1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
% \iffalse meta-comment
%
% Copyright (C) 2013 by Robert J Lee
%
% This file may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either
% version 1.2 of this license or (at your option) any later
% version. The latest version of this license is in:
%
% http://www.latex-project.org/lppl.txt
%
% and version 1.2 or later is part of all distributions of
% LaTeX version 1999/12/01 or later.
%
% \fi
%
% \iffalse
%<package>\NeedsTeXFormat{LaTeX2e}[1999/12/01]
%<package>\ProvidesPackage{arraysort}
%<package> [2013/09/04 v1.0 sorting arrayjobx arrays]
%
%<*driver>
\documentclass{ltxdoc}
\usepackage[comparestr,comparenum,randompart]{arraysort}
\EnableCrossrefs
\usepackage{indentfirst}
\usepackage{showexpl}
\usepackage{multido}
\newbool{excludelongtest}
\setbool{excludelongtest}{true} % change to false for slow test
\CodelineIndex
\RecordChanges
\begin{document}
\DocInput{arraysort.dtx}
\end{document}
%</driver>
% \fi
%
% \CharacterTable
% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
% Digits \0\1\2\3\4\5\6\7\8\9
% Exclamation \! Double quote \" Hash (number) \#
% Dollar \$ Percent \% Ampersand \&
% Acute accent \' Left paren \( Right paren \)
% Asterisk \* Plus \+ Comma \,
% Minus \- Point \. Solidus \/
% Colon \: Semicolon \; Less than \<
% Equals \= Greater than \> Question mark \?
% Commercial at \@ Left bracket \[ Backslash \\
% Right bracket \] Circumflex \^ Underscore \_
% Grave accent \` Left brace \{ Vertical bar \|
% Right brace \} Tilde \~}
%
% \CheckSum{236}
%
% \changes{v1.0}{2013/09/04}{Initial version}
%
% \GetFileInfo{arraysort.sty}
%
% \DoNotIndex{\let, \edef, \xdef, \relax, \newcommand}
% \DoNotIndex{\csname, \endcsname, \ifcsname}
% \DoNotIndex{\OR, \if, \else, \fi, \equal, \ifthenelse, \iftoggle}
% \DoNotIndex{\arabic, \addtocounter, \value, \setcounter, \stepcounter}
% \DoNotIndex{\g@addto@macro, \string}
%
%
%\def\IsPositive#1{% http://www.tex.ac.uk/cgi-bin/texfaq2html?label=isitanum
% TT\fi
% \ifcat_\ifnum0<0#1 _\else A\fi
%}
%
% \newenvironment{exg}[1]{\pagebreak[3]\begin{center}
% \line(1,0){250}
% \end{center}\nopagebreak~\par\nopagebreak\textit{Example:~~\texttt{#1}}\par\vspace{-1em}}{\begin{center}
% \line(1,0){250}
% \end{center}\delarray{A}\noindent}
%
% \title{The Arraysort Package\thanks{This document corresponds to \textsf{Arraysort}~\fileversion, dated \filedate.}}
% \author{Robert J Lee \\ latex@rjlee.homelinux.org}
%
% \maketitle
%
% \begin{abstract}
%
% The |arraysort| package allows the user to sort an array (defined
% with the |arrayjobx| package), or a portion of such an array,
% without using external files or commands or requiring a second run
% of \LaTeX.
%
% Basic comparators are provided for sorting by ASCII-code or for
% sorting numeric values. Options to tweak performance of the sort are
% also provided, should they be needed.
%
% \end{abstract}
%
% \section*{Introduction}
%
% This package implements an in-place Quick Sort algorithm for
% \LaTeX. Quick-Sort is a recursive and highly configurable algorithm
% for sorting of arrays.
%
%
% \section{Usage}
%
% The |arraysort| package requires the |arrayjobx| package, which
% provides several methods to define an array of values. This docment
% assumes that you are familiar with |arrayjobx|. A number of examples
% are provided to sort a small array named $A$; the package can sort
% much larger arrays than those shown including arrays whose contents
% are stored unexpanded (although they will be expanded when comparing
% them using the provided comparators).
%
% \subsection*{Sorting by Text}
%
% \DescribeMacro{\sortArray}
%
% To sort the first |10| elemnets of $A$, you can simply write:
% |\sortArray{|10|}{|$A$|}|
%
% |\sortArray| takes two mandatory parameters: the first is the
% number of elements to sort, the second is the name of the array.
%
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray with words}\begin{LTXexample}
\newarray{A}
\readarray{A}{The&Quick&Brown&%
Fox&Jumps&Over&the&Lazy&Dog}
\sortArray{9}{A}
\A(1) \A(2) \A(3) \A(4) \A(5)
\A(6) \A(7) \A(8) \A(9)
\end{LTXexample}\end{exg}
% \iffalse
%</example>
% \fi
% Note that the default is to sort by character code order, so the
% lower-case ``the'' is sorted after the words starting with
% upper-case letters. This is a limitation of the default sorting
% method, but other ways of sorting are possible.
%
% \subsection*{Sorting Numbers}
%
% The default sorting method can have surprising results when sorting
% arrays of numbers:
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray with numbers}\begin{LTXexample}
\newarray{A}
\readarray{A}{78&4&85&1&28&6}
\sortArray{6}{A}
\A(1) \A(2) \A(3) \A(4) \A(5) \A(6)
\end{LTXexample}\end{exg}
% \iffalse
%</example>
% \fi
% Here, the numbers are still sorted in dictionary order,
% which was probably not the intent, as the number~28 would usually be
% sorted after the number~6, even though the first digit of~28 is
% smaller than the first digit of~6.
%
% To solve this problem, an alternative comparator can be used:
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray with |arraysortcomparenum|}\begin{LTXexample}
\newarray{A}
\readarray{A}{78&4&85&1&28&6}
\sortArray[arraysortcomparenum]{6}{A}
\A(1) \A(2) \A(3) \A(4) \A(5) \A(6)
\end{LTXexample}\end{exg}
% \iffalse
%</example>
% \fi
% The |arraysortcomparenum| comparator is passed as the first optional
% argument; this option sorts by numerical order in the intuitive
% way --- but it will error if a value in the array is not a number.
%
% This option requires additional package options; see section below.
%
% \subsection*{Sorting part of an array}
%
% A second optional argument is accepted for the start of the range to
% be sorted. So you can easily sort only a segment of an array:
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray with range}\begin{LTXexample}
\newarray{A}
\readarray{A}{P&Y&F&G&%
A&O&E&U&I&D&H&T&N&S&%
Q&J&K&X&B&M&W&V&Z}
\sortArray[arraysortcomparestr][8]{21}{A}
\A(1)\A(2)\A(3)\A(4)\A(5)\A(6)\A(7)%
\textit{\A(8)\A(9)\A(10)\A(11)\A(12)%
\A(13)\A(14)\A(15)\A(16)}\A(17)\A(18)%
\A(19)\A(20)\A(21)\A(22)\A(23)
\end{LTXexample}\end{exg}
% \iffalse
%</example>
% \fi
% The start of the range must be the second optional parameter, so you
% need to specify the comparator as well. The default comparator is
% |arraysortcomparestr| as shown here.
%
% The example shows sorting the italicised region of 8--21 letters,
% originally arranged in the relatively jumbled order of the Dvorak
% keyboard.
%
% \subsection*{Sorting by Custom Order}
%
% While it is useful to sort an array into numbers or alphabetically,
% it is possible to sort an array into any order. To do this, you need
% to write a \textit{comparator}; this is a macro that is passed 2
% values from the array and evaluates which should appear first.
%
% A custom comparotor macro can be passed by appending its name as the
% optional argument is passed at the end of the |\sortarray| macro
% call.
%
% Your comparator macro must set the value of two toggles:
%
% \DescribeMacro{arraysortresult}
% Set |arraysortresult| to true if the first parameter is less than
% the second (\textit{ie} if the parameters are presented in sorted
% order).
%
% \DescribeMacro{arraysortresequal}
% |arraysortresequal| should be set by a comparator if both values are
% equal. It is not necessary to set |arraysortresult| if
% |arraysortresequal| is set to true.
%
% Both toggles can be set using the macros |\toggletrue{|\textit{togglename}|}|
% and |\togglefalse{|\textit{togglename}|}| defined in the |etoolbox|
% package, where \textit{togglename} is the name of the toggle to be
% set or cleared.
%
% The name of the comparator is passed to the sort algorithm as the
% first optional parameter; the leading $\backslash$ should be
% omitted.
%
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray with custom comparator}\begin{LTXexample}
\newcommand{\cmpnumbersfirst}[2]{%
\edef\cmpA{#1}%
\edef\cmpB{#2}%
\if\IsPositive{\cmpA}%
\if\IsPositive{\cmpB}%
\arraysortcomparenum{\cmpA}{\cmpB}%
\else%
\togglefalse{arraysortresequal}%
\toggletrue{arraysortresult}%
\fi%
\else%
\if\IsPositive{\cmpB}%
\togglefalse{arraysortresequal}%
\togglefalse{arraysortresult}%
\else%
\arraysortcomparestr{\cmpA}{\cmpB}%
\fi%
\fi%
}
\newarray{A}
\readarray{A}{apple&2&rabbits&12&-4}
\sortArray[cmpnumbersfirst]{5}{A}
\A(1) \A(2) \A(3) \A(4) \A(5)
\end{LTXexample}\end{exg}
% \iffalse
%</example>
% \fi
% This example uses the following definition of |\IsPositive| from
% the |cite| package\footnote{See
% \texttt{http://www.tex.ac.uk/cgi-bin/texfaq2html?label=isitanum}}
%
% \begin{verbatim}
% \def\IsPositive#1{%
% TT\fi
% \ifcat_\ifnum0<0#1 _\else A\fi
% }
% \end{verbatim}
%
% This custom sort places positive integers first, in numerical order,
% then everything else in default order.
%
% The |\cmpnumbersfirst| macro tests each parameter to see if is a
% positive number. If both parameters are positive integers, then it delegates
% to the |arraysortcomparenum| macro so that integers are sorted in
% sequence. If both parameters are not positive integers then the
% default sort is used. Otherwise, |arraysortresult| is set to true if
% |#1| is a positive integer and |#2| is not, or false if it is the
% other way around; this guarantees that positive numbers are sorted first.
%
% \textsc{tip:} Most comparators will fully expand their arguments
% only once per comparison, to ensure that the sorting order remains
% appropriate. That is the reason for the |\edef| in the above
% example, which expands and copies the parameter into a temporary
% macro. This is useless when passing individual string arguments, as
% in this example, but prevents unstable behaviour when arguments
% could change when reevaluated, such as when a macro contains the
% current time or a pseudorandom value.
%
% \subsection*{Changing the Partitioning Scheme}
%
% The partitioning scheme does not affect the final sorting order
% (unless you write your own that does not use the comparator argument)
% but may affect how long it takes \LaTeX\ to sort your array. In
% general it is recommended to use the default scheme, unless you are
% sorting a very large array and find the
% performance is unacceptable.
%
% To change the partitioning scheme, an optional argument can be added
% to the end of the |\sortArray| macro, thus:
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray with custom
partition}\begin{LTXexample}
\newarray{A}
\readarray{A}{e&d&c&b&a}
\sortArray{5}{A}%
[sortArrayPartitionRand]
\A(1) \A(2) \A(3) \A(4) \A(5)
\end{LTXexample}\end{exg}
% \iffalse
%</example>
% \fi
% Here, the writer of the package knows that $A$ is not randomised
% before it is sorted, so uses the |sortArrayPartitionRand| to
% partition the array at random. This avoids the worst-case
% performance of the sorting algorithm.
%
% The performance of each partitioning method is discussed in detail
% where it is defined; you should also read the section on the
% in-place quick-sort algorithm to understand the purpose of each
% algorithm.
%
% The partition name is just the name of a macro, so you can easily
% write your own. It must take four parameters:
% \begin{enumerate}
% \item The name of a comparator macro, described above
% \item The start index (inclusive) of the array segment to be partitioned
% \item The end index (inclusive) of the array segment to be
% partitioned
% \item The name of the array to be partitioned
% \end{enumerate}
%
% The macro should generate no output as it may be called multiple
% times with different array segments to partition. It should set
% |arraysort@partpos| to the current value of the partition element.
%
% Values that are equal to the partition value may be sorted into
% either segment. A sorting algorithm that retains the relative order
% of equal values is known as a \textit{stable sorting algorithm}; if
% this is required, then the partitioning algorithm must
% retain the relative position of each element in each sub-array,
% not just those which are equal to the pivot. \textbf{The supplied
% partitioning algorithms make no claim to be a stable sort},
% and stable sort semantics of the partitioning algorithm should
% \textbf{not be relied on for future versions}.
%
% In general, it is sufficient to identify the partition element
% within the array and swap it with the first element, then use
% |\sortArrayPartitionFirst|
%
% \textsc{Note}: It is important to ensure that all elements are
% expanded only once during the partition, as it is theoretically
% possible for a macro to expand to different values each time it is
% expanded.
%
% \subsection*{All Package Options}
%
% Package options are passed on the |\usepackage| line near the top of
% your document. A comma-separated list may be supplied, like this:
%
% \verb!\usepackage[comparestr,comparenum,randompart]{arraysort}!
%
% \DescribeMacro{comparestr}
% The |comparestr| option requires the |pdftexcmds| package to be
% installed and to run |pdflatex|. It is currently the default sort
% option, so you must either supply the |comparestr| option or specify
% a comparator explicitly.
%
% \DescribeMacro{comparenum}
% The |comparenum| option defines the |arraysortcomparenum|
% comparator, which allows you to sort arrays comparing numbers by
% numeric value instead of by name.
%
% \DescribeMacro{randompart}
% The |randompart| macro requires the |lcg| package to be
% installed. It defines the |sortArrayPartitionRand| option to
% partition arrays using a pseudorandom sequence.
% This option repeatedly calls |\reinitrand|, which resets the value
% of the pseudorandom sequence as well as the maximum and minimum
% values generated, so you should take care if using the |lcg| package
% outwith this package. At minimum, you should call |\reinitrand|
% yourself after every sort, and possibly within macros if |\rand| is
% used. Be aware that this will output whitespace unless care is taken
% to consume it before it is output. |lcg| will output warnings about
% reusing an existing counter; these can be safely ignored as
% |sortArrayPartitionRand| intentionally reuses the counter to prevent
% exhaustion of counters with large sorts.
%
% \pagebreak
% \section{Method: The In-Place Quick-Sort Algorithm}
%
% Quick-sort is a practical example of a recursive algorithm.
%
% \subsubsection*{Definition of terms:}
%
% \begin{description}
% \item[Partition] A single element from the array.
% \item[Segment] A contiguous group of elements from the array.
% \end{description}
%
% The general approach is to divide the array into two smaller arrays,
% then sort each smaller array in turn.
%
% The inital array segment is the entire array.
%
% The basic steps are:
%
% \begin{enumerate}
% \item Determine $A_P$, the index of the partition element within the
% current array segment. In practice, this must be done in constant
% time~[$O(1)$] or the sort becomes slow.
% \item Partition the array into two array segments, separated by a
% partition, in linear time~[$O(N)$].
% \item Quick-sort the first array segment
% \item Quick-sort the second array segment
% \end{enumerate}
%
% The first step is choosing the partition element, $A_P$. This may be
% any element from the array segment, although the fastest results are
% achieved by selecting the median value. Many algorithms exist to
% perform this ``best guess''.
%
% The next step is partitioning. Other than the partition element,
% every element in the array is iterated over in turn. Any value less
% than the partition value~$P$ is moved to the left of the partition
% (lower index than $A_P$), and any value greater than the partition
% is moved to its right (higher index than $A_P$).
%
% So, if there are $N$ elements in an array~$A$, the original array is
% given by:
% \begin{eqnarray*}
% & A_0 \dots A_n &
% \end{eqnarray*}
%
% After the partitioning stage, the partitioned array is given by:
% \begin{eqnarray*}
% & A_0 \dots A_{(P-1)} , A_P , A_{(P+1)} \dots A_N &
% \end{eqnarray*}
% where $A_P$ is the partition and $P$ is the index of the
% partition.
%
% $A_0 \dots A_{(P-1)}$ defines the first array segment to be
% sorted and $A_{(P+1)} \dots A_N$ defines the second.
%
% Each array segment is considered to be sorted if it contains one
% element or less; otherwise, each are presented to the entire
% quick-sort algorithm to be sorted.
%
% Each iteration through the algorithm divides the array into smaller
% segments, each of which is always sorted relative to the other
% segments. Once the segment size is as small as one element, the
% entire array is sorted.
%
% \section{Possible Future Improvements}
%
% \begin{itemize}
% \item It should be possible to sort macro contents by their
% unexpanded values
% \item It may also be possible to sort macro contents in a
% case-insensitive manner (depending on language). Note that sorting
% mixed-language, mixed-alphabet content in a standard-complient
% manner is not always possible.
% \item Further speed improvemnts are possible; in particular, it is
% often faster to defer to a lower-overhead $O(n^2)$ sorting algorithm
% when the number of array segment elements is smaller than some threshold
% value (quick-sort is inefficient at sorting small arrays, but
% often produces many of them to be sorted).
% \item More sorting and partitining options. I am undecided about
% passing options \textit{versus}\ simply defining multiple macros;
% certainly the chance of a name collision is very small with the
% naming convention used so far.
% \item Support partition values not in the array:
% \end{itemize}
%
% \noindent Some implementations of quicksort allow for a partition value $P$
% that does not correspond to a value in the array, divding the array
% into:
% \begin{eqnarray*}s
% & A_0 \dots\/A_i , A_{(i+1)} \dots\ A_N &
% \end{eqnarray*}
% \noindent where $i$ is arbitrary. This is usually less efficient, as there is
% an additional value to be sorted with each iteration and hence a
% greater number of iterations in the best case.
%
% In some cases, it is not possible to know the best partition value
% within an array segment, or a single partition may not be applicable
% (such as an array containing only two distinct values); however,
% there may be some knowledge of the array's distribution. In the best
% case, a pre-calculated median of the array's contents might already be
% available prior to sorting, which would be the ideal partition value
% for the first iteration but would be unlikely to be a value in the
% array, let alone a value of known position.
%
% This would likely require significant changes to the algorithm.
%
% \ifexcludelongtest\else
% \section{Large-Scale Sorting}
%
%
% \makeatletter
% \iffalse
%<*example>
% \fi
\begin{exg}{$\backslash$sortArray on a large
scale}\begin{LTXexample}
\newarray{A}
\expandarrayelementtrue
\reinitrand[counter=rand,quiet=y]
\newcommand{\asize}{10000}
\multido{\i=1+1}{\asize}{
\rand
\A(\i)={\arabic{rand}}
}
\textbf{Before sort:}
\multido{\i=1+1}{50}{
\A(\i)
}\dots
\sortArray[arraysortcomparenum]{%
\asize}{A}
\line(1,0){100}
\textbf{After sort:}
\multido{\i=1+1}{50}{
\A(\i)
}\dots
\end{LTXexample}
This example uses the |multido| and |lcg| packages\end{exg}
% \iffalse
%</example>
% \fi
% \fi
%
% \section{Implementation}
%\StopEventually{\PrintChanges \pagebreak[4] \PrintIndex}
%
% \begin{macro}{\arraysort@extrapkgs}
% The \LaTeX\ package-option support does not allow conditional
% includes of packages. So, instead, we build up the required
% |\RequiresPackage| statements inside the |\arraysort@extrapkgs|
% macro.
% \begin{macrocode}
\newcommand*{\arraysort@extrapkgs}{}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{comparestr}
% \begin{macrocode}
\DeclareOption{comparestr}{
\g@addto@macro{\arraysort@extrapkgs}{
\RequirePackage{pdftexcmds}% for comparison. TODO: use compare.sty optionally
}
% \end{macrocode}
% \begin{macro}{\arraysortcomparestr}
% Called with two arguments, guaranteed to be re-evaluatable.
% must set arraysortresequal if arguments are considered equal, otherwise
% must set arraysortresult true if |#2| is to be sorted after |#1|, otherwise
% must set both flags false.
%
% Basic ASCII-like comparison
% \begin{macrocode}
\newcommand*{\arraysortcomparestr}[2]{%
\protected@edef\arraysort@left{#1}%
\protected@edef\arraysort@right{#2}%
\arraysort@comparestr%
}
% \end{macrocode}
%
% The following macro performs the comparison. The parameters must (it
% seems) be passed by macro as passing by parameter |#1| and |#2| did
% not cause the expected results, hence the extra macro.
% \begin{macrocode}
\newcommand*{\arraysort@comparestr}{%
\protected@edef\arraysort@compresult{\pdf@strcmp{\arraysort@left}{\arraysort@right}}%
\ifthenelse{\equal{\arraysort@compresult}{0}}{%
\toggletrue{arraysortresequal}%
}{%
\togglefalse{arraysortresequal}%
\ifthenelse{\equal{\arraysort@compresult}{-1}}{%
\toggletrue{arraysortresult}% #2 > #1
}{%
\togglefalse{arraysortresult}% #2 < #1
}%
}%
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \begin{macro}{comparenum}
% \begin{macrocode}
% Numeric comparison, as |\arraysortcomparestr| but used with arrays compairng numbers
\DeclareOption{comparenum}{
% \end{macrocode}
% \begin{macro}{\arraysortcomparenum}
% \begin{macrocode}
\newcommand*{\arraysortcomparenum}[2]{%
\ifthenelse{\equal{#1}{#2}}{%
\toggletrue{arraysortresequal}%
}{%
\togglefalse{arraysortresequal}%
\ifthenelse{#2 > #1}{%
\toggletrue{arraysortresult}%
}{%
\togglefalse{arraysortresult}%
}%
}%
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% All partitioning algorithms should complete in O(1) time; that is,
% they should not iterate over the array, or do anything that takes
% longer the more elements there are.
%
% \begin{macro}{\sortArrayPartitionMed}
%
% Partition the segment consisting of indexes |#2|--|#3| (inclusive)
% of array named |#4|, using comparator |#1|
%
% Use the median of the first, last and middle values. While this has
% extra overhead compared to sortArrayPartitionFirst, it is guaranteed
% to avoid the worst-case performance of that method. If the array is
% randomly shuffled prior to sorting, this usually offers the best
% performance. This is the default method.
%
% Performance depends on the comparison macro.
%
% May not work well if there are many duplicate values.
% \begin{macrocode}
\newcommand*{\sortArrayPartitionMed}[4]{%
\setcounter{arraysort@temp1}{(#2 + #3) / 2}%
\edef\arraysort@midpos{\arabic{arraysort@temp1}}%
\testarray{#4}(#2)\protected@edef\arraysort@left{\temp@macro}%
\testarray{#4}(\arraysort@midpos)\protected@edef\arraysort@mid{\temp@macro}%
\testarray{#4}(#3)\protected@edef\arraysort@right{\temp@macro}%
\csname#1\endcsname{\arraysort@left}{\arraysort@mid}%
\iftoggle{arraysortresequal}{%
% \end{macrocode}
% left $=$ mid
% if any two are the same, there can be no median, so may as well
% leave alone
% \begin{macrocode}
}{%
% \end{macrocode}
% left $\ne$ mid
% \begin{macrocode}
\iftoggle{arraysortresult}{%
% \end{macrocode}
% left $<$ mid
% \begin{macrocode}
\csname#1\endcsname{\arraysort@left}{\arraysort@right}%
\iftoggle{arraysortresequal}{%
% \end{macrocode}
% $(\mbox{left} = \mbox{right}) < \mbox{mid}$
% \begin{macrocode}
}{%
\iftoggle{arraysortresult}{%
% \end{macrocode}
% left $<$ mid, left $<$ right
% \begin{macrocode}
\csname#1\endcsname{\arraysort@mid}{\arraysort@right}%
\iftoggle{arraysortresequal}{%
% \end{macrocode}
% $\mbox{left} < (\mbox{mid} = \mbox{right})$
% \begin{macrocode}
}{%
\iftoggle{arraysortresult}{%
% \end{macrocode}
% $\mbox{left} < \mbox{mid} < \mbox{right}$
% \begin{macrocode}
\arraysort@swap{#4}{#2}{\arraysort@midpos}%
}{%
% \end{macrocode}
% $\mbox{left} < \mbox{right} < \mbox{mid}$
% \begin{macrocode}
\arraysort@swap{#4}{#2}{#3}%
}%
}%
}{%
% \end{macrocode}
% left $<$ mid, left $>$ right
%
% left is already in the middle; leave alone
% \begin{macrocode}
}%
}%
}{%
% \end{macrocode}
% left $>$ mid
% \begin{macrocode}
\csname#1\endcsname{\arraysort@mid}{\arraysort@right}%
\iftoggle{arraysortresequal}{%
% \end{macrocode}
% $\mbox{left} > (\mbox{mid} = \mbox{right})$
% \begin{macrocode}
}{%
\iftoggle{arraysortresult}{%
% \end{macrocode}
% $\mbox{left} > \mbox{right} > \mbox{mid}$
% \begin{macrocode}
\arraysort@swap{#4}{#2}{#3}%
% \end{macrocode}
% swap right \& left, so left is median
% \begin{macrocode}
}{%
% \end{macrocode}
% $\mbox{left} > \mbox{mid} > \mbox{right}$
%
% swap right \& mid, so left is median
% \begin{macrocode}
\arraysort@swap{#4}{#2}{\arraysort@midpos}%
}%
}%
}%
}%
\sortArrayPartitionFirst{#1}{#2}{#3}{#4}%
}
% \end{macrocode}
%
% \begin{macro}{\sortArrayPartitionRand}
%
% Partition the sub-array
% consisting of indexes |#2|--|#3| (inclusive) of array named |#4|,
% using comparator |#1|
%
% Use the lcg package to generate a (pseudo)-random partition
% value. This should perform reasonably well most of the time, and you
% can simply re-run LaTeX if the performance is unacceptable.
%
% Caution: this macro will re-initialise the LCG package.
% \begin{macro}{randompart}
% \begin{macrocode}
\DeclareOption{randompart}{
\g@addto@macro{\arraysort@extrapkgs}{
% \end{macrocode}
% Store for later execution the fact that we will need tho |lcg| package
% for random numbers
% \begin{macrocode}
\RequirePackage[quiet]{lcg}
}
\newcommand*{\sortArrayPartitionRand}[4]{%
% \end{macrocode}
% It is necessary to change the start and end values of the sequence; the only way
% to do this is by reinitialising |lcg|. There are 2 possible
% problems; firstly, reinitrand outputs whitespace; and secondly it
% prints out a warning about a re-used counter. It's actually best to re-use
% the counter, but there's no way to silence the warning.
% \begin{macrocode}
\reinitrand[counter=arraysort@temp1,first=#2,last=#3,quiet=y]%
\rand%
\arraysort@swap{#4}{#2}{\arabic{arraysort@temp1}}%
\sortArrayPartitionFirst{#1}{#2}{#3}{#4}%
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\sortArrayPartitionMid}
%
% Partition the sub-array
% consisting of indexes |#2|--|#3| (inclusive) of array named |#4|,
% using comparator |#1|
%
% This implementation uses the middle value in the array segment. This is
% generally the best option if you don't know anything about the
% array's contents; in particular, it offers reasonable speed when
% attempting to re-sort previously-sorted ararys.
% \begin{macrocode}
\newcommand*{\sortArrayPartitionMid}[4]{%
\setcounter{arraysort@temp1}{(#2 + #3) / 2}%
\arraysort@swap{#4}{#2}{\arabic{arraysort@temp1}}%
\sortArrayPartitionFirst{#1}{#2}{#3}{#4}%
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\sortArrayPartitionFirst}
% Partition the array segment
% consisting of indexes |#2|--|#3| (inclusive) of array named |#4|,
% using comparator |#1|
%
% This implementation uses the first value in the array segment. This is
% fastest in theory, but only if the array is pre-shuffled. This has
% the worst performance when attempting to sort an already-sorted
% array.
% \begin{macrocode}
\newcommand*{\sortArrayPartitionFirst}[4]{%
\setcounter{arraysort@partpos}{#2}%
\setcounter{arraysort@temp1}{#2 + 1}%
\setcounter{arraysort@endpos}{#3 + 1}%
\arraysort@repeats{arraysort@temp1}{\value{arraysort@temp1}}{\value{arraysort@endpos}}{1}{%
\testarray{#4}(\arabic{arraysort@temp1})%
% \end{macrocode}
% if the value $A_{\mbox{temp1}}$ is less than partition $A_P$,
% decrement the partition counter by 1 and swap.
%
% |\let| copies without expanding:
% \begin{macrocode}
\let\arraysort@cur\temp@macro%
\testarray{#4}(\arabic{arraysort@partpos})%
% \end{macrocode}
% Expand the macros only once just in case they would be different
% on subsequent expansion:
% \begin{macrocode}
\protected@edef\arraysort@left{\arraysort@cur}%
\protected@edef\arraysort@right{\temp@macro}%
\csname#1\endcsname{\arraysort@left}{\arraysort@right}% #2 = cur, #3 = partition
\setcounter{arraysort@temp2}{\value{arraysort@partpos} + 1}%
\iftoggle{arraysortresequal}{% #2 = #3
% \end{macrocode}
% Must be moved before pivot
% Swap $A_P$ with $A_{P+1}$ then swap (the new) $A_P$ with
% current ($A_{\mbox{temp2}}=A_{P+1}$)
% \begin{macrocode}
\arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp2}}%
\arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp1}}%
% \end{macrocode}
% Increment partition; otherwise the next non-equal pivot will break
% \begin{macrocode}
\stepcounter{arraysort@partpos}%
}{%
\iftoggle{arraysortresult}{% #3 > #2
\ifthenelse{\equal{\arabic{arraysort@temp2}}{\arabic{arraysort@temp1}}}{%
% \end{macrocode}
% Just swap part with current value; they are adjacent
% \begin{macrocode}
\arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp1}}%
}{%
% \end{macrocode}
% Swap $A_P$ with $A_{P+1}$ then swap (the new) $A_P$ with
% current ($\mbox{temp}_2=A_{p+1}$)
% \begin{macrocode}
\arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp2}}%
\arraysort@swap{#4}{\arabic{arraysort@partpos}}{\arabic{arraysort@temp1}}%
}%
% \end{macrocode}
% Increment partition; one more in left array segment
% \begin{macrocode}
\stepcounter{arraysort@partpos}%
}{%
% \end{macrocode}
% $A_{|arraysort@cur|} > A_P$ and already after it; leave it alone
% \begin{macrocode}
}%
}%
}%
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\ProcessOptions}
% This processes the package include options, defining whichever of
% the above macros the user has asked for, and adding a list of any
% optional packages into |\arraysort@extrapkgs|.
%
% \begin{macrocode}
\ProcessOptions\relax
% \end{macrocode}
%\end{macro}
%
% Package includes for required packages:
%
% For loading the arrays that we will sort
% \begin{macrocode}
\RequirePackage{arrayjobx}
% \end{macrocode}
% For easier syntax on counter operations
% \begin{macrocode}
\RequirePackage{calc}
% \end{macrocode}
% For comparisons
% \begin{macrocode}
\RequirePackage{ifthen}
% \end{macrocode}
% Toggles etc.
% \begin{macrocode}
\RequirePackage{etoolbox}
% \end{macrocode}
% To declare macros with multiple optional arguments (\textit{ie}
% |\sortArray|)
% \begin{macrocode}
\RequirePackage{xargs}
% \end{macrocode}
% For partitioning
% \begin{macrocode}
\RequirePackage{macroswap}
% \end{macrocode}
% now process any conditional includes
% \begin{macrocode}
\arraysort@extrapkgs
% \end{macrocode}
%
% Now we are done including packages, so discard the macro:
% \begin{macrocode}
\let\arraysort@extrapkgs\relax
% \end{macrocode}
%
%
% \DescribeMacro{\sortArray}
% Sort the elements at index |#2|--|#3| of array named |#4|, using
% comparator |#1|.
%
% |#5| is the partitioning algorithm to use.
%
% \textit{eg} |\sortArray[1]{3}{ABC}|
%
% Defined using the |xargs| package
% \begin{macrocode}
\newcommandx*\sortArray[5][1=arraysortcomparestr,2=1,5=sortArrayPartitionMed]{%
\ifcsname#1\endcsname%
\ifthenelse{#2>0}{%
\ifthenelse{#3>#2}{%
\ifcsname total@#4\endcsname%
\arraysort@sort{#1}{#2}{#3}{#4}{#5}%
\else%
\PackageError{arraysort}{Cannot sort unknown array #4}{}%
\fi%
}{%
\PackageError{arraysort}{Cannot sort; to index #3 greater than from index #2}{}%
}%
}{%
\PackageError{arraysort}{Cannot sort; Invalid from index #2}{}%
}%
\else%
\PackageError{arraysort}{Cannot sort by undefined comparator #1}{}%
\fi%
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\arraysort@sort}
% As |\sortArray|, except that it doesn't validate its parameters,
% hence the |@| in the name (signifying an internal macro).
%
% Use with caution as error messages may be misleading.
%
% Sort the elements at index |#2|--|#3| of array named |#4|, using
% comparator |#1|
%
% |#5| is the partitioning algorithm to use.
% \begin{macrocode}
\newcommand*{\arraysort@sort}[5]{%
\csname#5\endcsname{#1}{#2}{#3}{#4}%
% \end{macrocode}
% Keep the position on the local stack!
% \begin{macrocode}
\edef\arraysort@partition{\value{arraysort@partpos}}%
\setcounter{arraysort@temp1}{\arraysort@partition - 1}%
\ifthenelse{#2 = \value{arraysort@temp1} \OR #2 > \value{arraysort@temp1}}{%
}{%
\edef\arraysort@to{\arabic{arraysort@temp1}}%
\arraysort@sort{#1}{#2}{\arraysort@to}{#4}{#5}%
}%
\setcounter{arraysort@temp1}{\arraysort@partition + 1}%
\ifthenelse{\value{arraysort@temp1} = #3 \OR #3 < \value{arraysort@temp1}}{%
}{%
\edef\arraysort@from{\arabic{arraysort@temp1}}%
\arraysort@sort{#1}{\arraysort@from}{#3}{#4}{#5}%
}%
}
% \end{macrocode}
% \end{macro}
%
%
% Counters used for sorting
%
% current position of the partition
% \begin{macrocode}
\newcounter{arraysort@partpos}
% \end{macrocode}
% current position in loop
% \begin{macrocode}
\newcounter{arraysort@temp1}
% \end{macrocode}
% partition position $+1$
% \begin{macrocode}
\newcounter{arraysort@temp2}
% \end{macrocode}
% used for partitioning
% \begin{macrocode}
\newcounter{arraysort@endpos}
% \end{macrocode}
%
% Toggles used by the comparator macro
%
% set by comparison if $|#1| < |#2|$
% \begin{macrocode}
\newtoggle{arraysortresult}
% \end{macrocode}
% set by comparison if $|#1| = |#2|$
% \begin{macrocode}
\newtoggle{arraysortresequal}
% \end{macrocode}
%
% \begin{macro}{\arrayort@repeats}
%
% Don't use |\whiledo| here because it uses up TeX's capacity,
% so rolling own basic repeat loop...
%
% For counter |#1| from |#2| to |#3| step |#4|, do |#5|
% \begin{macrocode}
\newcommand*{\arraysort@repeats}[5]{%
\setcounter{#1}{#2}%
\ifthenelse{\equal{\value{#1}}{#3}}{%
}{%
#5%
\addtocounter{#1}{#4}%
\arraysort@repeats{#1}{\arabic{#1}}{#3}{#4}{#5}%
}%
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\arraysort@swap}
% Globally swap array values |#1(#2)| with |#1(#3)|
%
% \textit{ie} \\ |#1| is the macro name \\
% |#2| and |#3| are the numeic indexes of the array elements to be
% swapped.
% \begin{macrocode}
\newcommand\arraysort@swap[3]{%
% \end{macrocode}
% |arrayjobx| does not provide a way to assign an array element to the
% contents of another element (or macro) without expanding it. This macro simply
% swaps the definitions of the two macros used internally by |arrayjobx|:
% \begin{macrocode}
\gmacroswap{#1#2\string~}{#1#3\string~}%
}
% \end{macrocode}
% \end{macro}
%
% That is all
% \Finale
\endinput
|