1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
\documentclass{article}
\let\rmdefault\sfdefault
\def\modra#1{{\color{blue}\bm{#1}}}
\def\cervena#1{{\color{red}\bm{#1}}}
\def\separuj{\par\smallskip\hrule\kern 0.5pt\hrule \smallskip}
\def\separujB{\par\hrule\kern 0.5pt\hrule}
\newenvironment{block}{}{}
\usepackage{amsfonts,amsmath,amsthm,url,bm}
\usepackage{fancybox}
\usepackage{mathpazo}
\usepackage[latin2]{inputenc}
\usepackage[IL2]{fontenc}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem{lemma}{Lemma}
\newtheorem{Theorem}{Theorem}
\def\theTheorem{\Alph{Theorem}}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem{remark}{Remark}
\sloppy
\everymath{\displaystyle}
\usepackage[pdftex,nodirectory]{web}
\def\titlepageTrailer{}
\margins{.15in}{.15in}{12pt}{.15in} % left,right,top, bottom
\screensize{4.5in}{6in} % web.sty dimensions
\parindent 0 pt
\usepackage{mdwlist}
\usepackage{eso-pic}
\definecolor{mygreen}{RGB}{120,190,20}
\definecolor{mygreen}{RGB}{10,80,40}
\definecolor{webgreen}{RGB}{10,80,40}
\definecolor{seda}{gray}{0.31}
\definecolor{webgreen}{RGB}{120,190,20}
\AddToShipoutPicture{\hbox to 0 pt{\hbox to \paperwidth{\color{mygreen}\vrule
width 0.5em height\paperheight\color{black}%\hskip -0.5 em
\hskip 0 pt plus 1 fill
\raise 1 pt\hbox {\normalfont\tiny \color{gray}\textbf{CDDEA 2010, Rajeck Teplice} (\thepage/12)}
\hskip 0 pt plus 1 fill
}}}%
\def\qed{}
\def\lambdamin{\lambda_{\text{\rm{min}}}}
\def\lambdamax{\lambda_{\text{\rm{max}}}}
\makeatletter\let\over\@@over\makeatother
\def\theenumi{\roman{enumi}}
\def\labelenumi{\textrm{\upshape{(\theenumi)}}}
\def\konst{\textrm{const}}
\def\div{\mathop{\hbox{\rm div}}}
\def\meas{\mathop{\hbox{\rm meas}}}
\def\sgn{\mathop{\hbox{\rm sgn}}}
\def\laplac{\Delta}
\def\R{\mathbb{R}}
\def\N{\mathbb{N}}
\def\dxi{\,\mathrm{d}\xi\,}
\def\dx{\,\mathrm{d}x\,}
\def\dS{\,\mathrm{d}\sigma\,}
\def\dt{\,\mathrm{d}t\,}
\def\dT{\,\mathrm{d}T\,}
\def\du{\,\mathrm{d}u\,}
\def\ds{\,\mathrm{d}s\,}
\def\dr{\,\mathrm{d}r\,}
\def\dphi{\,\mathrm{d}\phi\,}
\newcommand{\duxi}{\frac{\partial u}{\partial x_i}}
\newcommand{\derxi}{{\partial\over\partial x_i}}
\newcommand{\pnorm}[1]{\|#1\|_p }
\newcommand{\qnorm}[1]{\|#1\|_q }
\newcommand\diver{\mathop{\rm div}}
\let\hat\widehat
\let\tilde\widetilde
\let\~\tilde
\let\phi\varphi
\def\vyplnekA{\leaders\hrule height 0.8pt\hfill}
\def\vyplnekB{\leaders\hrule height 6 pt depth -5.2pt\hfill}
\def\nadpis#1\par{\medbreak \hbox to \hsize{{\color{mygreen}\vyplnekA\ {\textsc{#1}}\vyplnekB}}\par\medbreak}
%\def\vec#1{\boldsymbol{#1}}
\def\norm#1{\left\Vert#1\right\Vert}
\def\x{\norm{x}}
\def\w{\norm{\vec{w}}}
\def\a{{\alpha}}
\def\aa{{\alpha-1}}
\def\at{{a\leq\x\leq t}}
\def\o{\omega_n}
\def\O{\Omega}
\def\c{\cdot}
\def\const{\hbox{const}}
\def\eps{\varepsilon}
\let\epsilon\varepsilon
\interdisplaylinepenalty 50
\setcounter{tocdepth}{1}
\raggedbottom
\let\rmdefault\sfdefault
\usepackage{graphicx}
\usepackage{multicol}
\def\ss#1#2{\left\langle#1,#2\right\rangle}
\makeatletter
\renewcommand\maketitle
{%
\thispagestyle{empty}%
\null\bigskip\bigskip
\ifeqforpaper\vspace*{2\baselineskip}%
\else
\vbox to\titleauthorproportion\textheight\bgroup%
\fi
\noindent\makebox[\linewidth]{\parbox{\linewidth}%
{\bfseries\color{\webuniversity@color}\ifeqforpaper\large\fi
\centering\webuniversity}}\par\ifeqforpaper\else\minimumskip\fi
\vspace{\stretch{1}}%
\noindent\makebox[\linewidth]{%
\parbox{\hproportionwebtitle\linewidth}%
{\bfseries\color{\webtitle@color}\ifeqforpaper\Large\else
\large\fi\centering\webtitle}}\par\ifeqforpaper
\vspace{2\baselineskip}\else\minimumskip\vspace{\stretch{1}}\fi
\noindent\makebox[\linewidth]{%
\parbox{\hproportionwebauthor\linewidth}%
{\bfseries\color{\webauthor@color}\ifeqforpaper
\large\fi\centering\webauthor}}
\ifeqforpaper\else
\egroup % end of \vbox for title and author
\fi\bigskip
\optionalpagematter
\par\vspace{\stretch{1}}
\ifx\web@directory@option y\webdirectory\fi
\par\ifeqforpaper\else\minimumskip\fi\vspace{\stretch{1}}
\vfill\noindent\begingroup
\trailerFontSize\titlepageTrailer\par\endgroup
\newpage
}
\makeatother
\pagestyle{empty}%
%\usepackage[inactive]{fancytooltips}
\begin{document}
\def\TooltipRefmark{\hbox{\ \ }}
\def\TooltipExtratext{\hbox{\ \ }}
\title{Conjugacy criteria for half-linear ODE \\in theory of PDE\\ with
generalized $p$-Laplacian\\ and mixed powers\\[15pt]}
\author{Robert Ma\v r\'\i k\\[6mm]Dpt. of Mathematics\\ Mendel University\\Brno, CZ
}
\date{}
\maketitle
\begin{equation}
\begin{aligned}
\div\left(A(x)\norm{\nabla y}^{p-2}\nabla y\right)&+ \ss{\vec
b(x)}{\norm{\nabla y}^{p-2}\nabla y}\\&+
c(x)|y|^{p-2}y+\sum_{i=1}^m c_i(x)|y|^{p_i-2}y=e(x),
\end{aligned}
\tag{E}
\end{equation}
\begin{itemize}
\item $x=(x_1,\ldots,x_n)_{i=1}^n\in\R^n$, $p>1$, $p_i>1$,
\item $A(x)$ is elliptic $n\times n$ matrix with differentiable
components, $c(x)$ and $c_i(x)$ are H\"older continuous functions,
$\vec b(x)=\bigl(b_1(x),\ldots,b_n(x)\bigr)$ is continuous
$n$-vector function,
\item $\nabla=\left({\partial \over\partial
x_1},\ldots,{\partial \over\partial
x_n}\right)_{i=1}^n$ and $\div={\partial \over\partial
x_1}+\cdots+{\partial \over\partial
x_n}$ is are the usual nabla and divergence operators,
\item $q$ is a conjugate
number to the number $p$, i.e., $q=\frac p{p-1}$,
\item $\ss{\cdot}{\cdot}$ is the usual scalar product in $\R^n$,
$\Vert{\cdot}\Vert$ is the usual norm in $\R^n$, $\Vert A\Vert
=\sup\left\{\Vert Ax\Vert: x\in \R^n \text{ with } \Vert x\Vert
=1\right\}=\lambdamax$ is the spectral norm
\item \textbf{solution} of \eqref{eq:E} in $\Omega\subseteq \R^n$ is a
differentiable function $u(x)$ such that $A(x)\Vert\nabla
u(x)\Vert^{p-2}\nabla u(x)$ is also differentiable and $u$ satisfies
\eqref{eq:E} in $\Omega$
\item $ S(a)=\{x\in\R^n: \Vert x\Vert =a\}$, \\$
\Omega(a)=\{x\in\R^n:a\leq \Vert x\Vert \}$, \\$
\Omega(a,b)=\{x\in\R^n:a\leq\Vert x\Vert \leq b\}$
\end{itemize}
\newpage
% \begin{equation}
% {\shadowbox{$\div\Bigl(A(x)\Vert\nabla u\Vert^{p-2}\nabla u\Bigr) + \ss{\vec b(x)}{\Vert\nabla u\Vert^{p-2}\nabla u}+c(x)|u|^{p-2}u=0$}} \tag{E}
% \end{equation}
\nadpis {Concept of oscillation for ODE}
\begin{equation}
u''+c(x)u=0 \label{eq1}
\end{equation}
\begin{itemize}
\item Equation \eqref{eq1} is oscillatory if each solution has
infinitely many zeros in $[x_0,\infty)$.
\item Equation \eqref{eq1} is oscillatory if each solution has a zero $[a,\infty)$
for each $a$.
\item Equation \eqref{eq1} is oscillatory if each solution has
conjugate points on the interval $[a,\infty)$ for each $a$.
\item All definition are equivalent (no accumulation of zeros and
Sturm separation theorem).
\item Equation is oscillatory if $c(x)$ is large enough. Many
oscillation criteria are expressed in terms of the integral
$\int^\infty c(x)\dx$ (Hille and Nehari type)
\item There are oscillation criteria which can detect oscillation even
if $\int^\infty c(x)\dx$ is extremly small. These criteria are in
fact series of conjugacy criteria.
\end{itemize}
\newpage
\nadpis Equation with mixed powers
\begin{equation}
\label{eq:Sun}
(p(t)u')'+c(t)u+\sum_{i=1}^m c_i(t)|u|^{\alpha _i}\sgn u=e(t)
\end{equation}
where $\alpha_1>\cdots >\alpha_m>1>\alpha_{m+1}>\cdots>\alpha_n>0$.
\begin{Theorem}[Sun,Wong (2007)]
\label{theorem:sun_wong}
If for any $T\geq 0$ there exists $a_1$, $b_1$, $a_2$, $b_2$ such
that $T\leq a_1<b_1\leq a_2<b_2$ and
\begin{equation*}
\begin{cases}
c_i(t)\geq 0& t\in[a_1,b_1]\cup[a_2,b_2],\ i=1,2,\dots,n\\
e(x)\leq 0& t\in[a_1,b_1]\\
e(x)\geq 0& t\in[a_2,b_2]
\end{cases}
\end{equation*}
and there exists a continuously differentiable function $u(t)$
satisfying $u(a_i)=u(b_i)=0$, $u(t)\neq 0$ on $(a_i,b_i)$ and
\begin{equation}\label{eq:SW}
\int_{a_i}^{b_i}\left\{p(t)u'^2(t)-Q(t)u^2(t)\right\}\dt\leq 0
\end{equation}
for $i=1,2$, where
\begin{equation*}
Q(t)=k_0|e(t)|^{\eta_0}\prod_{i=1}^m\Bigl(c_i^{\eta_i}(t)\Bigr)+c(t),
\end{equation*}
$k_0=\prod_{i=0}^m\eta_i^{-\eta_i}$ and $\eta_i$, $i=0,\dots,n$ are
positive constants satisfying
% \begin{equation*}
$ \sum_{i=1}^m\alpha_i\eta_i=1\quad\text{and}\quad \sum_{i=0}^m\eta_i=1$,
% \end{equation*}
then all solutions of \eqref{eq:Sun} are oscillatory.
\end{Theorem}
\newpage
\nadpis {Concept of oscillation for linear PDE}
\begin{equation}
\Delta u+c(x)u=0 \label{eq2}
\end{equation}
\begin{itemize}
\item Equation \eqref{eq2} is \textit{oscillatory} if every solution
has a zero on $\{x\in\R^n: \norm x\geq a\}$ for each $a$.
\item Equation \eqref{eq2} is \textit{nodally oscillatory} if every
solution has a nodal domain on $\{x\in\R^n: \norm x\geq a\}$ for
each $a$.
\item Both definition are equivalent (Moss+Piepenbrink).
\end{itemize}
\nadpis {Concept of oscillation for half-linear PDE}
\begin{equation}
\div\Bigl(\norm{\nabla u}^{p-2}\nabla u\Bigr)+c(x)|u|^{p-2}u=0 \label{eq3}
\end{equation}
\begin{itemize}
\item Essentialy the same approach to oscillation as in linear case
\item The equivalence between two oscillations is open problem.
\end{itemize}
% \newpage
% \nadpis Riccati substituion
% If $u$ is a positive solution of the equation
% \begin{equation}\label{eq:linODE}
% u''+c(x)u=0,
% \end{equation} then the function
% $w=\frac{u'}{u}$ is a solution of the Riccati type differential equation
% \begin{equation}
% w'+c(x)+|w|^2=0.\label{eq:riceq}
% \end{equation}
% \textbf{Remark:} In fact
% \begin{equation}
% w'+c(x)+|w|^2\leq 0\label{eq:RICineq}
% \end{equation}
% is sufficient in proofs of nonexistence of positive (nonoscillatory)
% solution \eqref{eq:linODE}, since solvability of \eqref{eq:RICineq}
% implies solvability of \eqref{eq:riceq}.
% \nadpis Transforming ODE result (nonexistence of positive solution)
% into PDE
% \null
% \vskip -3\baselineskip
% \null
% % The method used to prove most of oscillation criteria for half-linear PDE
% \begin{enumerate*}
% \item Suppose by contradiction that the PDE possesses positive
% (eventually positive) solution.
% \item Using transformation
% % \begin{equation*}
% $ \vec w(x)=
% \frac{\Vert \nabla u(x)\Vert ^{p-2}\nabla u(x)}{|u(x)|^{p-2}u(x)}
% $
% % \end{equation*}
% convert positive solutions of
% \begin{equation*}
% \div\Bigl(\Vert\nabla u\Vert^{p-2}\nabla u\Bigr)+c(x)|u|^{p-2}u=0
% \end{equation*}
% into
% \begin{equation}\label{5RIC}
% \div \vec w+c(x) +(p-1)\ss{\vec w}{\frac{\nabla u(x)}{u(x)}}=0.
% \end{equation}
% \item Integrating \eqref{5RIC} over spheres and using standard tools
% derive a Riccati type inequality of the form \eqref{eq:RICineq} and
% proceed as in the ODE case.
% \end{enumerate*}
\newpage
\null
\kern-2\baselineskip
\begin{equation}
\begin{aligned}
\div\left(A(x)\norm{\nabla y}^{p-2}\nabla y\right)&+ \ss{\vec
b(x)}{\norm{\nabla y}^{p-2}\nabla y}\\&+
c(x)|y|^{p-2}y+\sum_{i=1}^m c_i(x)|y|^{p_i-2}y=e(x),
\end{aligned}
\tag{E}
\end{equation}
\nadpis Detection of oscillation from ODE
% Oscillation of partial differential equation can be detected from
% oscillation of ordinary differential equation.
\begin{Theorem}[O. Do\v sl\'y (2001)] \label{rad}
% Let
% \begin{align*}
% % \~a(r)={1\over \omega_nr^{n-1}}\int_{S(r)}a(x)\dS\\
% \hat c(r)={1\over \omega_nr^{n-1}}\int_{S(r)}c(x)\dS.
% \end{align*}
Equation
\begin{equation}
\div(\Vert\nabla u\Vert^{p-2}\nabla u)+c(x)|u|^{p-2}u=0\label{eq:E-non-damp}
\end{equation}
is oscillatory, if the ordinary differential equation
\begin{equation}
\label{hl}
\Bigl( r^{n-1}|u'|^{p-2}u'\Bigr)'+r^{n-1}\left(\frac{1}{\omega_n r^{n-1}}\int_{S(r)}\, c(x) \,\dx\right)|u|^{p-2}u=0
\end{equation}
is oscillatory.
The number $\omega_n$ is the surface area of the unit sphere in $\R^n$.
\end{Theorem}
J. Jaro\v s, T. Kusano and N. Yoshida proved independently similar
result (for $A(x)=a(\Vert x\Vert )I$, $a(\cdot)$ differentiable).
\nadpis {Our aim}
\begin{itemize*}
\item Extend method used in Theorem \ref{theorem:sun_wong} to
\eqref{eq:E}. Derive a general result, like Theorem B.
\item Derive a result which does depend on more general expression,
than the mean value of $c(x)$ over spheres centered in the origin.
% Is it possible to detect oscillation in such an extreme case as
% $\int_{S(||x||)}\modra{c(x)}\dS=0$?
\item Remove restrictions used by previous authors (for example Xu (2009)
excluded the possibility $p_i>p$ for every $i$).
% S(r)}\cervena{\lambdamax(x)}}$ plays a crucial role in the linear
% case and $\boxed{\rho(r)\geq \max_{x\in S(r)}\cervena{\frac{\Vert
% {A(x)}\Vert ^p_F}{\lambdamin^{p-1}(x)}}}$ plays similar role
% if $p>1$. This phenomenon can be observed also in other
% oscillation criteria than Theorems B and C. We know that
% $\rho(r)\geq \lambda(r)$. Why such a discrepancy appears?
\end{itemize*}
\newpage
\begin{equation}
\begin{aligned}
\div\left(A(x)\norm{\nabla y}^{p-2}\nabla y\right)&+ \ss{\vec
b(x)}{\norm{\nabla y}^{p-2}\nabla y}\\&+
\modra{c(x)|y|^{p-2}y}+\cervena{\sum_{i=1}^m c_i(x)|y|^{p_i-2}y}=\cervena{e(x)},
\end{aligned}
\tag{E}
\label{eq:E}
\end{equation}
\nadpis Modus operandi
\begin{itemize}
\item Get rid of terms $\sum_{i=1}^m c_i(x)|y|^{p_i-2}y$ and $e(x)$
(join with $c(x)|y|^{p-2}y$) and convert the problem into
\begin{equation*}
\div\left(A(x)\norm{\nabla y}^{p-2}\nabla y\right)+ \ss{\vec
b(x)}{\norm{\nabla y}^{p-2}\nabla y}+\modra{C(x)|y|^{p-2}y}=0.
\end{equation*}
\item Derive Riccati type inequality in $n$ variables.
\item Derive Riccati type inequality in $1$ variable.
\item Use this inequality as a tool which transforms results from ODE
to PDE.
\end{itemize}
\newpage
Using generalized AG inequality $\sum \alpha _i\geq
\prod\left(\frac{\alpha_i}{\eta_i}\right)^{\eta_i}$, if $\alpha_i\geq
0$, $\eta_i>0$ and $\sum \eta_i=1$ we eliminate the right-hand side and terms with mixed powers.
\begin{lemma}\label{lemma:est1}
Let either $y>0$ and $e(x)\leq 0$ or $y<0$ and $e(x)\geq 0$. Let
$\eta_i>0$ be numbers satisfying $\sum_{i=0}^m{\eta_i}=1$ and
$\eta_0+\sum_{i=1}^m p_i\eta_i=p$ and let $c_i(x)\geq 0$ for every
$i$. Then
\begin{equation*}%\label{eq:est1}
\frac{1}{|y|^{p-2}y}\left(-e(x)+\sum_{i=1}^m c_i(x)|y|^{p_i-2} y\right)\geq C_1(x),
\end{equation*}
where
\begin{equation}
\label{eq:C1}
C_1(x):=\left|\frac{e(x)}{\eta_0}\right|^{\eta_0}
\prod_{i=1}^m\left(\frac{c_i(x)}{\eta_i}\right)^{\eta_i}.
\end{equation}
\end{lemma}
%\begin{remark}
\textbf{Remark:} The numbers $\eta_i$ from Lemma \ref{lemma:est1} exist, if $p_i>p$ for some $i$.
%\end{remark}
% The following lemma is a modification of Lemma \ref{lemma:est1} in
% the case $e(x)\equiv 0$.
\begin{lemma}\label{lemma:est10}
Suppose $c_i(x)\geq 0$. Let $\eta_i>0$ be numbers satisfying
$\sum_{i=1}^m{\eta_i}=1$ and $\sum_{i=1}^m p_i\eta_i=p$. Then
\begin{equation*}%\label{eq:est10}
\frac{1}{|y|^{p-2}y}\sum_{i=1}^m c_i(x)|y|^{p_i-2}y\geq C_2(x),
\end{equation*}
where
\begin{equation}
\label{eq:C2}
C_2(x):=\prod_{i=1}^m\left(\frac{c_i(x)}{\eta_i}\right)^{\eta_i}
\end{equation}
\end{lemma}
% \begin{remark}
\textbf{Remark:} The numbers $\eta_i$ from Lemma \ref{lemma:est10}
exist iff $p_i>p$ for some $i$ and $p_j<p$ for some $j$.
% \end{remark}
\newpage
% \begin{lemma}\label{lemma:ineq_cal}
% The following inequalities hold for $a\geq 0$ and $x>0$.
% \begin{enumerate}
% \item If $\alpha<\beta$ and $b>0$, then $b-ax^\alpha\geq -x^\beta \left(\frac{a(\beta-\alpha)}{b\beta}\right)^{\frac\beta\alpha} \frac{b\alpha}{\beta-\alpha}$
% \label{pa}
% \item If $\alpha>\beta$ and $b\geq0$, then $ax^\alpha+b\geq x^\beta \left(\frac{a(\alpha-\beta)}{b\beta}\right)^{\frac\beta\alpha} \frac{b\alpha}{\alpha-\beta}$
% \label{pb}
% \end{enumerate}
% \end{lemma}
% Another possibility how to remove the right hand side and terms with
% mixed powers is available if we rewrite
% \begin{equation*}
% \frac{1}{|y|^{p-2}y}\left(-e(x)+\sum_{i=1}^m c_i(x)|y|^{p_i-2}y\right)
% \end{equation*}
% into the form
% \begin{equation*}
% \sum_{i=1}^m \left(c_i(x)|y|^{p_i-p}-\frac{\epsilon_i e(x)}{|y|^{p-2}y} \right), \quad \epsilon_i>0, \quad \sum_{i=1}^m\epsilon_i=1
% \end{equation*}
% study the family of min/max problems
% for terms in this sum.
% \bigskip
% \begin{lemma}\label{lemma:estimate2}
% Let $e(x)<0$ and $y>0$. Then
% \begin{equation*}%\label{eq:estimate2}
% \sum_{i=1}^m c_i(x)|y|^{p_i-p}-\frac{e(x)}{|y|^{p-2}y}
% \geq C_3(x),
% \end{equation*}
% where
% \begin{multline}
% \label{eq:C3}
% C_3(x):=\sum_{i\in I_1}
% \left(\left[\frac{[c_i(x)]_+(p_i-p)}{\epsilon_i|e(x)|(p-1)}\right]^{(p-1)/(p_i-1)}\frac{\epsilon_i|e(x)|(p_i-1)}{p_i-p}\right)\\
% - \sum_{i\in I_2}\left(\left[\frac{[-c_i(x)]_+(p-p_i)}{\epsilon_i|e(x)|(p-1)}\right]^{(p-1)/(p_i-1)}\frac{\epsilon_i|e(x)|(p_i-1)}{p-p_i}\right),
% \end{multline}
% $I_1=\{i\in[1,m]\cap \N:p_i>p\}$ and $I_2=\{i\in[1,m]\cap \N:p_i<p\}$,
% $\epsilon_i>0$, $\sum_{i=1}^m\epsilon_i=1$. Moreover, if
% $I_2=\{\}$, then the inequality $e(x)<0$ can be relaxed to
% $e(x)\leq 0$.
% \end{lemma}
% \newpage
\begin{lemma}\label{lemma:cC}
Let $y$ be a solution of \eqref{eq:E} which does not have zero on
$\Omega$. Suppose that there exists a function
$C(x)$ such that
\begin{equation*}
C(x)\leq c(x)+\sum_{i=1}^m c_i(x)|y|^{p_i-p}-\frac{e(x)}{|y|^{p-2}y}
% \label{ineq:C}
\end{equation*}
Denote $\vec w(x)=A(x)\frac{\norm{\nabla y}^{p-2}\nabla
y}{|y|^{p-2}y}$. The function $\vec w(x)$ is well defined on
$\Omega$ and satisfies the inequality
\begin{equation}
\label{eq:RIC}
\div \vec w+(p-1)\Lambda(x) \norm{\vec w}^q+\ss{\vec w}{A^{-1}(x)\vec b(x)}+C(x)\leq 0
\end{equation}
where
\begin{equation}\label{eq:Lambda}
\Lambda(x)=
\begin{cases}
\lambda_{{\max}}^{1-q}(x)& % \text{ for }
1<p\leq 2,\\
\lambda_{{\min}}\lambda_{\max}^{-q}(x)& % \text{ for }
p>2.
\end{cases}
\end{equation}
\end{lemma}
\begin{lemma}\label{lemma:alpha}
Let \eqref{eq:RIC} hold. Let $l>1$, $l^*=\frac{l}{l-1}$ be two
mutually conjugate numbers and $\alpha \in C^1(\Omega,\R^+)$ be
a smooth function positive on $\Omega$. Then
\begin{multline*}
% \label{eq:RIC2}
\div (\alpha(x)\vec w)+ (p-1)\frac {\Lambda(x)\alpha^{1-q}(x)}{l^*}
\norm{\alpha(x)\vec w}^q\\
-\frac{l^{p-1}\alpha(x)}{ p^p \Lambda^{p-1}(x)}\norm{A^{-1}(x)\vec b(x)-\frac{\nabla \alpha(x)}{\alpha(x)}}^p +\alpha(x)C(x)\leq 0
\end{multline*}
holds on $\Omega$. If $\norm{A^{-1}\vec b-\frac{\nabla
\alpha}\alpha}\equiv 0$ on $\Omega$, then this inequality holds
with $l^*=1$.
\end{lemma}
\newpage
\begin{theorem}\label{lemma:radialODE}
Let the $n$-vector function $\vec w$ satisfy inequality
\begin{equation*}
\div \vec w+C_0(x)+(p-1)\Lambda_0(x)\norm{\vec w}^q\leq 0
\end{equation*}
on $\Omega(a,b)$. Denote $\tilde C(r)=\int_{S(r)}C_0(x)\dS$ and
$\tilde R(r)=\int_{S(r)}\Lambda_0^{1-p}\dS$. Then
the half-linear ordinary differential equation
\begin{equation*}%\label{eq:radialODE}
\left(\tilde R(r) |u'|^{p-2}u\right)'+\tilde C(r) |u|^{p-2}u=0,
\qquad {}'=\frac{\mathrm{d}}{\dr}
\end{equation*}
is disconjugate on $[a,b]$ and it possesses solution which has no
zero on $[a,b]$.
\end{theorem}
\begin{theorem}\label{th1}
Let $l>1$. Let $l^*={1}$ if $\norm{\vec b}\equiv 0$ and
$l^*=\frac{l}{l-1}$ otherwise. Further, let $c_i(x)\geq 0$ for every
$i$. Denote
\begin{equation*}%\label{eq:tildeR}
\tilde R(r)=(l^*)^{p-1}\int_{S(r)}\Lambda^{1-p}(x)\dS
\end{equation*}
and
\begin{equation*}
\tilde C(r)=\int_{S(r)}c(x)+C_1(x)-\frac{l^{p-1}}{ p^p \Lambda^{p-1}(x)}\norm{A^{-1}(x)\vec b(x)}^p\dS,
\end{equation*}
where $\Lambda(x)$ is defined by \eqref{eq:Lambda} and $C_1(x)$ is
defined by \eqref{eq:C1}.
Suppose that the equation
\begin{equation*}%\label{eq:th1}
\left(\tilde R(r)|u'|^{p-2}u'\right)'+\tilde C(r) |u|^{p-2}u=0
\end{equation*}
has conjugate points on $[a,b]$.
If $e(x)\leq 0$ on $\Omega(a,b)$, then equation \eqref{eq:E} has no
positive solution on $\Omega(a,b)$.
If $e(x)\geq 0$ on $\Omega(a,b)$, then equation \eqref{eq:E} has no
negative solution on $\Omega(a,b)$.
\end{theorem}
\begin{theorem}[non-radial variant of Theorem \ref{th1}]\label{th1a}
Let $l>1$ and let $\Omega\subset\Omega(a,b)$ be an open domain with
piecewise smooth boundary such that $\meas(\Omega \cap S(r))\neq 0$
for every $r\in[a,b]$. Let $c_i(x)\geq 0$ on $\Omega$ for every
$i$ and let $\alpha(x)$ be a function which is
positive and continuously differentiable on $\Omega$ and vanishes on
the boundary and outside $\Omega$. Let $l^*=1$ if $\norm{A^{-1}\vec
b-\frac{\nabla \alpha}{\alpha}}\equiv 0$ on $\Omega$ and
$l^*=\frac{l}{l-1}$ otherwise. In the former case suppose also that
the integral
\begin{equation*}
\int_{S(r)}\frac{\alpha(x)}{ \Lambda^{p-1}(x)}\norm{A^{-1}(x)\vec b(x)-\frac{\nabla\alpha(x)}{\alpha(x)}}^p\dS
\end{equation*}
which may have singularity on $\partial \Omega$ if
$\Omega\neq\Omega(a,b)$ is convergent for every $r\in[a,b]$. Denote
\begin{equation*}
\tilde R(r)=(l^*)^{p-1}\int_{S(r)}\alpha(x)\Lambda^{1-p}(x)\dS
\end{equation*}
and
\begin{equation*}
\tilde C(r)=\int_{S(r)}{\cervena{\alpha(x)}}\left(c(x)+C_1(x)-\frac{l^{p-1}}{ p^p \Lambda^{p-1}(x)}\norm{A^{-1}(x)\vec b(x)-\frac{\nabla\alpha(x)}{\alpha(x)}}^p\right)\dS,
\end{equation*}
where $\Lambda(x)$ is defined by \eqref{eq:Lambda} and $C_1(x)$ is
defined by \eqref{eq:C1} and suppose that equation
\begin{equation*}
\left(\tilde R(r)|u'|^{p-2}u'\right)'+\tilde C(r) |u|^{p-2}u=0
\end{equation*}
has conjugate points on $[a,b]$.
If $e(x)\leq 0$ on $\Omega(a,b)$, then equation \eqref{eq:E} has no
positive solution on $\Omega(a,b)$.
If $e(x)\geq 0$ on $\Omega(a,b)$, then equation \eqref{eq:E} has no
negative solution on $\Omega(a,b)$.
\end{theorem}
\newpage
\begin{theorem}\label{th2}
Let $l$, $\Omega$, $\alpha(x)$, $\Lambda(x)$ and $\tilde R(r)$ be
defined as in Theorem \ref{th1a} and let $c_i(x)\geq 0$ and
\cervena{$e(x)\equiv 0$} on $\Omega(a,b)$. Denote
\begin{equation*}
\tilde C(r)=\int_{S(r)}\alpha(x)\left(c(x)+C_2(x)-\frac{l^{p-1}}{ p^p \Lambda^{p-1}(x)}\norm{A^{-1}(x)\vec b(x)-\frac{\nabla \alpha(x)}{\alpha(x)}}^p\right)\dS,
\end{equation*}
where $C_2(x)$ is defined by \eqref{eq:C2}.
If the equation %\eqref{eq:th1}
\begin{equation*}
\left(\tilde R(r)|u'|^{p-2}u'\right)'+\tilde C(r) |u|^{p-2}u=0
\end{equation*}
has conjugate points on $[a,b]$, then every solution of equation
\eqref{eq:E} has zero on $\Omega(a,b)$.
\end{theorem}
\bigskip\bigskip\bigskip
{\rightskip 2cm
\leftskip 2cm
Similar theorems can be derived also for estimates of terms
with mixed powers based on different methods than AG inequality % (for example
% \eqref{eq:C3})
(see R. M., Nonlinear Analysis TMA 73 (2010)).
}
\end{document}
|