {}2^2-}
\end{example}
Sometimes one might want to use formal oxidation numbers like \num{.5} or
\chemfrac{1}{3}:
\begin{example}[side-by-side]
\chemsetup[redox]{pos=top}
\ox{.5,Br2}
\ch{"\ox{1/3,I}" {}3+}
\chemsetup[redox]{pos=side}
\ox{1/3,I3+}
\end{example}
The fraction is displayed with the help of the \pkg{xfrac}
package~\cite{bnd:l3packages}. For more details on how \chemmacros\ uses it
read section~\vref{sec:xfrac-module}.
\subsubsection{Redox Reactions}\label{sec:redox-reactions}
\chemmacros\ provides two commands to visualize the transfer of electrons in
redox reactions. Both commands are using \TikZ.
\begin{commands}
\command{OX}[\Marg{\meta{name},\meta{atom}}]
Label \meta{atom} with the label \meta{name}.
\command{redox}[\Darg{\meta{name1},\meta{name2}}\oarg{tikz}\oarg{num}\marg{text}]
Connect two \meta{atom}s previously labelled with \cs{OX}. Only the first
argument \Darg{\meta{name1},\meta{name2}} is required, the others are all
optional.
\end{commands}
\cs{OX} places \meta{atom} into a node, which is named with \meta{name}. If
you have set two \cs{OX}, they can be connected with a line using \cs{redox}.
To do so the names of the two nodes that are to be connected are written in
the round braces. Since \cs{redox} draws a \code{tikzpicture} with options
\code{remember picture,overlay}, the document needs to be \emph{compiled at
least two times}.
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation}
\end{example}
This line can be customized using \TikZ\ keys in \oarg{tikz}:
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
With the argument \oarg{num} the length of the vertical parts of the line can
be adjusted. The default length is \code{.6em}. This length is multiplied
with \meta{num}. If you use a negative value the line is placed \emph{below}
the text.
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch
\redox(a,b)[->,red]{ox}
\redox(a,b)[<-,blue][-1]{red}
\vspace{7mm}
\end{example}
The default length of the vertical lines can be customized with the option
\begin{options}
\keyval{dist}{dim}\Module{redox}\Default{.6em}
A \TeX\ dimension.
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup{redox/dist=1em}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
\begin{options}
\keyval{sep}{dim}\Module{redox}\Default{.2em}
The option can be used to change the distance between the atom and the
beginning of the line.
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup{redox/sep=.5em}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
\paragraph{Examples}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,Na}" + "\OX{r1,Cl}" {}2
->
2 "\OX{o2,Na}" {}+ + 2 "\OX{r2,Cl}" {}-
}
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,\ox*{0,Na}}" + "\OX{r1,\ox*{0,Cl}}" {}2
->
2 "\OX{o2,\ox*{+1,Na}}" {}+ + 2 "\OX{r2,\ox*{-1,Cl}}" {}-
}
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{14mm}
\ch{
2 "\OX{o1,\ox*{0,Na}}" + "\OX{r1,\ox*{0,Cl}}" {}2
->
2 "\OX{o2,\ox*{+1,Na}}" {}+ + 2 "\OX{r2,\ox*{-1,Cl}}" {}-
}
\redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$}
\redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$}
\end{example}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,\ox*{0,Na}}" + "\OX{r1,\ox*{0,Cl}}" {}2
-> 2 "\OX{o2,\ox*{+1,Na}}" {}+ + 2 "\OX{r2,\ox*{-1,Cl}}" {}-
}
\redox(o1,o2)[green,-stealth]{\small OX}
\redox(r1,r2)[purple,-stealth][-1]{\small RED}
\vspace{7mm}
\end{example}
\subsection{The \chemmodule*{scheme} Module}\label{sec:scheme-module}
The \chemmodule{scheme} module loads the \pkg{chemnum}
package~\cite{pkg:chemnum} and defines a floating environment
\showenv{scheme}. That is, it \emph{only} defines this float if no
environment \env{scheme} exists at the end of the preamble. The module checks
for different available float defining methods, in \emph{this} order:
\begin{itemize}
\item If the current class is a \KOMAScript\ class \cs*{DeclareNewTOC} will
be used.
\item If the current class is \cls{memoir}, \cls{memoir}'s methods are used.
\item If the package \pkg{tocbasic} has been loaded \cs*{DeclareNewTOC} will
be used.
\item If the package \pkg{newfloat} has been loaded
\cs*{DeclareFloatingEnvironment} will be used.
\item \sinceversion{5.1}If the package \pkg{floatrow} has been loaded its
method will be used.
\item If the package \pkg{float} has been loaded its method will be used.
\item If neither of the above the \enquote{manual} method is used. This
means the environment is defined the same way like \env*{figure} is
defined in the \cls*{article} class or the \cls*{book} class, depending if
\cs*{chapter} is defined or not.
\end{itemize}
The list name and the caption name both are translated to the language
specified according to the \option{lang} option and the provided translations,
see section~\vref{sec:lang-module} for details. If you want to manually change
them then redefine these macros after begin document:
\begin{commands}
\command{listschemename}
The name of the list of schemes.
\command{schemename}
The name used in captions.
\end{commands}
The list of schemes is printed as expected with
\begin{commands}
\command{listofschemes}
\end{commands}
If\sinceversion{5.6} you are using either \pkg{cleveref} or \pkg{fancyref} the
\env{scheme} environment (or rather its captions) are supported already. For
\pkg{fancyref} use the prefix \code{sch}.
\subsection{The \chemmodule*{spectroscopy} Module}\label{sec:spectroscopy-module}
The \chemmodule{spectroscopy} module loads the \chemmodule{chemformula} module
and the \pkg{siunitx} package~\cite{pkg:siunitx}.
\subsubsection{The \cs*{NMR} Command}
When you're trying to find out if a compound is the one you think it is often
NMR spectroscopy is used. The experimental data are typeset similar to this:
\begin{center}
\NMR(400)[CDCl3] = \num{1.59}
\end{center}
The \chemmodule{spectroscopy} module provides a command which simplifies the
input.
\begin{commands}
\command{NMR}[\sarg\Marg{\meta{num},\meta{element}}%
\Darg{\meta{num},\meta{unit}}\oarg{solvent}]
Typeset nuclear magnetic resonance data. \meta{num} is a valid
\pkg{siunitx} number input, \meta{unit} is a valid \pkg{siunitx} unit
input. \meta{solvent} is any valid \chemformula\ input as in \cs{chcpd}
(this depends on the setting of the \option{formula} option,
see~\vref{sec:chemformula-module}).
\end{commands}
\emph{All} Argument are optional! Without arguments we get:
\begin{example}[side-by-side]
\NMR \par
\NMR*
\end{example}
The first argument specifies the kind of NMR:
\begin{example}[side-by-side]
\NMR{13,C}
\end{example}
The second argument sets the frequency (in \si{\mega\hertz}):
\begin{example}[side-by-side]
\NMR(400)
\end{example}
You can choose another unit:
\begin{example}[side-by-side]
\NMR(4e8,\hertz)
\end{example}
Please note that the setup of \pkg{siunitx} also affects this command:
\begin{example}[side-by-side]
\sisetup{exponent-product=\cdot}
\NMR(4e8,\hertz)
\end{example}
The third argument specifies the solvent:
\begin{example}[side-by-side]
\NMR[CDCl3]
\end{example}
\subsubsection{Short Cuts}
It is possible to define short cut commands for specific nuclei.
\begin{commands}
\command{NewChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data. Gives an error if \meta{cs} already exists.
\command{DeclareChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data. Overwrites an existing macro.
\command{RenewChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Redefine an existing shortcut macro for typesetting a certain type of
magnetic resonence data. Gives an error if \meta{cs} doesn't exist.
\command{ProvideChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data. \meta{cs} is only defined if it doesn't exist, yet.
\end{commands}
This defines a command with the same arguments as \cs{NMR} \emph{except} for
\Marg{\meta{num},\meta{atom}}:
\begin{example}[side-by-side]
\NewChemNMR\HNMR{1,H}%
\NewChemNMR\CNMR{13,C}%
\CNMR*(100) \par
\HNMR*(400)
\end{example}
\subsubsection{An Environment to Typeset Experimental Data}
The \chemmodule{spectroscopy} module provides an environment to ease the input
of experimental data.
\begin{environments}
\environment{experimental}
Environment for the output of experimental data. Inside the environment
the following commands are defined.
\end{environments}
\begin{commands}
\command{data}[\marg{type}\oarg{specification}]
Type of data, \eg\ IR, MS\ldots\ The optional argument takes further
specifications which are output in parentheses.
\command{data}[\sarg\marg{type}\oarg{specification}]
Like \cs{data} but changes the \code{=} into a \code{:}, given that
\keyis{use-equal}{true} is used.
\command{NMR}[\Marg{\meta{num},\meta{elem}\oarg{coupling
core}}\Darg{\meta{num},\meta{unit}}\oarg{solvent}]
This command gets an additional argument:
\cs{NMR}\Marg{13,C[\textasciicircum 1H]} \NMR{13,C[^1H]}
\command{J}[\Darg{\meta{bonds};\meta{nuclei}}\oarg{unit}\marg{list of nums}]
Coupling constant, values are input separated by \code{;} (NMR). The
arguments \Darg{\meta{bonds};\meta{nuclei}} and \oarg{unit} are optional
and enable further specifications of the coupling.
\command{\#}[\marg{num}]
Number of nuclei (NMR).
\command{pos}[\marg{num}]
Position of nuclues (NMR).
\command{val}[\marg{num}]
A number, an alias of \pkg{siunitx}' \cs*{num}\marg{num}.
\command{val}[\Marg{\meta{num1}--\meta{num2}}]
An alias of \pkg{siunitx}' \cs*{numrange}\marg{num1}\marg{num2}.
\end{commands}
\begin{example}
\begin{experimental}
\data{type1} Data.
\data{type2}[specifications] More data.
\data*{type3} Even more data.
\end{experimental}
\end{example}
\paragraph{Customization}\label{sec:experimental-customization}
The output of the environment and of the NMR commands can be customized be a
number of options. For historical reasons they all belong to the module
\module{nmr}.
\begin{options}
\keyval{unit}{unit}\Module{spectroscopy}\Default{\cs*{mega}\cs*{hertz}}
The used default unit.
\keychoice{nucleus}{\Marg{\meta{num},\meta{atom}}}\Module{spectroscopy}\Default{\Marg{1,H}}
The used default nucleus.
\keyval{connector}{code}\Module{spectroscopy}\Default{-}
Places \meta{code} between the nucleus and the method.
\keyval{method}{code}\Module{spectroscopy}\Default{NMR}
The measuring method.
\keyval{format}{commands}\Module{spectroscopy}\Default
For example \cs*{bfseries}.
\keychoice{pos-number}{side,sub,super}\Module{spectroscopy}\Default{side}
Position of the number next to the atom.
\keyval{coupling-symbol}{code}\Module{spectroscopy}\Default{J}
The symbol used for the coupling constant.
\keyval{coupling-unit}{unit}\Module{spectroscopy}\Default{\cs*{hertz}}
A \pkg{siunitx} unit.
\keychoice{coupling-pos}{side,sub}\Module{spectroscopy}\Default{side}
Placement of the coupling nuclei next to the symbol $J$ (or rather the
symbol specified with option \option{coupling-symbol}).
\keyval{coupling-nuclei-pre}{code}\Module{spectroscopy}\Default{(}
Code inserted before the coupling nuclei when \keyis{coupling-pos}{side}.
\keyval{coupling-nuclei-post}{code}\Module{spectroscopy}\Default{)}
Code inserted after the coupling nuclei when \keyis{coupling-pos}{side}.
\keyval{coupling-bonds-pre}{code}\Module{spectroscopy}\Default
Code inserted before the coupling bonds.
\keyval{coupling-bonds-post}{code}\Module{spectroscopy}\Default{\cs*{!}}
Code inserted after the coupling bonds.
\keyval{coupling-pos-cs}{cs}\Module{spectroscopy}\Default{\cs*{@firstofone}}
Set the macro that prints the number set with the \cs{pos} macro. This
needs to be a command with one mandatory argument.
\keyval{atom-number-cs}{cs}\Module{spectroscopy}\Default{\cs*{@firstofone}}
Set the macro that prints the number set with the \cs{\#} macro. This
needs to be a command with one mandatory argument.
\keyval{atom-number-space}{dim}\Module{spectroscopy}\Default{.16667em}
Horizontal\sinceversion{5.3} space inserted between number and atom
(printed by \cs{\#}).
\keybool{parse}\Module{spectroscopy}\Default{true}
Treat the solvent as \chemformula\ formula (this depends on the setting of
the \option{formula} option, see~\vref{sec:chemformula-module}) or not.
\keyval{delta}{tokens}\Module{spectroscopy}\Default
The \meta{tokens} are added after $\delta$.
\keybool{list}\Module{spectroscopy}\Default{false}
The environment \env{nmr}[<optionen>]{} is formatted as a list
\keyval{list-setup}{setup}\Module{spectroscopy}
Setup of the list. See below for the default settings.
\keybool{use-equal}\Module{spectroscopy}\Default{false}
Add egual sign after \cs{NMR} and \cs{data}.
\end{options}
The default setup of the list:
\begin{sourcecode}
\topsep\z@skip \partopsep\z@skip
\itemsep\z@ \parsep\z@ \itemindent\z@
\leftmargin\z@
\end{sourcecode}
\begin{example}
\begin{experimental}[format=\bfseries]
\data{type1} Data.
\data{type2}[specifications] More data.
\data*{type3} Even more data.
\end{experimental}
\end{example}
The command \cs{NMR} and all commands defined through \cs{NewChemNMR}
can be used like \cs{data} for the NMR data.
\begin{example}
\begin{experimental}[format=\bfseries,use-equal]
\data{type1} Data.
\data{type2}[specifications] More data.
\NMR Even more data.
\end{experimental}
\end{example}
\paragraph{An Example}
The code below is shown with different specifications for \meta{options}.
Of course options can also be chosen with \cs{chemsetup}.
\begin{sourcecode}
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\begin{experimental}[<optionen>]
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\end{sourcecode}
\paragraph{Nearly Standard}
Output with these options:
\begin{sourcecode}
delta=(ppm),pos-number=sub,use-equal
\end{sourcecode}
\begin{experimental}[delta=(ppm),pos-number=sub,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\paragraph{Formatted List}
Output with these options:
\begin{sourcecode}
format=\bfseries,delta=(ppm),list=true,use-equal
\end{sourcecode}
\begin{experimental}[format=\bfseries,delta=(ppm),list=true,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\paragraph{Crazy}
Output for these options:
\begin{sourcecode}
format=\color{red}\itshape,
list=true,
delta=\textcolor{green}{\ch{M+ + H2O}},
pos-number=side,
coupling-unit=\mega\gram\per\square\second,
list-setup=,
use-equal
\end{sourcecode}
\begin{experimental}[
format=\color{red}\itshape,
list=true,
delta=\textcolor{green}{\ch{M+ + H2O}},
pos-number=side,
coupling-unit=\mega\gram\per\square\second,
list-setup=,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\subsection{The \chemmodule*{thermodynamics} Module}\label{sec:thermodynamics-module}
The \chemmodule{thermodynamics} module loads the \pkg{siunitx}
package~\cite{pkg:siunitx}.
\subsubsection{The \cs*{state} Macro}
\begin{commands}
\command{state}[\oarg{options}\marg{symbol}]
Typeset a state variable.
\end{commands}
This macro can be used to write the thermodynamic state variables.
\begin{example}
\state{A}, \state[subscript-left=f]{G} ,
\state[subscript-right=\ch{Na}]{E},
\state[superscript-right=\SI{1000}{\celsius}]{H}
\end{example}
These options are available:
\begin{options}
\keyval{pre}{text}\Module{thermodynamics}\Default{\cs{changestate}}
Code inserted before the variable. Inserted in text mode.
\keyval{post}{text}\Module{thermodynamics}\Default
Code inserted after the variable. Inserted in text mode.
\keyval{superscript-left}{text}\Module{thermodynamics}\Default
The left superscript. Inserted in text mode.
\keyval{superscript-right}{text}\Module{thermodynamics}\Default{\cs{standardstate}}
The right superscript. Inserted in text mode.
\keyval{superscript}{text}\Module{thermodynamics}
An alias of \option{superscript-right}.
\keyval{subscript-left}{text}\Module{thermodynamics}\Default
The left subscript. Inserted in text mode.
\keyval{subscript-right}{text}\Module{thermodynamics}\Default
The right subscript. Inserted in text mode.
\keyval{subscript}{text}\Module{thermodynamics}
An alias of \option{subscript-left}.
\end{options}
\subsubsection{Thermodynamic Variables}
The \chemmodule{thermodynamics} module provides a few commands for specific
thermodynamic variables:
\begin{commands}
\command{enthalpy}[\sarg\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of enthalpy.
\command{entropy}[\sarg\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of entropy.
\command{gibbs}[\sarg\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of Gibbs enthalpy.
\end{commands}
Their usage is pretty much self-explaining:
\begin{example}[side-by-side]
\enthalpy{123} \par
\entropy{123} \par
\gibbs{123}
\end{example}
The argument \darg{subscript} adds a subscript for specification, \sarg\ hides
number and unit:
\begin{example}[side-by-side]
\enthalpy(r){123} \par
\enthalpy*{123} \par
\end{example}
\begin{options}
\keyval{pre}{text}\Module{thermodynamics}\Default{\cs{changestate}}
Code inserted before the variable. Inserted in text mode.
\keyval{post}{text}\Module{thermodynamics}\Default
Code inserted after the variable. Inserted in text mode.
\keyval{superscript-left}{text}\Module{thermodynamics}\Default
The left superscript. Inserted in text mode.
\keyval{superscript-right}{text}\Module{thermodynamics}\Default{\cs{standardstate}}
The right superscript. Inserted in text mode.
\keyval{superscript}{text}\Module{thermodynamics}
An alias of \option{superscript-right}.
\keyval{subscript-left}{text}\Module{thermodynamics}\Default
The left subscript. Inserted in text mode.
\keyval{subscript-right}{text}\Module{thermodynamics}\Default
The right subscript. Inserted in text mode.
\keyval{subscript}{text}\Module{thermodynamics}
An alias of \option{subscript-left}.
\keychoice{subscript-pos}{left,right}\Module{thermodynamics}\Default{left}
Determines wether the subscript given in \darg{subscript} is placed to the
left or the right of the variable.
\keyval{symbol}{symbol}\Module{thermodynamics}\Default
The symbol of the variable. Inserted in math mode.
\keyval{unit}{unit}\Module{thermodynamics}\Default
A valid \pkg{siunitx} unit.
\end{options}
The default values depend on the command.
\begin{example}[side-by-side]
\enthalpy[unit=\kilo\joule]{-285} \par
\gibbs[pre=]{0} \par
\entropy[pre=$\Delta$,superscript=]{56.7}
\end{example}
The unit is set corresponding to the rules of \pkg{siunitx} and depends on
its settings:
\begin{example}[side-by-side]
\enthalpy{-1234.56e3} \par
\sisetup{
per-mode=symbol,
exponent-product=\cdot,
output-decimal-marker={,},
group-four-digits=true
}
\enthalpy{-1234.56e3}
\end{example}
\subsubsection{Create New Variables or Redefine Existing Ones}
\begin{commands}
\command{NewChemState}[\marg{cs}\marg{options}]
Define new state commands like \cs{enthalpy}. Gives an error is \meta{cs}
already exists.
\command{RenewChemState}[\marg{cs}\marg{options}]
Redefine existing state commands.
\command{DeclareChemState}[\marg{cs}\marg{options}]
Like \cs{NewChemState} but gives now error if \meta{cs} already exists.
\command{ProvideChemState}[\marg{cs}\marg{options}]
Define new state commands like \cs{enthalpy}. Defines \meta{cs} only if
it is not defined, yet.
\end{commands}
The argument \meta{options} is a comma separated list of key/value options:
\begin{options}
\keyval{pre}{text}\Module{thermodynamics}\Default{\cs{changestate}}
Code inserted before the variable. Inserted in text mode.
\keyval{post}{text}\Module{thermodynamics}\Default
Code inserted after the variable. Inserted in text mode.
\keyval{superscript-left}{text}\Module{thermodynamics}\Default
The left superscript. Inserted in text mode.
\keyval{superscript-right}{text}\Module{thermodynamics}\Default{\cs{standardstate}}
The right superscript.
\keyval{superscript}{text}\Module{thermodynamics}
An alias of \option{superscript-right}.
\keyval{subscript-left}{text}\Module{thermodynamics}\Default
The left subscript. Inserted in text mode.
\keyval{subscript-right}{text}\Module{thermodynamics}\Default
The right subscript. Inserted in text mode.
\keyval{subscript}{text}\Module{thermodynamics}
An alias of \option{subscript-left}.
\keychoice{subscript-pos}{left,right}\Module{thermodynamics}\Default{left}
Determines wether the subscript given in \darg{subscript} is placed to the
left or the right of the variable.
\keyval{symbol}{symbol}\Module{thermodynamics}\Default
The symbol of the variable.
\keyval{unit}{unit}\Module{thermodynamics}\Default
A valid \pkg{siunitx} unit.
\end{options}
\begin{example}
\NewChemState\Helmholtz{ symbol=A , unit=\kilo\joule\per\mole }
\NewChemState\ElPot{ symbol=E , subscript-pos=right , superscript= , unit=\volt }
\Helmholtz{123.4} \par
\ElPot{-1.1} \par
\ElPot[superscript=0]($\ch{Sn}|\ch{Sn^2+}||\ch{Pb^2+}|\ch{Pb}$){0.01} \par
\RenewChemState\enthalpy{ symbol=h , unit=\joule} \par
\enthalpy(f){12.5}
\end{example}
The existing commands have been defined like this:
\begin{sourcecode}
\NewChemState \enthalpy{ symbol = H, unit = \kilo\joule\per\mole }
\NewChemState \entropy { symbol = S, unit = \joule\per\kelvin\per\mole, pre = }
\NewChemState \gibbs { symbol = G, unit = \kilo\joule\per\mole }
\end{sourcecode}
So -- for following thermodynamic conventions -- one could define a molar and
an absolute variable:
\begin{example}
\RenewChemState\enthalpy{symbol=h,superscript=,unit=\kilo\joule\per\mole}% molar
\NewChemState\Enthalpy{symbol=H,superscript=,unit=\kilo\joule}% absolute
\enthalpy{-12.3} \Enthalpy{-12.3}
\end{example}
\subsection{The \chemmodule*{units} Module}\label{sec:units-module}
The \chemmodule{units} module loads the \pkg{siunitx}
package~\cite{pkg:siunitx}.
In chemistry some non-SI units are very common. \pkg{siunitx} provides the
command
\begin{commands}
\command*{DeclareSIUnit}[\marg{cs}\marg{unit}]
Define \meta{cs} to be a valid unit command inside \pkg{siunitx}' macros
\cs*{SI} and \cs*{si} which represents \meta{unit}.
\end{commands}
to add arbitrary units. \chemmacros\ uses that command to provide some
units. Like all \pkg{siunitx} units they're only valid inside
\cs*{SI}\marg{num}\marg{unit} and \cs*{si}\marg{unit}.
\begin{commands}
\command{atmosphere} \si{\atmosphere}
\command{atm} \si{\atm}
\command{calory} \si{\calory}
\command{cal} \si{\cal}
\command{cmc} \si{\cmc} \par
The units \cs{cmc}, \cs{molar}, and \cs{Molar} are defined by the
package \pkg{chemstyle} as well. \chemmacros\ only defines them, if
\pkg{chemstyle} is not loaded.
\command{molar} \si{\molar}
\command{moLar} \si{\moLar}
\command{Molar} \si{\Molar}
\command{MolMass} \si{\MolMass}
\command{normal} \si{\normal}
\command{torr} \si{\torr}
\end{commands}
By the way: \cs*{mmHg} \si{\mmHg} already is defined by \pkg{siunitx}.
\section{Internal Modules}
\subsection{The \chemmodule*{tikz} Module}\label{sec:tikz-module}
The \chemmodule{tikz} module loads the \pkg{tikz} package~\cite{pkg:pgf} and
the \TikZ\ library \code{calc}.
\subsubsection{For Users}
The \chemmodule{tikz} module defines a few arrow tips:
\begin{tikzcode}
\arrowtip{el}
An arrow tip: \verbcode+\tikz\draw[-el](0,0)--(1,0);+
\tikz\draw[-el](0,0)--(1,0);
\arrowtip{left el}
An arrow tip: \verbcode+\tikz\draw[-left el](0,0)--(1,0);+
\tikz\draw[-left el](0,0)--(1,0);
\arrowtip{right el}
An arrow tip: \verbcode+\tikz\draw[-right el](0,0)--(1,0);+
\tikz\draw[-right el](0,0)--(1,0);
\end{tikzcode}
The\sinceversion{5.3} \chemmodule{tikz} module also loads the libraries
\code{calc} and \code{decorations.pathmorphing}. It uses those libraries for
defining a new decoration \tikzdecoration{wave}.
\begin{example}[side-by-side]
\begin{tikzpicture}
\draw[decorate,decoration=wave] (0,0) -- (2,0) ;
\end{tikzpicture}
\end{example}
\subsubsection{For Module Writers}
The \chemmodule{tikz} module provides some macros for common \TikZ\
functions. This allows to use expl3's powerful function variants for
expansion control.
\begin{commands}
\explcommand{c_chemmacros_other_colon_tl}
A constant tokenlist which contains a colon with category code~12 (other).
This is useful since \TikZ\ sometimes expects an other colon and in an
expl3 programming environment \code{:} has category code~11 (letter).
\explcommand{chemmacros_tikz_picture:nn}[ \marg{options} \marg{code}]
Defined as \verbcode+\tikzpicture[{#1}] #2 \endtikzpicture+.
\explcommand{chemmacros_tikz:nn}[ \marg{options} \marg{code}]
Defined as \verbcode+\tikz[{#1}]{#2}+.
\explcommand{chemmacros_tikz_draw:n}[ \marg{options}]
Defined as \verbcode+\draw[{#1}]+.
\explcommand{chemmacros_tikz_node:n}[ \marg{options}]
Defined as \verbcode+\node[{#1}]+.
\explcommand{chemmacros_tikz_shade:n}[ \marg{options}]
Defined as \verbcode+\shade[{#1}]+.
\explcommand{chemmacros_tikz_shadedraw:n}[ \marg{options}]
Defined as \verbcode+\shadedraw[{#1}]+.
\explcommand{chemmacros_tikz_node_in_draw:n}[ \marg{options}]
Defined as \verbcode+node[{#1}]+.
\end{commands}
\subsection{The \chemmodule*{xfrac} Module}\label{sec:xfrac-module}
The \chemmodule{xfrac} module loads the package
\pkg{xfrac}~\cite{bnd:l3packages}. For the following explanations it will be
helpful if you know about said package and how it works first. This module is
a support module that defines the macro
\begin{commands}
\command{chemfrac}[\oarg{type}\marg{numerator}\marg{denominator}]
\meta{type} can either be \code{text} or \code{superscript}.
\end{commands}
This macro calls a certain instance of the \pkg{xfrac} \code{text} template,
depending on the option \meta{type} and the current font family. If used
\cs{chemfrac} looks if an instance
\begin{center}
\code{chemmacros-frac-\cs*{f@family}-\meta{type}}
\end{center}
exists. If yes this instance is used, if no the instance
\code{chemmacros-frac-default-\meta{type}} is used. The \code{default}
instances are the same as the ones for \code{cmr}.
\begin{table}
\centering
\newcommand*\showfrac[1]{%
\code{#1} &
\fontfamily{#1}\selectfont
\chemfrac[text]{2}{3} &
\fontfamily{#1}\selectfont
\chemfrac[superscript]{2}{3}%
}
\caption{Predefined \chemmodule{xfrac} \code{text} instances.}
\label{tab:xfrac}
\begin{tabular}{llcc}
\toprule
\bfseries font family & \bfseries text & \bfseries superscript \\
\midrule
\showfrac{cmr} \\
\showfrac{lmr} \\
\showfrac{LinuxLibertineT-TLF} \\
\showfrac{LinuxLibertineT-TOsF} \\
\bottomrule
\end{tabular}
\end{table}
The \chemmodule{xfrac} module defines instances some font families, they are
listed and demonstrated in table~\vref{tab:xfrac}. The \code{superscript}
type fractions \emph{look} larger than the \code{text} types. The reason is
that the \code{superscript} types are typically used with a smaller font size.
Let's take a look at an example where both instances are used:
\begin{example}[side-by-side]
\chemsetup[redox]{pos=top}
\code{superscript}:
\ch{"\ox{1/3,I}" {}3+}
\chemsetup[redox]{pos=side}
\code{text}: \ox{1/3,I3+}
\huge
\chemsetup[redox]{pos=top}
\code{superscript}:
\ch{"\ox{1/3,I}" {}3+}
\chemsetup[redox]{pos=side}
\code{text}: \ox{1/3,I3+}
\end{example}
If you define instances for other families please feel free to submit them to
me (see section~\vref{sec:submitting-module}) so they can be added to the
\chemmodule{xfrac} module.
\appendix
\part{Appendix}
\section{Own Modules}\label{sec:own-modules}
\subsection{How To}
If you have additional functionality which you think might be useful as a
\chemmacros\ module then you can easily write one yourself. The module must
be a file in a path where \TeX\ can find it following a certain naming
scheme. The file for a module \chemmodule*{foo} \emph{must be named}
\code{chemmacros.module.foo.code.tex}.
\begin{commands}
\command{ChemModule}[\sarg\marg{name}\marg{description}\oarg{minimal
compatibility version}]
Register module \meta{name}. The optional argument \meta{minimal
compatibility version} ensures that this module is only loaded if the
option \option{compatibility} has a high enough version number. If it is
omitted the module can be loaded in each version~5.0 or higher.
\end{commands}
The first line in the file then should look similar to this:
\begin{sourcecode}
\ChemModule{foo}{2015/07/14 description of foo}
\end{sourcecode}
This registers module \chemmodule*{foo} which means \chemmacros\ will accept
this file as a valid module.
Since \chemmacros\ is written using expl3 \cs{ChemModule} starts an expl3
programming environment. If you don't want that but rather want to write your
module using traditional \LaTeXe\ methods then use the starred variant:
\begin{sourcecode}
\ChemModule*{foo}{2015/07/14 description of foo}
\end{sourcecode}
In both variants \code{@} has category code~11 (letter).
Since new modules very likely might rely on code provided first in a certain
version of \chemmacros\ you might want to make sure that your module only is
loaded when the compatibility mode is high enough to provide the features you
want:
\begin{sourcecode}
\ChemModule{foo}{2015/10/14 description of foo}[5.2]
\end{sourcecode}
You should be aware that your module \emph{will not be loaded} with
\verbcode+\usechemmodule{all}+! The pseudo-module \chemmodule{all} contains a
manually maintained list of the modules that are loaded by it.
If you decide to write your module \chemmodule*{foo} using expl3 and add
options you want to be able to set using
\cs{chemsetup}\Oarg{foo}\marg{options} please make sure you define (and set)
them with the following macros:
\begin{commands}
\explcommand{chemmacros_define_keys:nn}[ \marg{module} \marg{key definitions}]
Define l3keys options for the module \meta{module}. This is a wrapper for
\explcs*{keys_define:nn} \Marg{chemmacros/\meta{module}} \marg{key
definitions}.
\explcommand{chemmacros_set_keys:nn}[ \marg{module} \marg{input}]
Sets l3keys options for the module \meta{module}. This is a wrapper for
\explcs*{keys_set:nn} \Marg{chemmacros/\meta{module}} \marg{input}.
\end{commands}
Also (\emph{especially if you consider submitting the module, see
section~\vref{sec:submitting-module}}) please follow the expl3 naming
conventions for variables and functions, \ie, use \code{chemmacros} as expl3
module name:
\begin{sourcecode}
\tl_new:N \l__chemmacros_my_internal_variable_tl
\tl_new:N \l_chemmacros_my_public_variable_tl
\cs_new:Npn \__chemmacros_my_internal_function:n #1 { ... }
\cs_new_protected:Npn \chemmacros_my_public_function:n #1 { ... }
\NewDocumentCommand \publicfunction {m}
{ \chemmacros_my_public_function:n {#1} }
\end{sourcecode}
You will find more details on the naming conventions in \code{interface3.pdf}
which most likely is available on your system:
\begin{bash}
texdoc interface3
\end{bash}
If you haven't read section~\vref{sec:base-module} about the \chemmodule{base}
module, yet, please have a look. There some macros for module writers are
described. Also other modules define macros for module writers which may be
useful.
\subsection{Submitting a Module}\label{sec:submitting-module}
If you have written a module and feel it might be useful for other users
please feel free to contact me and submit the module. I will surely take at
look at both functionality and code and if I feel that it adds value to
\chemmacros\ I will add it to the package. Requirement for this is that the
module is licensed with the \LPPL\ (v1.3 or later) and that I take over
maintenance (according to the \enquote{maintainer} status of the \lppl).
Please do \emph{not} submit your module via pull request but send me the files
directly. In the best case you also have a short piece of documentation.
\section{Suggestions, Bug Reports, Support}\label{sec:sugg-bug-reports}
\paragraph{Support}
If you need support or help with anything regarding \chemmacros\ please use
the usual support forums
\begin{itemize}
\item \url{http://www.golatex.de/} or
\item \url{http://texwelt.de/wissen/} if you speak German,
\item \url{http://www.latex-community.org/forum/} or
\item \url{http://tex.stackexchange.com/} if you speak English
\end{itemize}
or go the \emph{dedicated support forum}
\begin{itemize}
\item \url{http://www.mychemistry.eu/forums/forum/chemmacros/}
\end{itemize}
where you can be sure that I will see the question.
\paragraph{Suggestions}
If you have any suggestions on how \chemmacros\ could be improved, adding
missing features \etc, please feel free to contact me via
\email{contact@mychemistry.eu}.
\paragraph{Bug reports}
If you find any bugs, \ie, errors (something not working as described,
conflicts with other packages, \ldots) then please go to
\url{https://github.com/cgnieder/chemmacros/issues/} and open a new issue
describing the error including a minimal working example.
\end{document}
|