1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
%% cheat-sheet.tex
%% Copyright 2021 Rebecca B. Turner.
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
%
% The Current Maintainer of this work is Rebecca B. Turner.
%
% This work consists of the files:
% README.md
% rbt-mathnotes.tex
% rbt-mathnotes.sty
% rbt-mathnotes.cls
% rbt-mathnotes-util.sty
% rbt-mathnotes-messages.sty
% rbt-mathnotes-hw.cls
% rbt-mathnotes-formula-sheet.cls
% examples/cheat-sheet.tex
% examples/multivar.tex
% examples/topology-hw-1.tex
% and the derived files:
% rbt-mathnotes.pdf
% examples/cheat-sheet.pdf
% examples/multivar.pdf
% examples/topology-hw-1.pdf
\documentclass{rbt-mathnotes-formula-sheet}
\usepackage{nicefrac}
\ExplSyntaxOn
\NewDocumentCommand \normalized { m }
{ \frac { #1 } { \| #1 \| } }
\let \gr \grad
\def \ddx { \frac{d}{dx} }
% VL = vector literal
\NewDocumentCommand \vl { m } { \left\langle #1 \right\rangle }
\ExplSyntaxOff
\title{Formula Sheet}
\author{Rebecca Turner}
\date{2019-11-12}
% "The most common size for index cards in North America and UK is 3 by 5
% inches (76.2 by 127.0 mm), hence the common name 3-by-5 card. Other sizes
% widely available include 4 by 6 inches (101.6 by 152.4 mm), 5 by 8 inches
% (127.0 by 203.2 mm) and ISO-size A7 (74 by 105 mm or 2.9 by 4.1 in)."
\mathnotes{
height = 4in ,
width = 6in ,
}
\begin{document}
\maketitle
\begin{gather*}
% 12.2: Vectors
% 12.3: Dot product
\textstyle\vec a \cdot \vec b = \sum_i a_i b_i = |\vec a| |\vec b| \cos \theta. \\
% 12.4: Cross product
\vec a \times \vec b
% = \left| \begin{array}{rrr}
% \hat{i} & \hat{j} & \hat{k} \\
% a_1 & a_2 & a_3 \\
% b_1 & b_2 & b_3 \\
% \end{array} \right| \\
= \langle a_2 b_3 - a_3 b_2,
\quad a_3b_1 - a_1b_3, \\
a_1b_2 - a_2b_1 \rangle.\quad
|\vec a \times \vec b| = |\vec a| |\vec b| \sin \theta.
% 12.5: Equations of lines and planes.
\shortintertext{Param.\ eqns.\ of line through $\langle x_0,y_0,z_0 \rangle$
par.\ to $\langle a,b,c \rangle$:}
x = x_0 + at,
\quad y = y_0 + bt,
\quad z = z_0 + ct. \\
\text{Symm.\ eqns.: }
\frac{x-x_0}{a}
= \frac{y-y_0}{b}
= \frac{z-z_0}{c}. \\
\shortintertext{Vec.\ eqn.\ of plane through $\vec r$ with $\vec n$ normal:}
\vec n \cdot (\vec r - \vec r_0) = 0,
\quad \vec n \cdot \vec r = \vec n \cdot \vec r_0. \\
% 13.1: Vector functions
% 13.2: Derivatives/integrals of vector functions
% 13.3: Arc length and curvature
\shortintertext{Length along a vec.\ fn.\ $\vec r(t)$:}
\textstyle\int_a^b \left|\vec r'(t)\right|\,dt = \int_a^b \sqrt{\sum_i
r_i'(t)^2}\,dt, \\
\shortintertext{Unit tang.\ $\vec T(t) = \vec r'(t)/\left|\vec
r'(t)\right|$, so curvature of $\vec r(t)$ w/r/t the arc len.\ fn. $s$:}
\kappa = \left|\frac{d\vec T}{ds}\right|
= \frac{\left| \vec T'(t) \right|}{\left| \vec r'(t) \right|}
= \frac{\left| \vec r'(t) \times \vec r''(t) \right|}{\left| \vec r'(t)
\right|^3}. \\
\text{Unit normal:}\quad
\vec N(t) = \vec T'(t)\,/\,\left| \vec T'(t) \right| \\
% 14.1: Functions of several variables
% 14.2: Limits and continuity
% 14.3: Partial derivatives
\text{Clairaut's thm.:}\quad
f_{xy}(a,b) = f_{yx}(a,b) \\
% 14.4: Tangent planes & linear approximations
\shortintertext{Tan.\ plane to $z = f(x,y)$ at $\langle x_0, y_0,
z_0\rangle$:}
z - z_0 = f_x(x_0, y_0) (x-x_0) \\
+ f_y(x_0, y_0) (y-y_0). \\
% Partial derivatives of f for each variable exist near a point and are
% continuous => f is differentiable at the po\int.
% 14.6: Directional derivatives and the gradient vector
\text{Grad.:}\quad
\grad f(x,y) = \pd[f]x \hat{i} + \pd[f]y \hat{j}. \\
\shortintertext{Dir.\ deriv.\ towards $\vec u$ at $\langle x_0, y_0 \rangle$:}
D_{\langle a,b\rangle} f(x_0, y_0) = f_x(x,y) a + f_y(x,y) b \\
= \grad f(x,y) \cdot \vec u. \\
\shortintertext{Max of $D_{\vec u} f(\vec x) = \left|\grad f(\vec
x)\right|$. Tan.\ plane of $f$ at $\vec p$:}
0 =
f_x(\vec p)(x-\vec p_x)
+ f_y(\vec p)(y-\vec p_y) \\
+ f_z(\vec p)(z-\vec p_z).
% 14.7: Maximum and minimum values
\shortintertext{If $f$ has loc.\ extrem.\ at $\vec p$, then $f_x(\vec p) =
0$ (\& $f_y$, etc). If so, let}
D = \left| \begin{array}{ll}
f_{xx} & f_{xy} \\
f_{yx} & f_{yy}
\end{array}\right|
= f_{xx} f_{yy} - (f_{xy})^2.
\shortintertext{%
$D = 0$: no information.
$D < 0$: saddle pt.
$D > 0$: $f_{xx}(\vec p) > 0 \implies$ loc.\ min;
$f_{xx}(\vec p) < 0 \implies$ loc.\ max.
($D$ is the \textbf{Hessian mat.})
\endgraf
Set of possible abs. min and max vals of $f$ in reg.\ $D$: $f$ at critical
pts.\ and extreme vals.\ on the boundary of $D$.
% 14.8: Lagrange multipliers
\endgraf
Lagrange mults.: extreme vals of $f(\vec p)$ when $g(\vec p) = k$.
Find all $\vec x, \lambda$ s.t.
}
\grad f(\vec x) = \lambda \grad g(\vec x),\quad g(\vec x) = k.
\shortintertext{i.e.\ $f_x = \lambda g_x$, etc.}
% 15.1: Double integrals over rectangles
% 15.2: Iterated integrals
% 15.3: Double integrals over general regions
\iint f(r\cos\theta, r\sin\theta)r\,dr\,d\theta. \\
A = \iint_D \left(\sqrt{f_x(x,y)^2 + f_y(x,y)^2 + 1}\right) \,dA. \\
\shortintertext{Line int.s}
\int_C f(x,y)\,ds = \\
\int_a^b f(x(t), y(t))\sqrt{\left(\pd[x]t\right)^2 + \left(\pd[y]t\right)^2}\,dt \\
\shortintertext{If $C$ is a smooth curve given by $\vec r(t)$ from $a \le t
\le b$,}
\int_C \grad f \cdot d\vec r = f(\vec r(b)) - f(\vec r(a)) \\
\text{Spherical coords:}\quad
x = \rho \sin \phi \cos \theta \\
y = \rho \sin \phi \sin \theta, z = \rho \cos \phi \\
\curl \vec F = \\ \left< \pd[R]y - \pd[Q]z, \pd[P]z - \pd[R]x, \pd[Q]x -
\pd[P]y\right>. \\
\vec F = \langle P,Q,R \rangle,\quad
\curl \vec F = \grad \times \vec F \\
\vec F \text{ ``conservative''} \implies \exists f, \vec F = \grad f. \\
\dive \vec F = \grad \cdot \vec F = \pd[P]x + \pd[Q]y + \pd[R]z. \\
\curl(\grad f) = \vec 0,\quad \dive \curl \vec F = 0 \\
\shortintertext{If $C$ is a positively-oriented (ccw) closed curve, $D$
is bounded by $C$, and $\vec n$ represents the normal,}
% \int_C P\,dx + Q\,dy = \iint_D\left( \pd[Q]{x} - \pd[P]{y} \right). \\
\oint_C \vec F \cdot \vec n\,ds = \iint_D \dive \vec F(x,y)\,dA.
\end{gather*}
\pagebreak
\raggedright Common derivs:
$f(g(x)) \to g'(x) f'(g(x))$,
$b^x \to b^x \ln b$,
$f^{-1}(x) \to 1/f'(f^{-1}(x))$,
$\ln x \to 1/x$,
$\sin x \to \cos x$, $\cos x \to -\sin x$,
$\tan x \to \sec^2 x$,
$\sin^{-1} x \to 1/\sqrt{1-x^2}$,
$\cos^{-1} x \to -(\sin^{-1}x)'$ (etc.),
$\tan^{-1} x \to 1/(1+x^2)$,
$\sec^{-1} x \to 1/(|x|\sqrt{x^2-1})$.
Common ints (don't forget $+C$):
\begin{gather*}
x^n \to \frac{x^{n + 1}}{n + 1} + C \quad \text{when } n \ne -1 \\
1/x \to \ln |x| \\
\tan x \to -\ln(\cos x) \\
\int uv'\,dx = uv - \int u'v\,dx \quad\text{(Int.\ by parts)} \\
\int u\,dv = uv-\int v\,du \\
\int_{g(a)}^{g(b)} f(u)\,du = \int_a^b f(g(x))g'(x)\,dx
\quad\text{$u$-substitution.}
\intertext{E.x.\ in $\int 2x \cos x^2\,dx$, let $u=x^2$, find $du/dx=2x
\implies du = 2x\,dx$, subs.\ $\int \cos u\,du = \sin u + C = \sin x^2 +
C$.}
\iint_R f(x,y)\,dA = \int_\alpha^\beta \int_a^b f(r\cos\theta,
r\sin\theta)r\,dr\,d\theta
\end{gather*}
\begin{itemize}
\item Integrand contains $a^2-x^2$, let $x = a\sin\theta$ and use $1 -
\sin^2 \theta = \cos^2 \theta$.
\item $a^2 + x^2$, let $x = a\tan\theta$, use $1 + \tan^2 \theta = \sec^2
\theta$.
\item $x^2 - a^2$, let $x = a\sec\theta$, use $\sec^2\theta - 1 = \tan^2
\theta$.
\end{itemize}
\begin{gather*}
\lim_{x \to 0} \sin x/x = 1 \\
\lim_{x \to 0} (1-\cos x)/x = 0 \\
\lim_{x \to \infty} x \sin(1/x) = 1 \\
\lim_{x \to 0} (1+x)^{1/x} = e \\
\lim_{x \to 0} (e^{ax}-1)/(bx) = a/b \\
\lim_{x \to 0^+} x^x = 1 \\
\lim_{x \to 0^+} x^{-n} = \infty \\
\text{For $0/0$ or $\pm\infty/\infty$,}\quad
\lim_{x \to c} f(x)/g(x) = \lim_{x \to c} f'(x)/g'(x) \\
\text{For $g(x)$ cont.\ at $L$,}
\lim_{x \to c} f(x) = L \implies \lim_{x \to c} g(L)
\end{gather*}
\end{document}
|