1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
%This is a 2-page sample illustrating how to use the
%multienum package
\documentclass{article}
\setlength{\textwidth}{6in}
\setlength{\textheight}{8.5in}
\setlength{\topmargin}{-0.5in}
\setlength{\oddsidemargin}{0.25in}
\usepackage{multicol,multienum}
\begin{document}
\begin{center}
{\Large\bf Sample formating using {\tt multienumerate}}
\end{center}
\bigskip
Sometimes we want to typeset the solutions to exercises. This
is easy to do using the {\tt multienumerate} environment.
\subsection*{Answers to All Exercises}
\begin{multienumerate}
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}
\bigskip
\hrule
\bigskip
We can also enumerate the items using an even-only or odd only
counter.
\subsection*{Answers to Even-Numbered Exercises}
\begin{multienumerate}[evenlist]
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}
\hrule
\subsection*{Answers to Odd-Numbered Exercises}
\begin{multienumerate}[oddlist]
\mitemxxxx{Not}{Linear}{Not}{Quadratic}
\mitemxxxo{Not}{Linear}{No; if $x=3$, then $y=-2$.}
\mitemxx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}
\bigskip
\hrule
\bigskip
Sometimes we want to create sublists which are
enumerated using an alpha counter.
\begin{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\end{multienumerate}
\pagebreak
\begin{multicols}{2}
\subsection*{Answers to All Exercises}
\begin{multienumerate}
\mitemxx{Not}{Linear}
\mitemxx{Not}{Quadratic}
\mitemxx{Not}{Linear}
\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}
\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxx{$(2,-1,3)$}{None}
\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
\mitemxx{Not}{Linear}
\mitemxx{Not}{Quadratic}
\mitemxx{Not}{Linear}
\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}
\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxx{$(2,-1,3)$}{None}
\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
\mitemxx{Not}{Linear}
\mitemxx{Not}{Quadratic}
\mitemxx{Not}{Linear}
\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or
$(s,3s-6)$}
\mitemx{$(x_1,x_2,x_3)=(2+\frac{5}{2}s-3t,s,t)$}
\mitemx{$(x_1,x_2,x_3,x_4)= (\frac{1}{4}+\frac{5}{4}s+\frac{3}{4}t-u,s,t,u)$
or $(s,t,u,\frac{1}{4}-s+\frac{5}{4}t+\frac{3}{4}u)$}
\mitemxx{$(2,-1,3)$}{None}
\mitemxx{$(2,1,0,1)$}{$(0,0,0,0)$}
\end{multienumerate}
\subsection*{Multiple Choice}
\begin{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\mitemx{Which of the following numbers is the solution of the
equation
$x+3=7$:}
\begin{multienumerate}
\mitemxxxx{1}{2}{3}{4}
\end{multienumerate}
\mitemx{The value of $\log_28$ is:}
\begin{multienumerate}
\mitemxxxx{1}{$-1$}{3}{$-3$}
\end{multienumerate}
\end{multienumerate}
\end{multicols}
\end{document}
|