File: continuous.tex

package info (click to toggle)
texlive-extra 2016.20170123-5
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 2,578,600 kB
  • ctags: 25,000
  • sloc: perl: 139,711; python: 20,370; makefile: 14,165; sh: 10,734; ansic: 7,723; xml: 4,202; java: 3,567; csh: 1,129; ruby: 938; lisp: 630; awk: 163; tcl: 142; sed: 36; pascal: 25; cpp: 18; haskell: 5
file content (20 lines) | stat: -rw-r--r-- 901 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
\begin{omgroup}[id=sec.contfuncs]{Continuous Functions}
\begin{module}[id=continuous]
\importmodule[load=\backmods{functions}]{functions}
\importmodule[load=\backmods{reals}]{reals}
\symdef{continuousfunctions}[2]{\mathcal{C}^0(#1,#2)}
\abbrdef{ContRR}[2]{\continuousfunctions\RealNumbers\RealNumbers}
\begin{definition}[for=continuousfunctions]
  A function $\fun{f}\RealNumbers\RealNumbers$ is called {\defi{continuous}} at
  $\inset{x}\RealNumbers$, iff for all $\epsilon>0$ there is a $\delta>0$, such that
 $\absval{f(x)-f(y)}<\epsilon$ for all $\absval{x-y}<\delta$. It is called
  {\defii{continuous}{on}} a set $\sseteq{S}\RealNumbers$, iff is is continous at all
  $\inset{x}S$, the set of all such functions is denoted with $\continuousfunctions{S}T$,
  if $\sseteq{f(S)}T$.
\end{definition}
\end{module}
\end{omgroup}
%%% Local Variables: 
%%% mode: LaTeX
%%% TeX-master: "paper"
%%% End: