1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
\documentclass[dvipsnames,usenames]{report}
\usepackage{statex}
\usepackage{shortvrb}
\MakeShortVerb{@}
% Examples
\begin{document}
Many accents have been re-defined
@ c \c{c} \pi \cpi@ $$ c \c{c} \pi \cpi$$ %upright constants like the speed of light and 3.14159...
@int \e{\im x} \d{x}@ $$\int \e{\im x} \d{x}$$ %\d{x}; also note new commands \e and \im
@\^{\beta_1}=b_1@ $$\^{\beta_1}=b_1$$
@\=x=\frac{1}{n}\sum x_i@ $$\=x=\frac{1}{n}\sum x_i$$ %also, \b{x}, but see \ol{x} below
@\b{x} = \frac{1}{n} \wrap[()]{x_1 +\.+ x_n}@ $$\b{x} = \frac{1}{n} \wrap[()]{x_1 +\.+ x_n}$$
Sometimes overline is better: @\b{x}\ vs.\ \ol{x}@ $$\b{x}\ vs.\ \ol{x}$$
And, underlines are nice too: @\ul{x}@ $$\ul{x}$$
A few other nice-to-haves:
@\Gamma[n+1]=n!@ $$\Gamma[n+1]=n!$$
@\binom{n}{x}@ $$\binom{n}{x}$$ %provided by amsmath package
@\e{x}@ $$\e{x}$$
%$\H_0: \mu_\ij=0$ vs. $\H_1: \mu_\ij \neq 0$ %\ijk too
@\logit \wrap{p} = \log \wrap{\frac{p}{1-p}}@ $$\logit \wrap{p} = \log \wrap{\frac{p}{1-p}}$$
\pagebreak
Common distributions along with other features follows:
Normal Distribution
@Z ~ \N{0}{1}, \where \E{Z}=0 \and \V{Z}=1@ $$Z ~ \N{0}{1}, \where \E{Z}=0 \and \V{Z}=1$$
@\P{|Z|>z_\ha}=\alpha@ $$\P{|Z|>z_\ha}=\alpha$$
@\pN[z]{0}{1}@ $$\pN[z]{0}{1}$$
or, in general
@\pN[z]{\mu}{\sd^2}@ $$\pN[z]{\mu}{\sd^2}$$
Sometimes, we subscript the following operations:
@\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha@ $$\E[z]{Z}=0, \V[z]{Z}=1, \and \P[z]{|Z|>z_\ha}=\alpha$$
Multivariate Normal Distribution
@\bm{X} ~ \N[p]{\bm{\mu}}{\sfsl{\Sigma}}@ $$\bm{X} ~ \N[p]{\bm{\mu}}{\sfsl{\Sigma}}$$ %\bm provided by the bm package
Chi-square Distribution
@Z_i \iid \N{0}{1}, \where i=1 ,\., n@ $$Z_i \iid \N{0}{1}, \where i=1 ,\., n$$
@\chisq = \sum_i Z_i^2 ~ \Chi{n}@ $$\chisq = \sum_i Z_i^2 ~ \Chi{n}$$
@\pChi[z]{n}@ $$\pChi[z]{n}$$
t Distribution
@\frac{\N{0}{1}}{\sqrt{\frac{\Chisq{n}}{n}}} ~ \t{n}@ $$\frac{\N{0}{1}}{\sqrt{\frac{\Chisq{n}}{n}}} ~ \t{n}$$
\pagebreak
F Distribution
@X_i, Y_{\~i} \iid \N{0}{1} \where i=1 ,\., n; \~i=1 ,\., m \and \V{X_i, Y_{\~i}}=\sd_\xy=0@ $$X_i, Y_{\~i} \iid \N{0}{1} \where i=1 ,\., n; \~i=1 ,\., m \and \V{X_i, Y_{\~i}}=\sd_\xy=0$$%\XY too
@\chisq_x = \sum_i X_i^2 ~ \Chi{n}@ $$\chisq_x = \sum_i X_i^2 ~ \Chi{n}$$
@\chisq_y = \sum_{\~i} Y_{\~i}^2 ~ \Chi{m}@ $$\chisq_y = \sum_{\~i} Y_{\~i}^2 ~ \Chi{m}$$
@\frac{\chisq_x}{\chisq_y} ~ \F{n, m}@ $$\frac{\chisq_x}{\chisq_y} ~ \F{n, m}$$
Beta Distribution
@B=\frac{\frac{n}{m}F}{1+\frac{n}{m}F} ~ \Bet{\frac{n}{2}, \frac{m}{2}}@ $$B=\frac{\frac{n}{m}F}{1+\frac{n}{m}F} ~ \Bet{\frac{n}{2}, \frac{m}{2}}$$
@\pBet{\alpha}{\beta}@ $$\pBet{\alpha}{\beta}$$
Gamma Distribution
@G ~ \Gam{\alpha, \beta}@ $$G ~ \Gam{\alpha, \beta}$$
@\pGam{\alpha}{\beta}@ $$\pGam{\alpha}{\beta}$$
Cauchy Distribution
@C ~ \Cau{\theta, \nu}@ $$C ~ \Cau{\theta, \nu}$$
@\pCau{\theta}{\nu}@ $$\pCau{\theta}{\nu}$$
Uniform Distribution
@X ~ \U{0, 1}@ $$X ~ \U{0, 1}$$
@\pU{0}{1}@ $$\pU{0}{1}$$
or, in general
@\pU{a}{b}@ $$\pU{a}{b}$$
Exponential Distribution
@X ~ \Exp{\lambda}@ $$X ~ \Exp{\lambda}$$
@\pExp{\lambda}@ $$\pExp{\lambda}$$
Hotelling's $T^2$ Distribution
@X ~ \Tsq{\nu_1, \nu_2}@ $$X ~ \Tsq{\nu_1, \nu_2}$$
Inverse Chi-square Distribution
@X ~ \IC{\nu}@ $$X ~ \IC{\nu}$$
Inverse Gamma Distribution
@X ~ \IG{\alpha, \beta}@ $$X ~ \IG{\alpha, \beta}$$
Pareto Distribution
@X ~ \Par{\alpha, \beta}@ $$X ~ \Par{\alpha, \beta}$$
@\pPar{\alpha}{\beta}@ $$\pPar{\alpha}{\beta}$$
Wishart Distribution
@\sfsl{X} ~ \W{\nu, \sfsl{S}}@ $$\sfsl{X} ~ \W{\nu, \sfsl{S}}$$
Inverse Wishart Distribution
@\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}@ $$\sfsl{X} ~ \IW{\nu, \sfsl{S^{-1}}}$$
Binomial Distribution
@X ~ \Bin{n, p}@ $$X ~ \Bin{n, p}$$
@\pBin{n}{p}@ $$\pBin{n}{p}$$
Bernoulli Distribution
@X ~ \B{p}@ $$X ~ \B{p}$$
Beta-Binomial Distribution
@X ~ \BB{p}@ $$X ~ \BB{p}$$
@\pBB{n}{\alpha}{\beta}@ $$\pBB{n}{\alpha}{\beta}$$
Negative-Binomial Distribution
@X ~ \NB{n, p}@ $$X ~ \NB{n, p}$$
Hypergeometric Distribution
@X ~ \HG{n, M, N}@ $$X ~ \HG{n, M, N}$$
Poisson Distribution
@X ~ \Poi{\mu}@ $$X ~ \Poi{\mu}$$
@\pPoi{\mu}@ $$\pPoi{\mu}$$
Dirichlet Distribution
@\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}@ $$\bm{X} ~ \Dir{\alpha_1 \. \alpha_k}$$
Multinomial Distribution
@\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}@ $$\bm{X} ~ \M{n, \alpha_1 \. \alpha_k}$$
\pagebreak
To compute critical values for the Normal distribution, create the
NCRIT program for your TI-83 (or equivalent) calculator. At each step, the
calculator display is shown, followed by what you should do (\Rect\ is the
cursor):\\
\Rect\\
\Prgm\to@NEW@\to@1:Create New@\\
@Name=@\Rect\\
NCRIT\Enter\\
@:@\Rect\\
\Prgm\to@I/O@\to@2:Prompt@\\
@:Prompt@ \Rect\\
\Alpha[A],\Alpha[T]\Enter\\
@:@\Rect\\
\Distr\to@DISTR@\to@3:invNorm(@\\
@:invNorm(@\Rect\\
1-(\Alpha[A]$\div$\Alpha[T]))\Sto\Alpha[C]\Enter\\
@:@\Rect\\
\Prgm\to@I/O@\to@3:Disp@\\
@:Disp@ \Rect\\
\Alpha[C]\Enter\\
@:@\Rect\\
\Quit\\
Suppose @A@ is $\alpha$ and @T@ is the number of tails. To run the program:\\
\Rect\\
\Prgm\to@EXEC@\to@NCRIT@\\
@prgmNCRIT@\Rect\\
\Enter\\
@A=?@\Rect\\
0.05\Enter\\
@T=?@\Rect\\
2\Enter\\
@1.959963986@
\end{document}
|