File: SpacekcReferenceE.tex

package info (click to toggle)
texlive-extra 2022.20230122-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,466,588 kB
  • sloc: perl: 398,710; xml: 35,871; python: 29,125; cs: 25,850; sh: 17,610; makefile: 17,304; ansic: 15,490; java: 12,811; javascript: 9,898; lisp: 1,755; csh: 1,129; ruby: 1,072; awk: 151; tcl: 142; pascal: 138; cpp: 41; sed: 36; haskell: 5
file content (619 lines) | stat: -rw-r--r-- 23,485 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
\documentclass[papersize,a4paper,12pt]{article}
\usepackage{ketpic,ketlayer}
\usepackage{amsmath}
\usepackage{graphicx,color}
\usepackage{wrapfig}
\usepackage[bookmarks=false,colorlinks=true,linkcolor=blue]{hyperref}
\setmargin{20}{20}{15}{25}
\usepackage{setspace}
\usepackage{comment}
\usepackage{bm,enumerate}
\begin{document}
\title{Spacekc Reference}
\author{CinderellaJapan}
\maketitle

\tableofcontents

\newpage

% Section 1 Introduction =======================================
\section{Introduction }
Spacekc is a function library on Ketcindy. To KeTCindy's 3D graphics, color with simple raytracing
be able to. In addition, several functions for calculating relating to space are prepared.

%Section 2 ==========================================
\section{Constant}

\begin{description}

\hypertarget{lightpoint}{}
\item[Direction vector of light source] Lightpoint
\item[Description] Direction vector of light source for simplified ray tracing.  Default is [-1,1,1].

\vspace{\baselineskip}
\hypertarget{contrast}{}
\item[Contrast] Contrast
\item[Description] Contrast in the direction of light when performing simple ray tracing. Standard is a real number between 0 and 1.

\end{description}

%Section 3 Value ==========================================
\section{Value}
\begin{description}

\hypertarget{angle3pt}{}
\item[Function] angle3pt(coordinate1,coordinate2,coordinate3)
\item[Description] Find an angle on a 2D plane.
\item[Return value] This function is return ∠p1p2p3 for point p1,p2,p3.

\vspace{\baselineskip}

\hypertarget{pointindomain}{}
\item[Function] pointindomain(coordinate1,list of point)
\item[Description] Judgment whether or not there is a point in the closed curve.
\item[Return value] The judgment that this function has a point of coordinate1 in the closed curve of the list of points on a plane.  The case in the domain return 1 ,  out of domain return 0,  on a boundary line return 2.

\vspace{\baselineskip}

\hypertarget{crosssd}{}
\item[Function] crosssd(coordinate1,coordinate2,coordinate3,coordinate4)
\item[Description] determine whether two segments cross in 2D plane 
\item[Description]  judge it whether a segment of links coordinate 3, coordinate 4 to the segment of linking coordinate 1, coordinate 2 has a common point.
\item[Return value] When there is a common point, true is returned, and false is returned when there is not it.

\vspace{\baselineskip}

\hypertarget{interll}{}
\item[Function] interll(coordinate1,coordinate2,coordinate3,coordinate4)
\item[Description] Demand the point of intersection of the two straight lines
\item[Return value]  Demand the coordinate of the point of intersection with the straight line via coordinate 1, coordinate 2 and coordinate 3, coordinate 4.  When there is not a point of intersection, It return [i,i,i].

\vspace{\baselineskip}

\hypertarget{interss}{}
\item[Function] interss(coordinate1,coordinate2,coordinate3,coordinate4)
\item[Description] Demand the point of intersection of the two segments.
\item[Return value]Demand the coordinate of the point of intersection with the segment via coordinate 1, coordinate 2 and coordinate 3, coordinate 4.

 When there is not a point of intersection, It return [i,i,i].

\vspace{\baselineskip}
\hypertarget{interpl}{}
\item[Function]interpl(list of coefficients ,coordinate1,coordinate2)
\item[Description] Demand a plane and the point of intersection of the straight line.
\item[Return value] Demand the coordinate of the point of intersection with the plane via coordinate 1, coordinate 2, coordinate 3  and line via coordinate 4 , coordinate 5.

 When there is not a point of intersection, It return [i,i,i].
 
\vspace{\baselineskip}
\hypertarget{interps}{}
\item[Function] interps(list of coefficients ,coordinate1,coordinate2)
\item[Description] Demand a plane and the point of intersection of the segment
\item[Return value]  Demand the coordinate of the point of intersection with the plane via coordinate 1, coordinate 2, coordinate 3  and segment to link coordinate 4 to coordinate 5.

 When there is not a point of intersection, It return [i,i,i].

\hypertarget{distlp}{}
\item[Function] distlp(coordinate1,coordinate2,coordinate3)
\item[Description] Distance of a line to a point .
\item[Return value] It find a straight line via coordinate1 and coordinate2 and the distance with the point of coordinate3. The return value is distance. When coordinate 1 and coordinate 2 is equal, return imaginary unit i and display warning "Warning:p1 is same to p2" to a console.

Example println(distlp([1,0],[0,1],[0,0]));  \\
In addition, 0.71 is displayed to a console by plintln(), but is displayed with 1/2*sqrt(2)  by \\
   println(guess(distlp([1,0],[0,1],[0,0])));\\

Example println(distlp([1,1,0],[0,0,1],[0,0,0]));  
In addition, 0.82 is displayed to a console by plintln(), but is displayed with 1/3*sqrt(6)   by \\
   println(guess(distlp([1,1,0],[0,0,1],[0,0,0])));\\


\vspace{\baselineskip}
\hypertarget{distpp}{}
\item[Function] distpp(coordinate1,coordinate2,coordinate3,coordinate4)
\item[Description] Distance of a plene and a point in 3D space
\item[Return value] It find a plane via coordinate1 ,coordinate2 and coordinate2 and the distance with the point of coordinate4. The return value is distance.

Example distpp([2,0,0],[0,2,0],[0,0,2],[0,0,0]);\\
     return value is $\cfrac{2\sqrt{3}}{3}$ \\

\vspace{\baselineskip}
\hypertarget{map2d}{}
\item[Function] Coordinate of the point that projection of space
\item[Description] In a current screen set with a circular slider, It find the coordinate which performed a projection of a point on the space on a plane.
\item[Return value] coordinate

Example :  pt=map2d([1,2,3]);

It is exactly the same as KeTindy's Parapt ().

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{normalvec}{}
\item[Function] normalvec(coordinate1,coordinate2,coordinate3)
\item[Description] It demand a plane unit normal vector via coordinate 1, coordinate 2, coordinate 3.
\item[Return value] normal vector.

 The direction of the vector is decided in order of a point.\\
Exsample normalvec([2,0,0],[0,2,0],[0,0,2]);\\
  Result is  $\left(\cfrac{\sqrt{3}}{3},\cfrac{\sqrt{3}}{3},\cfrac{\sqrt{3}}{3}\right)$\\
  normalvec([2,0,0],[0,0,2],[0,2,0]); \\
 Result is  $\left(-\cfrac{\sqrt{3}}{3},-\cfrac{\sqrt{3}}{3},-\cfrac{\sqrt{3}}{3}\right)$\\

The vector of the perpendicular line which you gave to a plane is provided when you use distpp()\\

  nv=normalvec([2,0,0],[0,2,0],[0,0,2]);\\
  dd=distpp([2,0,0],[0,2,0],[0,0,2],[0,0,0]);\\
  poly3d([[2,0,0],[0,2,0],[0,0,2]]);\\
  arrow3d([[0,0,0],dd*nv]);\\
  Letter3d([dd*nv,"e","H"]);\\

  \input{3Dfig/nomalvec01}\\


%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}


\hypertarget{planecoeff}{}
\item[Function] planecoeff(coordinate1,coordinate2,coordinate3)
\item[Description] It demands coefficient $a,b,c$ of plane equation $ax+by+cz=1$ going along three points of coordinate 1 and coordinate 2 and coordinate 3.
\item[Return value] List [a,b,c]. When coefficiets not exist, "Warning! Cannot decide a coefficient." is displayed and return [i,i,i].\\


\vspace{\baselineskip}
\hypertarget{reflect3d}{}
\item[Function] reflect3d(dlist,mirror) 
\item[Description] Reflection of dlist.  dlist is point or plot data or face data.
\item[Return value]  Data of the same type as the first argument.

\vspace{\baselineskip}

\hypertarget{rotate3d}{}
\item[Function] rotate3d(dlist,vec,angle,center)
\item[Description] Rotaate of dlist.  dlist is point or plot data or face data.
\item[Return value]  Data of the same type as the first argument.


\hypertarget{translate3d}{}
\item[Function] rotate3d(dlist,vec,angle,center)
\item[Description] Translate of dlist.  dlist is point or plot data or face data.
\item[Return value]  Data of the same type as the first argument.

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\vspace{\baselineskip}
\hypertarget{rotmatrix}{}
\item[Function] rotmatrix(vec)
\item[Description] Make rotation matrix from normal vectors.
\item[Return value] List.

\vspace{\baselineskip}

\hypertarget{vertexrpolyhedron}{}
\item[Function] vertexrpolyhedron(n)
\item[Description] Acquire a list of tops of the regular polyhedron
\item[Description] The value of n is one of 4,6,8,12,20. 
\item[Return value]  list of vertexs of the regular polyhedron that touches the spherical surface of radius 1 internally. The turn of the vertexs are as follows.  It is alphabetical order each.

\input{3Dfig/vertex4}   \input{3Dfig/vertex6} 

\input{3Dfig/vertex8}   \input{3Dfig/vertex12} 

\input{3Dfig/vertex20} 

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{val2tex}{}\item[Function] val2tex(x)
\item[Description] Analyze numerical values with guess ()
\item[Return value] TeX character string.

Example
\begin{verbatim}
  pa=[2,0,0];
  pb=[0,2,0];
  pc=[0,0,2];
  nv=normalvec(pa,pb,pc);
  hv=distpp(pa,pb,pc,[0,0,0])*nv;
  hvstr=apply(hv,val2tex(#));
  plate3d("1",[pa,pb,pc],["Color=skyblue","Rayoff"]);
  poly3d("1",[pa,pb,pc]);
  arrow3d("1",[[0,0,0],hv],["size=2"]);
  letter3d([pa,"s2",text(pa_1),pb,"s2",text(pb_2),pc,"w2",text(pc_3),
     hv,"ne2","H$\left( "+hvstr_1+","+hvstr_2+","+hvstr_3+" \right)$"]);
\end{verbatim}

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\end{description}
\newpage

%Section 4 Drawing  =========================================
\section{Drawing}

\textbf{options}
 
<Density of the mesh> The curved surface is described in mesh. This options appoints the number of process lines of this time.

The density of the mesh is appointed like "Mesh=[10,15]".

<Concentration>The concentration is appointed with real numbers from 0 to 1. 

\textbf{<Ray tracing>} 

Specify whether to add shadows in ray tracing. When shadowing "Rayon", do not shade when "Rayoff". The default setting is "Rayon"

%\newpage
\begin{description}

\hypertarget{grid}{}
\item[Function] grid(range1,range2,ne,option)
\item[Description] Display grid on $ xy $ plane.
\item[Description]  Range 1 is the range of the $ x $ axis, and range 2 is the range of the $ y $ axis.
\item[Return value] none.

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{line3d}{}
\item[Function] line3d(name,list ,option)
\item[Description] This function draws a lint linking two points in list of the argument.
\item[Return value]  list of 2nd argument.

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{arrow3d}{}
\item[Function] arrow3d(name,list,option)
\item[Description] This function draws an arrowed line by list of two points of coordinates.
 \item[Return value] list of 2nd argument.
 
\vspace{\baselineskip}
 Example The next script draws an arrowed line linking two points of $(1,3,2), (-2,-1,-2)$.
 
\hspace{10mm}    \verb|arrow3d("1",[[1,3,2],[-2,-1,-2]])| 

 Example The next script draw a straight line via two points of $(1,3,2), (-2,-1,-2)$ with 2 thickness red.
 
\hspace{10mm}   \verb|arrow3d("1",[[2,0,0],[-1,4,1]],[2,1,1,"dr,2","Color=red"])|

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{poly3d}{}
\item[Function] poly3d(name,list,option)
\item[Description] This function draws a polygon to link the point that I gave in list.
 The point to give in list does not need to be closed. It is closed automatically and is drawn.
\item[Return value] Plot data of the drawn polygon.

 Example The next script draws a triangle to assume three points of $(1,1,1), (2,2,1),(0,1,-1)$ a top.
\begin{verbatim}
   pd=[[1,1,1],[2,2,1],[0,1,-1]];
   poly3d("1",pd);
\end{verbatim}

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{plate3d}{}
\item[Function] plate3d(name,list,option)
\item[Description] This function applies a polygon to link the point that I gave in list.
\item[Return value] Plot data of the drawn polygon.

With the Rayoff option, ray tracing is not performed.

 Example : The next script applies a triangle to assume three points of $(1,1,1), (2,2,1),(0,1,-1)$ a top with red.
\begin{verbatim}
   pd=[[1,1,1],[2,2,1],[0,1,-1]]; 
   plate3d("1",pd,["Color=Red"]);
\end{verbatim}

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{circle3d}{}
\item[Function] circle3d(name,center,normal vector,radius,option)
\item[Description] This function gives the center, a radius and a normal vector and draws the circle.
\item[Return value] Plotdata of circle.

 Example : The next script describes the circle that central $(1,1,1)$, radius 2, a normal vector are (1,1,1) in thickness 2, red.\\
  
\verb|  circle3d("1",[1,1,1],[1,1,1],2,["dr,2","Color=Red"]); |

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{drawarc3d}{}
\item[Function] drawarc3d(name,center,normal vector,radius,range,option)
\item[Description] Draw an arc as a part of the circle drawn by giving the center, radius and normal vector.
\item[Return value] Plotdata of arc.

 Example : Draw arc with center $ (1,1,1) $, radius 2, normal vector (-1, 1, 1).
  
\verb|  drawarc3d("1",[1,1,1],[-1,1,1],2,[0,2*pi/3]); |

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{disc3d}{}
\item[Function] disc3d(center,nomal vector,radius,options)
\item[Description] This function gives the center, a radius and a normal vector and draws a disk. 
\item[Return value] Plotdata of circle.

With the Rayoff option, ray tracing is not performed.

 Example : The next script draws the disk that central $(1,1,1)$, radius 2, a normal vector are (1,1,1) at red\\ 
 
 \verb| disc3d("1",[1,1,1],[1,1,1],2,["Color=Red"]); |

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{drawsphere}{}
\item[Function] drawsphere(name,center,radius,opton)
\item[Description] This function describes the origin center, draw spherical surface of radius r.

Draw a spherical surface with gradation by using simple ray tracing. The spheres are divided into meshes and coloring is done.

The radius can also be specified as a list for the x axis, y axis, z axis direction.

Drawing takes time. If it takes too much time, try drawing with "Mesh = [10, 10]" as an option. If you can draw it, make the mesh finer. The initial value is "Mesh = [30, 20]".

\item[Return value] none

\vspace{\baselineskip}
Example : Origin center, spherical surface with radius 2 (left figure)

\verb|drawsphere("1",[0,0,0],2) |

Draw a sphere with an ellipse shape in green (0, 0, 2) and a radius [1, 1, 2] in green ( right figure)

\verb|drawsphere("1",[0,0,2],[1,1,2],["Color=green","Mesh=[20,20]"])|

 \input{3Dfig/sphere01} \hspace{10mm} \input{3Dfig/sphere02} 

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{quasisphere}{}
\item[Function] quasisphere(name,center,radius,fill,opton)
\item[Description] This function describes the origin center, draw a quasi spherical surface of radius r.

fill is a flag indicating whether or not to color.  If it is 1, it paints. If 0 it does not paint. This argument can be omitted. The default is 1.

\item[Return value] Plotdata of circle.

\vspace{\baselineskip}
Example \verb|quasisphere("1",[0,0,1],1]);|

 \input{3Dfig/sphere03} 

It is faster than drawing with Sfbdparadata () and ExeccmdC () because it does not handle hidden lines. By using this, if you make a script like the following, you can see that pseudo sphere is sufficient.

\begin{verbatim}
pd1=quasisphere("1",[0,0,0],2,["nodisp"]);
pd2=circle3d("1",[0,0,0],[0,1,sqrt(3)],2,["nodisp"]);
pd3=circle3d("2",[0,0,-1],[0,0,1],sqrt(3),["nodisp"]);
sp=apply(pd1,map2d(#));
su1=apply(pd2,map2d(#));
su2=apply(pd3,map2d(#));
Listplot("1",sp,["nodisp"]);
Listplot("2",su1);
Listplot("3",su2,["Color=blue"]);
int1=Intersectcrvs("sg1","sg2");
int2=Intersectcrvs("sg1","sg3");
println(int1);
println(int2);
p1=int1_1;
p2=int1_2;
p3=int2_1;
p4=int2_2;
Partcrv("1", p2, p1, "sg1");
Partcrv("2", p3, p4, "sg3",["nodisp"]);
Partcrv("3", p4, p3, "sg1",["nodisp"]);
Joincrvs("1",["part2","part3"],["nodisp"]);
Shade(["join1"],["Color=[0.2,0,0,0]"]);
\end{verbatim}

 \input{3Dfig/sphere04} \hspace{10mm} \input{3Dfig/sphere05} 
 
When this script is executed, the number of intersection points int 1 and int 2 changes according to the viewpoint, so it is necessary to look at what is displayed on the console and set \verb | p1, p2, p3, p4 |.
 
%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{polyhedron}{}
\item[Function] polyhedron(name,face data,option)
\item[Description] Drawing a polyhedron with colored surfaces.
\item[Return value] face data.

With the Rayoff option, ray tracing is not performed.
 
\vspace{\baselineskip}
 Example : Cube ABCD - EFGH is drawn in green with the plane cut through B, D and G.

\hspace{30mm}\input{3Dfig/polyhedron01} 

For the vertices B, C, D, G, make a surface list as follows.
   
First, add numbers 1, 2, 3, 4 to vertices B, C, D and G.
   
The plane BCG is B, C, G counterclockwise as seen from the outside, so [1, 2, 4]
   
Since surface CDG is similarly C, D, G, [2, 3, 4]
   
Since the planes DGB are similarly D, B, G, [3, 1, 4]
   
Bottom BCD is B, D, C counterclockwise as seen from the outside [1, 3, 2]
   
  Therefore, with the coordinates of B, C, D, G as p1, p2, p3, p4, make surface data \verb | fd | as follows.

\begin{verbatim}
    p1=[2,0,0]; 
    p2=[2,2,0]; 
    p3=[0,2,0]; 
    p4=[2,2,2]; 
    fd=[[p1,p2,p3,p4],[[1,2,4],[2,3,4],[3,1,4],[1,3,2]]];
\end{verbatim}

Using this surface data, the cone is drawn as follows

 \verb|  polyhedron("1",fd,["Color=Green"])|
    
\hspace{30mm}\input{3Dfig/polyhedron02} 

Example : Draw polyhedron using polyhedrons obj polyhedron data by Kobayashi, Suzuki, Mitani.
  Data is a regular polyhedron, semi-regular polyhedron, Johnson's solid,
 
\url{http://mitani.cs.tsukuba.ac.jp/polyhedron/index.html }
 
Specify the path to the folder polyhedrons obj storing this data with \verb| Setdirectory () |, and read it with \verb | Readobj () |. For example, when placed in a work directory (fig folder)
 
\begin{layer}{150}{0}
\putnotese{90}{0}{\input{3Dfig/polyhedron03}}
\end{layer}

\begin{verbatim}
  Setdirectory(Dirwork+"/polyhedrons_obj");
  polydt=Readobj("s06.obj");
  Setdirectory(Dirwork);
  fd=[2*polydt_1,polydt_2];
  polyhedron("1",fd);
\end{verbatim}

Note that \verb| fd = [2 * polydt - 1, polydt - 2] | doubles the vertex coordinates.

If you are drawing an edge, add the following.

\begin{verbatim}
VertexEdgeFace("1",fd);
Nohiddenbyfaces("1","phe3d1","phf3d1");
\end{verbatim}

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{convexhedron}{}
\item[Function] convexhedron(name,list ,magnification,option)
\item[Description] Draw a convex polyhedron with a vertex list and a surface painted. Magnification is the magnification to the size actually drawn for the vertex list. If it is 1 it can be omitted.
\item[Return value] face data

\vspace{\baselineskip}
Example : A convex polyhedron whose bottom is a pentagon
\begin{verbatim}
  th=2*pi/5;
  pd=apply(1..5,[cos(#*th),sin(#*th),0]);
  pd=pd++apply(1..5,[2*cos(#*th),2*sin(#*th),1]);
  pd=append(pd,[0,0,2]);
  println(pd);
  fd=convexhedron("1",pd)
\end{verbatim}
\hspace{20mm}\input{3Dfig/convexhedron}

If you are drawing an edge, use the return value as follows.

\begin{verbatim}
  fd=convexhedron("1",pd);
  VertexEdgeFace("1",fd);
  Nohiddenbyfaces("1","phe3d1","phf3d1");
\end{verbatim}

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{rpolyhedron}{}
\item[Function] rpolyhedron(name, number of face ,radius,option)
\item[Description] Draw a regular polyhedron with a color-painted face.
There are five kinds of regular polyhedrons, and data is incorporated in Spacekc. \hyperlink {rpolydata} {vertex coordinates of regular polyhedron}. Using this, you can draw a regular polyhedron by specifying the number of faces and the radius of the circumscribed sphere.
\item[Return value] face data.

\vspace{\baselineskip}
 Example : Draw a regular dodecahedron painted with yellow face

\verb|  rpolyhedron("1",6,2,["Color=yellow"]);| 

\hspace{20mm}\input{3Dfig/rpolyhedron}

If you are drawing an edge, use the return value as follows.
\begin{verbatim}
fd=rpolyhedron("1",12,2,["Color=yellow"]);
VertexEdgeFace("1",fd);
Nohiddenbyfaces("1","phe3d1","phf3d1");
\end{verbatim}


\vspace{\baselineskip}
Reference : Size of regular polyhedron

In rpolyhedron (), draw with the size inscribed in the sphere of the specified radius. Here, the relationship between the radius and the side length is mentioned. $\phi=\cfrac{1+\sqrt{5}}{2}$ 

    \input{3Dfig/rpolytable} 

Example : Draw a regular hexahedron with a side length of 2
\begin{verbatim}
   rpolyhedron(6,sqrt(3),["dr,2"]); 
\end{verbatim}

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}


\hypertarget{rfrustum}{}
\item[Function] frustum(name,n,r1,r2,h,option)
\item[Description] Put the face of a regular pyramid.
n : Number of corners

r1,r2 : Radius of the circumscribed circle of the upper base and the lower base

h : height

\vspace{\baselineskip}
 ExampleDraw a regular hexagonal pyramid

\verb|  frustum("1",6,1,2,3,["Color=yellow"]);| 

\hspace{20mm}\input{3Dfig/frustum01}

If you are drawing an edge, use the return value as follows.

\begin{verbatim}
  fd=frustum("1",6,1,2,3,["Color=yellow"]);
  VertexEdgeFace("1",fd);
  Nohiddenbyfaces("1","phe3d1","phf3d1");
\end{verbatim}

 Example :

\begin{verbatim}
  fd=frustum("1",6,0,2,3,["Color=yellow"]);
  VertexEdgeFace("1",fd);
  Nohiddenbyfaces("1","phe3d1","phf3d1");
\end{verbatim}

\hspace{20mm}\input{3Dfig/frustum02}

 Example :  It becomes almost a cone when increasing the number of corners. The contour line is drawn as a curved surface with Sfbdparadata.

\begin{layer}{150}{0}
\putnotese{90}{0}{\input{3Dfig/frustum03}}
\end{layer}

\begin{verbatim}
  frustum("1",108,0,2,4,["Color=yellow"]);
  fd=[
   "p",
   "x=r*cos(t)","y=r*sin(t)","z=2*(2-r)",
   "r=[0,2]","t=[0,2*pi]","e"
  ];
  Startsurf(); 
  Sfbdparadata("1",fd);
  ExeccmdC("1");
\end{verbatim}

If it is the same size of the upper base and the lower base, it becomes a cylinder.

%\begin{flushright} \hyperlink{functionlist}{$\Rightarrow$Function] list}\end{flushright}

\hypertarget{hatch3d}{}\item[Function] hatch3d(name,方向,PD,option)
\item[Description] Hatch the closed curve. The closed curve is such as poly3d (), circle3d ();
Unlike KeTCindy 's Hatchdata (), only the closed curve is the target, so the direction is not in the argument. A color designation can be put in option, and if there is a color designation, hatch is applied with that color. You can not hatch multiple areas.
\item[Return value] none

Example : Hatch the circle.
\begin{verbatim}
  pd=circle3d("1",[1,1,1],[1,1,1],2,["dr,2"]); 
  hatch3d("1",pd,["Color=red"]); 
\end{verbatim}

  \input{3Dfig/hatch1}

\newpage
\end{description}

\end{document}