1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
|
% \iffalse
%
% The files polynom.dtx and polynom.ins and all files generated
% from these two files are referred to as `this work'.
%
% This work is copyright 2000-2017 Carsten Heinz, Hendri Adriaens.
%
% This work may be distributed and/or modified under the conditions
% of the LaTeX Project Public License, either version 1.3 of this
% license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2003/12/01 or later.
%
% This work has the LPPL maintenance status "maintained".
%
% The Current Maintainer of this work is Hendri Adriaens.
%
%<*driver>
\documentclass{ltxdoc}
\usepackage{hyperref,polynom}
\DisableCrossrefs
\OnlyDescription
\begin{document}
\DocInput{polynom.dtx}
\end{document}
%</driver>
% \fi
%
%^^A
%^^A Some definitions used for documentation.
%^^A
% \let\packagename\textsf
% \newenvironment{describe}{\trivlist\item[]}{\endtrivlist}
% \makeatletter
% \def\fps@figure{htbp}
% \let\c@table\c@figure
% \let\fps@table\fps@figure
% \makeatother
%^^A
%^^A end of these definitions
%^^A
%
%\newbox\abstractbox
%\setbox\abstractbox=\vbox{
% \begin{abstract}
% The \packagename{polynom} package implements macros for manipulating
% polynomials. For example, it can typeset polynomial long divisions and
% synthetic divisions (Horner's scheme), which can be shown step by step.
% The main test case and application is the polynomial ring in one variable
% with rational coefficients.
% \emph{Please note that this is work in progress. Multivariate polynomials
% are \emph{currently} not supported.}
% \end{abstract}}
%
% \title{The \packagename{Polynom} Package}
% \author{Copyright 2000--2017\\ Carsten Heinz \texttt{<\,cheinz@gmx.de\,>}, Hendri Adriaens}
% \date{2017/07/17\enspace Version 0.19\\ \box\abstractbox}
% \maketitle
% \section{Preface}
%
%Because Carsten Heinz could not be reached anymore for a long time,
%this package has been taken over according to the LPPL for
%maintenance by Hendri Adriaens. This package was using and
%redefining internals of the \packagename{keyval} package and hence
%it was incompatible with \packagename{xkeyval}. This problem has
%been solved and the processing of the \texttt{vars} key has been
%simplified. All following text is the original by Carsten Heinz.
%\hfill\emph{Hendri Adriaens, 2006/04/20}\\
%We thank Walter Daems for providing the \texttt D style.\hfill\emph{2016/12/09}\\
%And Hendrik Vogt for providing a bug fix on \texttt{\textbackslash polylongdiv}.\hfill\emph{2017/07/17}
%
% \section{Introduction}
%
% Donald Arseneau has contributed a lot of packages to the \TeX\ community.
% In particular, he posted macros for long division on \texttt{comp.text.tex},
% which were also published in the TUGboat \cite{TUGboat} and eventually as
% \texttt{longdiv.tex} on CTAN. The \packagename{polynom} package allows to do
% the job with polynomials, see figure~\ref{division}. There you can also
% see an example of Horner's scheme for synthetic division.
% \begin{figure}
% \centering
% \begin{minipage}{.42\linewidth}
% \[\polylongdiv{(X-1)(X^2+2X+2)+1}{X-1}\]
% \end{minipage}
% \hfil
% \begin{minipage}{.5\linewidth}
% \[\polyhornerscheme[x=1]{x^3+x^2-1}\]
% \end{minipage}
%
% \begin{minipage}{.42\linewidth}
% \centering |\polylongdiv{X^3+X^2-1}{X-1}|
% \end{minipage}
% \hfil
% \begin{minipage}{.5\linewidth}
% \centering |\polyhornerscheme[x=1]{x^3+x^2-1}|
% \end{minipage}
% \caption{Polynomial long division and synthetic division. The commands both
% are able to generate partial output, see \href{polydemo.pdf}{polydemo.pdf}
% in fullscreen mode.}
% \label{division}
% \end{figure}
%
% \begin{figure}
% \[\polylonggcd {(X-1)(X-1)(X^2+1)} {(X-1)(X+1)(X+1)}\]
% \centering |\polylonggcd {(X-1)(X-1)(X^2+1)} {(X-1)(X+1)(X+1)}|
% \caption{Euclidean algorithm with polynomials; the last nonzero remainder
% is a greatest common divisor. In the case here, it is uniquely
% determined up to a scalar factor, so \(X-1\) and \(\frac49X-\frac49\)
% are both greatest common divisors}\label{euclidean}
% \end{figure}
%
% \begin{figure}
% \centering
% \begin{tabular}{ll}
% |\polyfactorize {(X-1)(X-1)(X^2+1)}|&\polyfactorize{(X-1)(X-1)(X^2+1)}\\ \\
% |\polyfactorize {2X^3+X^2-7X+3}|\\
% \multicolumn{2}{l}{\hspace*{.3\linewidth}\polyfactorize{2X^3+X^2-7X+3}}\\ \\
% \multicolumn{2}{l}{\makeatletter\ttfamily
% \def\temp{\polyfactorize{120X^5-274X^4+225X^3-85X^2+15X-1}}^^A
% \csname strip@prefix\expandafter\endcsname\meaning\temp}\\
% \multicolumn{2}{l}{\hspace*{.3\linewidth}^^A
% \polyfactorize{120X^5-274X^4+225X^3-85X^2+15X-1}}\\
% \end{tabular}
% \caption{Factorizations of some polynomials}\label{factorize}
% \end{figure}
%
% Figures~\ref{euclidean} and \ref{factorize} show applications of polynomial
% division. On the one hand the Euclidean algorithm to determine a greatest
% common divisor of two polynomials, and on the other the factorization of
% a polynomial with at most two nonrational zeros. This should suffice for many
% teaching aids.
%
%
% \section{Hints}
%
% As the examples show, the commands get their data through mandatory and
% optional arguments. Polynomials are entered as you would type them in math
% mode:\footnote{The scanner is based on the scanner of the \texttt{calc}
% package \cite{calc}. Read its documentation and the implementation part here
% if you want to know more.} you may use |+|, |-|, |*|, |\cdot|, |/|, |\frac|,
% |(|, |)|, natural numbers, symbols like |e|, |\pi|, |\chi|, |\lambda|, and
% variables; the power operator |^| with integer exponents can be used on
% symbols, variables, and parenthesized expressions.
% Never use variables in a nominator, denominator or divisor.
%
% The support of symbols is very limited and there is neither support of
% functions like \(\sin(x)\) or \(\exp(x)\), nor of roots or exponents other
% than integers, for example \(\sqrt\pi\) or \(e^x\). For teaching purposes
% this shouldn't be a major drawback. Particularly because there is a simple
% workaround in some cases: the package doesn't look at symbols closely,
% so define a function like \(e^x\) or `composed symbol' like \(\sqrt\pi\)
% as a symbol. Take a look at figure~\ref{epowerx} for an example.
% \begin{figure}
% \newcommand\epowerx{e^x}
% \[\polylongdiv[style=C,div=/]{\epowerx x^3-\epowerx x^2+\epowerx x-\epowerx}{x-1}\]
% \begin{verbatim}
% \newcommand\epowerx{e^x}
% \[\polylongdiv{\epowerx x^3-\epowerx x^2+\epowerx x-\epowerx}{x-1}\]\end{verbatim}
% \caption{Avoiding problems with \(e^x\). Be particularly careful in such
% cases. \emph{You} have to take care of the correct result \emph{since} the
% package does the computation. And by the way, it's always good to keep an
% eye on plausibility of the results}
% \label{epowerx}
% \end{figure}
%
% \medbreak
%
% Optional arguments are used to specify more general options (and also for
% the evaluation point for Horner's scheme). The options are entered in
% key=value fashion using the \packagename{keyval} package \cite{keyval}.
% The available options are listed in the respective sections below.
%
%
% \section{Commands}
%
%
% \subsection[\texttt{\textbackslash polyset}]
% {\normalfont\texttt{\textbackslash polyset}\marg{key=value list}}
%
% Keys and values in optional arguments affect only that particular operation.
% |\polyset| changes the settings for the rest of the current environment or
% group. This could be a single figure or the whole document. Almost every key
% described in this manual is allowed\,---\,just try it and you'll see.
% Table~\ref{keys} lists all keys, which are not connected to a particular
% command. An example is
% \begin{verbatim}
% \polyset{vars=XYZ\xi, % make X, Y, Z, and \xi into variables
% delims={[}{]}}% nongrowing brackets\end{verbatim}
% Note that is essential to use \texttt{vars}-declared variables only.
% The package can't guess your intention and
% |\polylongdiv{\zeta^3+\zeta^2-1}{\zeta-1}|
% would divide a constant by a constant without the information $\zeta$ being
% a variable.
%
% \begin{table}
% \centering
% \begin{tabular}{p{.4\textwidth}p{.5\textwidth}}
% \texttt{vars=}\meta{token string}
% & make each token a variable\\
% &\\
% \texttt{delims=}\marg{left}\marg{right}
% & define delimiters used for printing\\
% & parenthesized expressions\\
% \end{tabular}
% \caption{General keys. Default for \texttt{vars} is \texttt{Xx}. The key
% \texttt{delims} has in fact an optional argument which takes
% invisible versions of the left and right delimiter. The default is
% \texttt{delims=[\{\textbackslash left.\}\{\textbackslash right.\}]\{\textbackslash left(\}\{\textbackslash right)\}}
% }\label{keys}
% \end{table}
%
%
% \subsection[\texttt{\textbackslash polylongdiv}]
% {\normalfont\texttt{\textbackslash polylongdiv}\oarg{key=value list}\meta{polynomial \(a\)}\meta{polynomial \(b\)}}
%
% The command prints the polynomial long division of $a/b$. Applicable keys
% are listed in table~\ref{keys:longdiv}. Of course, \texttt{vars} and
% \texttt{delims} can be used, too.
%
% \begin{table}
% \centering
% \begin{tabular}{p{.4\textwidth}p{.5\textwidth}}
% \texttt{stage=}\meta{number}
% & print long division up to stage \meta{number} (starting with 1)\\
% &\\
% \texttt{style=}\texttt{A$\vert$B$\vert$C$\vert$D}
% & define output scheme for long division, refer \href{polydemo.pdf}{polydemo.pdf}\\
% &\\
% \texttt{div=}\meta{token}
% & define division sign for \texttt{style=C}, default is $\div$\\
% \end{tabular}
% \caption{Keys and values for polynomial long division. \texttt{style=A}
% requires \texttt{stage=}\({}3\times(\#\)quotient's summands\()+1\)
% to be carried out fully. The other styles \texttt{B} and \texttt{C}
% need one more stage if the remainder is nonzero}
% \label{keys:longdiv}
% \end{table}
%
%
% \subsection[\texttt{\textbackslash polyhornerscheme}]
% {\normalfont\texttt{\textbackslash polyhornerscheme}\oarg{key=value list}\meta{polynomial}}
%
% The command prints Horner's scheme for the given polynomial with respect to
% the specified evaluation point. Note that the latter one is entered as a
% key=value pair in the form \meta{variable}\texttt{=}\meta{value}.
% Table~\ref{keys:horner} lists other keys and their respective values.
%
% \begin{table}
% \centering
% \begin{tabular}{p{.4\textwidth}p{.5\textwidth}}
% \meta{variable}\texttt{=}\meta{value}
% & The definition of the evaluation point is \emph{mandatory}!\\
% &\\
% \texttt{stage=}\meta{number}
% & print Horner's scheme up to stage \meta{number} (starting with 1)\\
% &\\
% \texttt{tutor=}\texttt{true$\vert$false}
% &turn on and off tutorial comments\\
% \texttt{tutorlimit=}\meta{number}
% & illustrate the recent \meta{number} steps\\
% \texttt{tutorstyle=}\meta{font selection}
% & define appearance of tutorial comments\\
% &\\
% \texttt{resultstyle=}\meta{font selection}
% & define appearance of the result\\
% \texttt{resultleftrule=}\texttt{true$\vert$false}\newline
% \texttt{resultrightrule=}\texttt{true$\vert$false}\newline
% \texttt{resultbottomrule=}\texttt{true$\vert$false}
% & control rules left to, right to, and at the bottom of the result\\
% &\\
% \texttt{showbase=}\texttt{false$\vert$}\newline\phantom{\texttt{showbase=}}\texttt{top$\vert$middle$\vert$bottom}
% & define whether and in which row the base (the value) is printed\\
% \texttt{showvar=}\texttt{true$\vert$false}
% & print or suppress the variable name (additionally to the base)\\
% \texttt{showbasesep=}\texttt{true$\vert$false}
% & print or suppress the vertical rule\\
% &\\
% \texttt{equalcolwidth=}\texttt{true$\vert$false}
% & use the same width for all columns or use their individual widths\\
% \texttt{arraycolsep=}\meta{dimension}
% & space between columns\\
% \texttt{arrayrowsep=}\meta{dimension}
% & space between rows\\
% &\\
% \texttt{showmiddlerow=}\texttt{true$\vert$false}
% & print or suppress the middle row\\
% \end{tabular}
% \caption{Keys and values for Horner's scheme. Don't use \texttt{showmiddlerow=false}
% with \texttt{tutor=true}.}
% \label{keys:horner}
% \end{table}
%
% \iffalse
% The following key are not listed above:
%
% mul=<math tokens> \cdot
% plusface=left|right right
% plusyoffset=<dimension> 0pt
%
% downarrow=<picture tokens> {\vector(0,-1){2.5}}
% diagarrow=<picture tokens> {\vector(2,1){1.6}}
% downarrowxoffset=<dimension> 0pt
% diagarrowxoffset=<dimension> 0pt
% \fi
%
%
% \subsection[\texttt{\textbackslash polylonggcd}]
% {\normalfont\texttt{\textbackslash polylonggcd}\oarg{key=value list}\meta{polynomial \(a\)}\meta{polynomial \(b\)}}
%
% The command prints equations of the Euclidean algorithm used to determine
% the greatest common divisor of the polynomials \(a\) and \(b\), refer
% figure~\ref{euclidean}.
%
%
% \subsection[\texttt{\textbackslash polyfactorize}]
% {\normalfont\texttt{\textbackslash polyfactorize}\oarg{key=value list}\meta{polynomial}}
%
% The command prints a factorization of the polynomial as long as all except
% two roots are rational, see figure \ref{factorize}.
%
%
% \subsection{Low-level commands}
%
% To tell the whole truth, the commands above don't need the polynomials typed
% in verbatim. The internal representation of polynomials can be stored as
% replacement texts of control sequences and such control sequences can take
% the role of verbatim polynomials. This is also the case for \meta{\(a\)} and
% \meta{\(b\)} in table~\ref{low}, but each \meta{cs$_{\ldots}$} must be a
% control sequence, in which the result is saved.
%
% The command in table~\ref{low} can be used for low level calculations, and in
% particular to store polynomials for later use with the high-level commands.
% For example one could write the following.
% \begin{verbatim}
% \polyadd\polya {(X^2+X+1)(X-1)-\frac\pi2}{0}% trick
% \polymul\polyb {X-1}{1} % another trick
% Let's see how to divide \polyprint\polya{} by \polyprint\polyb.
% \[\polylongdiv\polya\polyb\]\end{verbatim}
%
% \begin{table}
% \centering
% \begin{tabular}{r@{\enspace}ll}
% \meta{cs$_{a+b}$}&$\gets a+b$
% & \cs{polyadd}\meta{cs$_{a+b}$}\meta{\(a\)}\meta{\(b\)}\\
% &&\\
% \meta{cs$_{a-b}$}&$\gets a-b$
% & \cs{polysub}\meta{cs$_{a-b}$}\meta{\(a\)}\meta{\(b\)}\\
% &&\\
% \meta{cs$_{ab}$}&$\gets a\cdot b$
% & \cs{polymul}\meta{cs$_{ab}$}\meta{\(a\)}\meta{\(b\)}\\
% &&\\
% \meta{cs$_{a/b}$}&$\gets \lfloor a/b\rfloor$
% & \cs{polydiv}\meta{cs$_{a/b}$}\meta{\(a\)}\meta{\(b\)}\\
% \cs{polyremainder}&$\gets a\bmod b$
% &\\
% &&\\
% \meta{cs$_{\gcd}$}&$\gets \gcd(a,b)$
% & \cs{polygcd}\meta{cs$_{\gcd}$}\meta{\(a\)}\meta{\(b\)}\\
% &&\\
% \multicolumn{2}{r}{print polynomial $a$}
% & \cs{polyprint}\meta{\(a\)}\\
% \end{tabular}
% \caption{Low-level user commands}\label{low}
% \end{table}
%
%
% \section{Acknowledgments}
%
% I wish to thank
% Ludger Humbert,
% Karl Heinz Marbaise, and
% Elke Niedermair
% for their tests and error reports.
%
%
% \StopEventually{^^A
% \begin{thebibliography}{1}
% \bibitem{TUGboat}
% \textsc{Barbara Beeton} and \textsc{Donald Arseneau}.
%
% \textit{Long division}.
%
% In Jeremy Gibbons' \textit{Hey --- it works!},
% TUGboat 18(2), June 1997, p.~75.
%
% \bibitem{calc}
% \textsc{Kresten Krab Thorup}, \textsc{Frank Jensen}, and \textsc{Chris Rowley}.
%
% \textit{The \texttt{calc} package, Infix notation arithmetic in \LaTeX}, 1998/07/07.
%
% Available from \texttt{CTAN:} \texttt{macros/latex/required/tools}.
%
% \bibitem{keyval}
% \textsc{David Carlisle}.
%
% \textit{The \textsf{keyval} package}, 1999/03/16.
%
% Available from \texttt{CTAN:} \texttt{macros/latex/required/graphics}.
%\end{thebibliography}}
%
%
% \CheckSum{4500}
%
%
% \section{Preliminaries}
%
% Let's start with identification.
% \begin{macrocode}
%<*package>
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{polynom}[2017/07/17 0.19 (CH,HA)]
% \end{macrocode}
% Now follow two frequently used definitions.
%
% \begin{macro}{\pld@AddTo}
% \begin{macro}{\pld@Extend}
% \meta{macro}\marg{contents}
% \begin{describe}
% adds \meta{contents} to the macro respectively does an |\expandafter| on the
% first token of \meta{contents} before doing so.
% \end{describe}
% \begin{macrocode}
\def\pld@AddTo#1#2{\expandafter\def\expandafter#1\expandafter{#1#2}}
\def\pld@Extend#1#2{%
\expandafter\pld@AddTo\expandafter#1\expandafter{#2}}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@ExpandTwo}
% expands the respectively first tokens of |#2| and |#3| and puts all as
% argument after |#1|. Note that |#2| and |#3| need not to be single tokens.
% \begin{macrocode}
\def\pld@ExpandTwo#1#2#3{%
\expandafter\def\expandafter\pld@temp\expandafter{#2}%
\pld@Extend\pld@temp{#3}%
\expandafter#1\pld@temp}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@if}
% is used as a temporary and local switch.
% \begin{macrocode}
\def\pld@true{\let\pld@if\iftrue}
\def\pld@false{\let\pld@if\iffalse}
\pld@false
% \end{macrocode}
% \end{macro}
%
%
% \section{The user interface}
%
% \begin{macro}{\polyset}
% This command just `inserts' the family name |pld| and requires the
% \packagename{keyval} package.
% \begin{macrocode}
\RequirePackage{keyval}[1997/11/10]
\def\polyset{\setkeys{pld}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@IfVar}
% The variables are stored in a comma separated list. Here we look after
% |#1| being an element and execute the second argument \meta{then} or the
% third argument \meta{else}.
% \begin{macrocode}
\def\pld@IfVar#1{%
\def\pld@temp##1,#1,##2##3\relax{%
\ifx\@empty##3\@empty \expandafter\@secondoftwo
\else \expandafter\@firstoftwo \fi}%
\expandafter\pld@temp\pld@variables,#1,\@empty\relax}
% \end{macrocode}
% \end{macro}
% The key iterates down the tokens and expands the list, making a new
% key for every variable.
% \begin{macrocode}
\define@key{pld}{vars}{%
\let\pld@variables\@empty
\@tfor\pld@temp:=#1\do{%
\pld@Extend\pld@variables{\expandafter,\pld@temp}%
\edef\pld@temp{%
\noexpand\define@key{pld}{\pld@temp}%
{\noexpand\pld@GetValue{\pld@temp}{####1}}%
}%
\pld@temp
}%
}
% \end{macrocode}
% \begin{macro}{\pld@GetValue}
% Helper macro to retrieve the value of a variable.
% \begin{macrocode}
\def\pld@GetValue#1#2{%
\pld@GetPoly{\pld@polya}{}{#2}%
\ifx\pld@polya\@empty\def\pld@polya{\pld@R 01}\fi
\expandafter\let\csname pld@value@#1\endcsname\pld@polya
}
% \end{macrocode}
% \begin{macrocode}
\polyset{vars=Xx}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@iftopresult}
% determines the printing style for long divisions. The key checks for the
% macro definition |\pld@style|\meta{name}, \ldots
% \begin{macrocode}
\define@key{pld}{style}
{\@ifundefined{pld@style#1}%
{\PackageError{polynom}{Unknown style `#1'}%
{Arguments can be `A' or `B' or `C' or `D'.}}%
{\let\pld@style=#1%
\@nameuse{pld@style#1}}}
% \end{macrocode}
% which are defined here.
% \begin{macrocode}
\def\pld@styleA{\let\pld@iftopresult\iftrue}
\def\pld@styleB{\let\pld@iftopresult\iffalse}
\let\pld@styleC\pld@styleB
\let\pld@styleD\pld@styleB
% \end{macrocode}
% \begin{macrocode}
\polyset{style=A}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@leftdelim}
% \begin{macro}{\pld@rightdelim}
% \begin{macro}{\pld@leftxdelim}
% \begin{macro}{\pld@rightxdelim}
% We make left and right delimiters definable.
% \begin{macrocode}
\define@key{pld}{delims}
{\@ifnextchar[\pld@delims
{\pld@delims[{}{}]}#1{}{}}
\def\pld@delims[#1#2]#3#4{%
\def\pld@leftxdelim{#1}\def\pld@rightxdelim{#2}%
\def\pld@leftdelim{#3}\def\pld@rightdelim{#4}}
\polyset{delims=[{\left.}{\right.}]{\left(}{\right)}}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@div}
% Moreover one can customize the division sign for the C style.
% \begin{macrocode}
\define@key{pld}{div}{\def\pld@div{#1}}
\polyset{div=\div}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@stage}
% \begin{macro}{\pld@currstage}
% Ensure a positive value.
% \begin{macrocode}
\define@key{pld}{stage}{%
\@tempcnta#1\relax \ifnum\@tempcnta<\@ne \@tempcnta\@ne \fi
\edef\pld@stage{\the\@tempcnta}}
% \end{macrocode}
% \begin{macrocode}
\newcount\pld@currstage
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% The following definitions all have the same scheme: get the polynomial(s),
% do the operation, and assign or print the result. And they all use macros
% which are defined in later sections.
%
% \begin{macro}{\polymul}
% Just the things stated.
% \begin{macrocode}
\newcommand*\polymul[1]{%
\pld@GetPoly{\pld@polya\pld@polyb}%
{\pld@MultiplyPoly#1\pld@polya\pld@polyb
\ignorespaces}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polydiv}
% Ditto.
% \begin{macrocode}
\newcommand*\polydiv[1]{%
\begingroup
\let\pld@stage\maxdimen
\pld@GetPoly{\pld@polya\pld@polyb}%
{\pld@DividePoly\pld@polya\pld@polyb
\let#1\pld@quotient
\let\polyremainder\pld@remainder
\pld@RestoreAftergroup#1\polyremainder\relax
\endgroup\ignorespaces}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polylongdiv}
% Ditto. We use an if to use the fix by Hendrik Vogt only inside this macro.
% \begin{macrocode}
\newif\ifpld@InsidePolylongdiv
\newcommand*\polylongdiv[1][]{%
\begingroup\pld@InsidePolylongdivtrue
\let\pld@stage\maxdimen \polyset{#1}%
\pld@GetPoly{\pld@polya\pld@polyb}%
{\pld@LongDividePoly\pld@polya\pld@polyb
\pld@PrintLongDiv
\endgroup \ignorespaces}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polylonggcd}
% Ditto.
% \begin{macrocode}
\newcommand*\polylonggcd[1][]{%
\begingroup
\let\pld@stage\maxdimen \polyset{#1}%
\pld@GetPoly{\pld@polya\pld@polyb}%
{\pld@LongEuclideanPoly\pld@polya\pld@polyb
\pld@PrintLongEuclidean
\endgroup \ignorespaces}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polygcd}
% Ditto.
% \begin{macrocode}
\newcommand*\polygcd[1]{%
\begingroup
\let\pld@stage\maxdimen
\pld@GetPoly{\pld@polya\pld@polyb}%
{\pld@LongEuclideanPoly\pld@polya\pld@polyb
\global\let\@gtempa\pld@vb
\endgroup \let#1\@gtempa \ignorespaces}}
% \end{macrocode}
% A bug report by Elke Niedermair ^^A {e.a.n@gmx.de}{2002/10/29}{undefined control sequence \pld@stage}
% led to the initialization of |\pld@stage| -- and the surrounding
%|\begingroup| and |\endgroup|.
% \end{macro}
%
% \begin{macro}{\polyfactorize}
% Ditto.
% \begin{macrocode}
\newcommand*\polyfactorize{%
\pld@GetPoly\pld@current
{\pld@Factorize\pld@current \ensuremath{\pld@allines}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polyprint}
% Ditto.
% \begin{macrocode}
\newcommand*\polyprint{%
\pld@GetPoly{\pld@polya}%
{\ensuremath{\pld@PrintPoly\pld@polya}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polyadd}
% Get the polynomials, add them via appending the representation, and
% normalize the result via simplification.
% \begin{macrocode}
\newcommand*\polyadd[1]{%
\pld@GetPoly{\pld@polya\pld@polyb}%
{\let#1\pld@polya \pld@ExtendPoly#1\pld@polyb
\pld@Simplify#1%
\ignorespaces}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\polysub}
% Ditto.
% \begin{macrocode}
\newcommand*\polysub[1]{%
\pld@GetPoly{\pld@polya\pld@polyb}%
{\def\pld@tempoly{\pld@R{-1}1}%
\pld@MultiplyPoly\pld@polyb\pld@polyb\pld@tempoly
\let#1\pld@polya \pld@ExtendPoly#1\pld@polyb
\pld@Simplify#1%
\ignorespaces}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@RestoreAftergroup}
% We just iterate down the control sequences, add |\def#1{|\meta{contents of
% \texttt{\#1}}|}| to |\@gtempa|, and execute it \cs{aftergroup}.
% \begin{macrocode}
\def\pld@RestoreAftergroup{%
\global\let\@gtempa\@empty
\pld@RestoreAfter@}
\def\pld@RestoreAfter@#1{%
\ifx\relax#1%
\aftergroup\@gtempa
\else
\global\pld@Extend\@gtempa{\expandafter\def\expandafter#1%
\expandafter{#1}}%
\expandafter\pld@RestoreAfter@
\fi}
% \end{macrocode}
% \end{macro}
%
%
% \section{Internal data format}\label{sInternalDataFormat}
%
% A polynomial is a finite sum $\meta{$\mathrm{monomial}_1$}+\ldots+
% \meta{$\mathrm{monomial}_n$}$ of monomials. In the internal data format, the
% monomials will be sorted by degree---in the multivariate case not by the
% total degree but by the degree of the first variable, then by the degree of
% the second variable, and so on.
%
% Each monomial is a product of \emph{rationals}, general \emph{fractions},
% \emph{symbolic factors}, and \emph{variables}. The factors are represented
% in the following format.
% \begin{enumerate}
% \item |\pld@R|\marg{integer nominator}\marg{integer denominator} for rationals,
% \item |\pld@F|\marg{nominator}\marg{denominator} for general fractions,
% \item |\pld@S|\marg{symbol}\marg{exponent} for symbolic factors, and
% \item |\pld@V|\marg{symbol}\marg{exponent} for variables.
% \end{enumerate}
% As a special case \meta{nominator} and/or \meta{denominator} may be empty,
% which stands for a factor $1={}$|\pld@R{1}{1}|.
%
% \begin{table}[tp]
% \begin{tabular}{cl}
% \emph{mathematians write}&\multicolumn{1}{c}{\emph{internal representation}}\\[1ex]
% $X^2-1$ & |\pld@V{X}{2}+\pld@R{-1}{1}|\\[1ex]
% $\frac1e X$ & |\pld@F{\pld@R{1}{1}}{\pld@S{e}{1}}\pld@V{X}{1}|\\
% & |\pld@S{e}{-1}\pld@V{X}{1}|\\[1ex]
% $\frac1{10}$ & |\pld@F{\pld@R{1}{1}}{\pld@R{10}{1}}|\\
% & |\pld@R{1}{10}|
% \end{tabular}
% \caption{Mathematical notation versus internal representation}\label{mvi}
% \end{table}
% Table \ref{mvi} shows examples of the internal data format. As you can see,
% sometimes there are various ways to represent the same polynomial. The
% exact internal data depends on how you enter the factors and which state has
% been reached in the division algorithm, for example.
%
% And now some definitions which work on representations of polynomials, first
% macros to `look at' polynomials and then macros to build them.
%
% \begin{macro}{\pld@SplitMonom}
% \meta{|\#1\#2| submacro}\marg{monomial representation}
% \begin{describe}
% calls the given macro with the `nonvariable' part as first and the `variable'
% part as second argument. Each of them can be empty. Note that this definition
% makes an assumption on the order of the factors in the representation, namely
% that the variable part comes at the end.
% \end{describe}
% \begin{macrocode}
\def\pld@SplitMonom#1#2{%
\pld@SplitMonom@#2\pld@V\relax {\pld@SplitMonom@V#1#2\relax}%
{#1{#2}{}}}
\def\pld@SplitMonom@#1\pld@V#2\relax{%
\ifx\@empty#2\@empty \expandafter\@secondoftwo
\else \expandafter\@firstoftwo \fi}
\def\pld@SplitMonom@V#1#2\pld@V#3\relax{#1{#2}{\pld@V#3}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@SplitMonomS}
% \meta{|\#1\#2| submacro}\marg{`monomial representation'}
% \begin{describe}
% does the same but splits at |\pld@S| to separate numerals and symbols.
% \end{describe}
% \begin{macrocode}
\def\pld@SplitMonomS#1#2{%
\pld@SplitMonomS@#2\pld@S\relax {\pld@SplitMonomS@S#1#2\relax}%
{#1{#2}{}}}
\def\pld@SplitMonomS@#1\pld@S#2\relax{%
\ifx\@empty#2\@empty \expandafter\@secondoftwo
\else \expandafter\@firstoftwo \fi}
\def\pld@SplitMonomS@S#1#2\pld@S#3\relax{#1{#2}{\pld@S#3}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@IfSum}
% \marg{polynomial representation}\marg{then}\marg{else}
% \begin{describe}
% executes \meta{then} if and only if the polynomial is a sum (of more than
% one monomial).
% \end{describe}
% \begin{macrocode}
\def\pld@IfSum#1{\pld@IfSum@#1+\@empty+\relax+}
\def\pld@IfSum@#1+#2+\relax+{%
\ifx\@empty#2\@empty \expandafter\@secondoftwo
\else \expandafter\@firstoftwo \fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@DefNegative}
% \meta{macro}\marg{monomial representation}
% \begin{describe}
% negates the monomial and puts it into the macro.
% \end{describe}
% \begin{macrocode}
\def\pld@DefNegative#1#2{\pld@DefNegative@#1#2\@empty}
\def\pld@DefNegative@#1#2#3#4#5\@empty{%
\ifx #2\pld@R\def#1{\pld@R{-#3}{#4}#5}%
\else \def#1{\pld@R{-1}1#2{#3}{#4}#5}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@DefInverse}
% \meta{inverse macro}\marg{monomial representation}
% \begin{describe}
% puts a representation of the monomials' reciprocal into the macro.
% \end{describe}
% \begin{macrocode}
\def\pld@DefInverse#1#2{%
\let#1\@empty
\pld@DefInverse@#1#2\relax\@empty\@empty}
% \end{macrocode}
% Here we just interchange nominator and denominator or negate the exponent.
% \begin{macrocode}
\def\pld@DefInverse@#1#2#3#4{%
\ifx\relax#2\relax \expandafter\@gobbletwo \else
\ifx #2\pld@R \pld@AddTo#1{\pld@R{#4}{#3}}\else
\ifx #2\pld@F \pld@AddTo#1{\pld@F{#4}{#3}}\else
\ifx #2\pld@S \pld@AddTo#1{\pld@S{#3}{-#4}}\else
\ifx #2\pld@V \pld@AddTo#1{\pld@V{#3}{-#4}}\else
\pld@DIError
\fi \fi \fi \fi
\fi
\pld@DefInverse@#1}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AddToPoly}
% \begin{macro}{\pld@ExtendPoly}
% \meta{polynomial}\marg{monomial}
% \begin{describe}
% adds \meta{monomial} as a new summand to \meta{polynomial} or does an
% |\expandafter| on the first token before doing so.
% \end{describe}
% \begin{macrocode}
\def\pld@AddToPoly#1#2{%
\ifx #1\@empty \def#1{#2}\else
\pld@AddTo#1{+#2}\fi}
\def\pld@ExtendPoly#1#2{%
\ifx #1\@empty \pld@Extend#1{#2}\else
\ifx #2\@empty
\else \pld@Extend#1{\expandafter+#2}\fi \fi}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@R}
% \begin{macro}{\pld@F}
% \begin{macro}{\pld@S}
% \begin{macro}{\pld@V}
% These macros just contain distinct single characters. We will change the
% definitions locally when we output a polynomial, for example.
% \begin{macrocode}
\def\pld@R{r}
\def\pld@F{f}
\def\pld@S{s}
\def\pld@V{v}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%
% \section{Scanning input}
%
% \begin{macro}{\pld@GetPoly}
% |{|\meta{macro$_1$}\ldots\meta{macro$_k$}|}| \marg{do after} \marg{polynomial$_1$}\ldots\marg{polynomial$_k$}
% \begin{describe}
% This definition parses all user supplied polynomials. For $i=1,\ldots,k$,
% it assigns the internal representation of \meta{polynomial$_i$} to
% \meta{macro$_i$} and executes \meta{do after}wards. `\marg{polynomial$_i$}'
% may be a stored polynomial---that means a control sequence---in which case
% the argument braces \emph{must} be omitted.
% \end{describe}
% First we initialize data and check whether the user provides an explicit
% polynomial.
% \begin{macrocode}
\def\pld@GetPoly#1#2{%
\def\pld@pool{#1}\def\pld@aftermacro{#2}%
\pld@GetPoly@}
\def\pld@GetPoly@{%
\@ifnextchar\bgroup \pld@GetPolyArg\pld@GetPolyLet}
% \end{macrocode}
% Such a polynomial is scanned and then assigned to a macro from the pool.
% \begin{macrocode}
\def\pld@GetPolyArg#1{%
\pld@Scan{#1}%
\pld@GetPolyLet\pld@tempoly}
% \end{macrocode}
% Here we get one macro from the pool, assign the polynomial, and continue if
% the pool isn't empty.
% \begin{macrocode}
\def\pld@GetPolyLet{\expandafter\pld@GetPolyLet@\pld@pool\relax}
\def\pld@GetPolyLet@#1#2\relax#3{%
\let#1#3\def\pld@pool{#2}%
\pld@Simplify#1%
\ifx\pld@pool\@empty \expandafter\pld@aftermacro
\else \expandafter\pld@GetPoly@ \fi}
% \end{macrocode}
% \end{macro}
%
% Now we actually scan the input. Section \emph{4 The evaluation scheme} of
% the \texttt{calc} package \cite{calc} explains how this is done in general.
% Together with the implementation part of the that package, it's an excellent
% introduction---if you are familiar with \TeX. However, some things are
% different:
% \begin{itemize}
% \item We additionally detect |\frac|, |\cdot|, symbols, and variables.
% \item To write $XY$ instead of $X\cdot Y$ or $X*Y$, we provide an implicit
% multiplication.
% \item |\pld@ScanIt| does what |\calc@pre@scan| and |\calc@post@scan| do.
% \item In terms of the \texttt{calc} package, we clear the local `register B'
% |\pld@tempoly| after each |\begingroup| (for providing a faster
% multiplication, see below) and we assign the value of that register
% to the global `register A' |\@gtempa| before each |\endgroup|.
% \item Multiplication with a single factor (symbol, variable, fraction,
% number) makes group level changes only if the current term is a sum.
% Otherwise it just adds the factor to |\pld@tempoly|. This saves many
% multiplications of polynomials.
% \end{itemize}
% We begin with basic definitions.
%
% \begin{macro}{\pld@ScanBegingroup}
% \begin{macro}{\pld@ScanEndgruop}
% Just what was stated above.
% \begin{macrocode}
\def\pld@ScanBegingroup{\begingroup \let\pld@tempoly\@empty}
\def\pld@ScanEndgroup{\pld@ScanSetA \endgroup}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@ScanSetA}
% \begin{macro}{\pld@ScanSetB}
% In the \texttt{calc} package the second routine is called |\scan@initB| (but
% with registers instead of macros, of course)
% \begin{macrocode}
\def\pld@ScanSetA{\global\let\@gtempa\pld@tempoly}
\def\pld@ScanSetB{\let\pld@tempoly\@gtempa}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@Scan}
% corresponds to |\calc@assign@generic|.
% \begin{macrocode}
\def\pld@Scan#1{%
\let\pld@tempoly\@empty
\pld@ScanOpen(#1\relax
\pld@ScanEndgroup \pld@ScanEndgroup}
% \end{macrocode}
% The brake |\relax| terminates the main scanning loop.
% \begin{macrocode}
\def\pld@ScanIt#1{%
\ifx \relax#1\let\pld@next\@gobble \else
% \end{macrocode}
% The tokens |+|, |-|, |*|, |\cdot|, |/|, and |)| let us make the according
% translations.
% \begin{macrocode}
\ifx +#1\let\pld@next\pld@ScanAdd\else
\ifx -#1\let\pld@next\pld@ScanSubtract\else
\ifx *#1\let\pld@next\pld@ScanMultiply\else
\ifx \cdot#1\let\pld@next\pld@ScanMultiply\else
\ifx /#1\let\pld@next\pld@ScanDivide\else
\ifx )#1\let\pld@next\pld@ScanClose\else
\ifx ^#1\let\pld@next\pld@ScanPower\else
% \end{macrocode}
% Other tokens are `preceeded' by an implicit multiplication, as you will see
% below.
% \begin{macrocode}
\ifx \frac#1\let\pld@next\pld@ScanFrac\else
\ifx (#1\let\pld@next\pld@ScanOpen\else
% \end{macrocode}
% Now we check for a digit and a variable, respectively. If none of them is
% given, we treat the argument as a symbol.
% \begin{macrocode}
\pld@IfNumber{#1}%
{\let\pld@next\pld@ScanNumeric}%
{\pld@IfVar{#1}{\let\pld@next\pld@ScanVar}%
{\let\pld@next\pld@ScanSymbol}}%
\fi \fi
\fi \fi \fi \fi \fi \fi \fi \fi
\pld@next #1}
% \end{macrocode}
% For speedy scanning we could alternatively define
% \begin{verbatim}
% \def\pld@ScanIt#1{%
% \expandafter\let\expandafter\pld@next\csname
% pld@Scan@\string#1\endcsname
% \ifx\relax\pld@next
% \pld@IfVar{#1}{\let\pld@next\pld@ScanVar}%
% {\let\pld@next\pld@ScanSymbol}%
% \fi
% \pld@next #1}\end{verbatim}
% and make appropriate definitions |\pld@Scan@\relax| (one single control
% sequence), |\pld@Scan@|$\langle$\texttt{+$\vert$-$\vert$*$\vert$\bslash
% cdot$\vert$/$\vert$)$\vert$\textasciicircum$\vert$\bslash frac$\vert$($\vert
% $0$\vert\ldots\vert$9}$\rangle$ instead of |\pld@ScanAdd| and all the other
% definitions below.
% \end{macro}
%
% \begin{macro}{\pld@IfNumber}
% execute the first or second argument depending on whether |#1| is found in
% |0123456789|.
% \begin{macrocode}
\def\pld@IfNumber#1{%
\def\pld@temp##1#1##2##3\relax{%
\ifx\@empty##2\@empty \expandafter\@secondoftwo
\else \expandafter\@firstoftwo \fi}%
\pld@temp 0123456789#1\@empty\relax}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@ScanOpen}
% \begin{macro}{\pld@ScanClose}
% correspond to |\calc@open| and |\calc@close|. A left parentheses implicitly
% inserts a multiplication in many (or even most) cases since the parenthesized
% expression must be viewed as a potential sum.
% The simple |\pld@ScanImplicitMultiply| in version 0.11 didn't insert a
% multiplication when scanning |2(X+1)|, for example.
% \begin{macrocode}
\def\pld@ScanOpen({%
\ifx\@empty\pld@tempoly\else
\pld@ScanMultiplyBase\pld@ScanBbyA
\fi
\pld@ScanBegingroup \aftergroup\pld@ScanSetB
\pld@ScanBegingroup \aftergroup\pld@ScanSetB
\pld@ScanIt}
% \end{macrocode}
% \begin{macrocode}
\def\pld@ScanClose){%
\pld@ScanEndgroup \pld@ScanEndgroup \pld@ScanSetA
\pld@ScanIt}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@ScanAdd}
% \begin{macro}{\pld@ScanSubtract}
% correspond to |\calc@add| and |\calc@subtract|.
% \begin{macrocode}
\def\pld@ScanAdd+{\pld@ScanAddBase\pld@ScanAtoB}
\def\pld@ScanSubtract-{\pld@ScanAddBase\pld@ScanAfromB}
\def\pld@ScanAddBase#1{%
\pld@ScanEndgroup \pld@ScanEndgroup
\pld@ScanBegingroup \aftergroup#1%
\pld@ScanBegingroup \aftergroup\pld@ScanSetB
\pld@ScanIt}
% \end{macrocode}
% For a subtraction we just add a factor |\pld@R{-1}{1}|.
% \begin{macrocode}
\def\pld@ScanAtoB{\pld@ExtendPoly\pld@tempoly\@gtempa}
\def\pld@ScanAfromB{\pld@ExtendPoly\pld@tempoly{\@gtempa\pld@R{-1}1}}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@ScanMultiply}
% \begin{macro}{\pld@ScanDivide}
% instead of |\calc@multiply| and |\calc@divide|.
% \begin{macrocode}
\def\pld@ScanMultiply#1{\pld@ScanMultiplyBase\pld@ScanBbyA \pld@ScanIt}
\def\pld@ScanDivide/{\pld@ScanMultiplyBase\pld@ScanDivBbyA \pld@ScanIt}
\def\pld@ScanMultiplyBase{%
\pld@ScanEndgroup \pld@ScanBegingroup \aftergroup}
% \end{macrocode}
% Division is here adding a fraction, thus this is limited to numbers and
% symbols. No variables should appear in the expression after |/|.
% \begin{macrocode}
\def\pld@ScanBbyA{\pld@MultiplyPoly\pld@tempoly\pld@tempoly\@gtempa}
\def\pld@ScanDivBbyA{%
\def\pld@temp{\pld@F{}}%
\pld@Extend\pld@temp{\expandafter{\@gtempa}}%
\pld@Extend\pld@tempoly\pld@temp}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@ScanPower}
% We calculate the |#1|-th power of |\pld@tempoly| by successive
% multiplication. Note that this code---as most code of this package---is not
% optimized for speed.
% \begin{macrocode}
\def\pld@ScanPower^#1{%
\let\pld@polya\pld@tempoly
\@multicnt#1\relax
\loop \ifnum\@multicnt>\@ne
\advance\@multicnt\m@ne
\pld@MultiplyPoly\pld@tempoly\pld@tempoly\pld@polya
\repeat
\pld@ScanIt}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@ScanImplicitMultiply}
% inserts a multiplication if and only if the local register B is a sum.
% \begin{macrocode}
\def\pld@ScanImplicitMultiply{%
\expandafter\pld@IfSum\expandafter{\pld@tempoly}%
{\pld@ScanMultiplyBase\pld@ScanBbyA}%
{}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@ScanNumeric}
% We assign the integer to a count register and issue an error if it's
% fractional.
% \begin{macrocode}
\def\pld@ScanNumeric{%
\pld@ScanImplicitMultiply
\let\pld@temp\frac \let\frac\relax
\afterassignment\pld@ScanNumeric@ \@tempcnta}
\def\pld@ScanNumeric@#1{%
\let\frac\pld@temp
\ifx #1.%
\PackageError{polynom}{noninteger constants not supported}%
{Constants must be integers in TeX's word range.\MessageBreak
The fractional part will be lost.}%
\def\pld@next##1{\afterassignment\pld@ScanIt\@tempcnta}%
\else
\let\pld@next\pld@ScanIt
\fi
% \end{macrocode}
% We add the integer to the polynomial and continue the scan.
% \begin{macrocode}
\pld@Extend\pld@tempoly
{\expandafter\pld@R\expandafter{\the\@tempcnta}1}%
\pld@next #1}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@ScanVar}
% \begin{macro}{\pld@ScanSymbol}
% are defined in terms of a submacro.
% \begin{macrocode}
\def\pld@ScanVar{\pld@ScanImplicitMultiply \pld@ScanVS\pld@V}
\def\pld@ScanSymbol{\pld@ScanImplicitMultiply \pld@ScanVS\pld@S}
% \end{macrocode}
% The submacro checks all super- and subscript variations and adds
% the data to the polynomial. The suffixes |u| and |l| stand for
% upper and lower.
% \begin{macrocode}
\def\pld@ScanVS#1#2{%
\@ifnextchar^{\pld@ScanVS@u#1{#2}}%
{\@ifnextchar_{\pld@ScanVar@l#1{#2}}%
{\pld@AddTo\pld@tempoly{#1{#2}1}%
\pld@ScanIt}}}
% \end{macrocode}
% \begin{macrocode}
\def\pld@ScanVS@u#1#2^#3{%
\@ifnextchar_{\pld@ScanVS@ul#1{#2}{#3}}%
{\pld@AddTo\pld@tempoly{#1{#2}{#3}}\pld@ScanIt}}
\def\pld@ScanVS@l#1#2_#3{%
\@ifnextchar^{\pld@ScanVS@lu#1{#2}{#3}}%
{\pld@AddTo\pld@tempoly{#1{#2_{#3}}1}\pld@ScanIt}}
% \end{macrocode}
% \begin{macrocode}
\def\pld@ScanVS@ul#1#2#3_#4{%
\pld@AddTo\pld@tempoly{#1{#2_{#4}}{#3}}\pld@ScanIt}
\def\pld@ScanVS@lu#1#2#3^#4{%
\pld@AddTo\pld@tempoly{#1{#2_{#3}}{#4}}\pld@ScanIt}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@ScanFrac}
% A fraction scans nominator and denominator seperately and add them to the
% current |\pld@tempoly|.
% \begin{macrocode}
\def\pld@ScanFrac#1#2#3{%
\pld@ScanImplicitMultiply
\begingroup
\pld@Scan{#2}\pld@AddTo\pld@tempoly\relax
\global\let\@gtempa\pld@tempoly
\endgroup
\pld@Extend\pld@tempoly{\expandafter\pld@F\expandafter{\@gtempa}}%
% \end{macrocode}
% \begin{macrocode}
\begingroup
\pld@Scan{#3}\pld@AddTo\pld@tempoly\relax
\global\let\@gtempa\pld@tempoly
\endgroup
\pld@Extend\pld@tempoly{\expandafter{\@gtempa}}%
% \end{macrocode}
% \begin{macrocode}
\pld@ScanIt}
% \end{macrocode}
% \end{macro}
%
%
% \section{Basic printing}
%
% \begin{macro}{\pld@PrintPoly}
% \meta{polynomial macro}
% \begin{describe}
% prints the polynomial represented by the macro contents. An empty macro
% stands for `0'.
% \end{describe}
% The implementation follows that description and uses |\pld@PrintMonoms|.
% \begin{macrocode}
\def\pld@PrintPolyArg#1{%
\def\pld@temp{#1}\pld@PrintPoly\pld@temp}
\def\pld@PrintPoly#1{%
\ifx\@empty#1\@empty 0\else
\pld@firsttrue \expandafter\pld@PrintMonoms#1+\relax+%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintPolyWithDelims}
% \meta{polynomial macro}
% \begin{describe}
% prints the polynomial represented by the macro contents. The polynomial is
% enclosed in the user defined delimiters except when the polynomial is a
% single summand. Then just that summand is printed.
% \end{describe}
% According to the result of |\pld@IfSum| we insert the delimiters.
% \begin{macrocode}
\def\pld@PrintPolyWithDelimsArg#1{%
\def\pld@temp{#1}\pld@PrintPolyWithDelims\pld@temp}
\def\pld@PrintPolyWithDelims#1{%
\ifx\@empty#1\@empty 0\else
\pld@firsttrue
\expandafter\pld@IfSum\expandafter{#1}\pld@true\pld@false
\pld@if \pld@leftdelim
\expandafter\pld@PrintMonoms#1+\relax+%
\pld@rightdelim
\else \expandafter\pld@PrintMonoms#1+\relax+\fi
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintInit}
% is called before we print a factor of a monomial. First we have to `reset'
% |\pld@R| to its primary definition. Its special definition below suppresses
% the output of a factor `1' if this factor is not required.
% \begin{macrocode}
\def\pld@PrintInit{%
\let\pld@R\pld@PrintRational \strut
% \end{macrocode}
% The switch |\pld@iffirst| indicates whether we are working on the first
% summand of a polynomial, that means whether or not we can omit a plus.
% According to the value of the accumulator, we print its sign and/or value.
% \begin{macrocode}
\pld@AccuIfNegative
{\pld@AccuNegate \pld@iffirst\pld@minustrue\else{}\fi -}%
{\pld@iffirst\pld@minusfalse\else{}+\fi}%
\pld@firstfalse
\pld@AccuIfAbsOne{}{\pld@AccuPrint \pld@true}%
% \end{macrocode}
% The switch |\pld@if| is set true if and only if we have printed something
% for the monomial (except the sign). So we know when to insert the omitted
% factor `1'.
%
% At the end of |\pld@PrintInit|, the macro throws away itself since all the
% `initialisation' done here is necessary only once for a summand. Note that
% this is done inside a group below, thus the meaning is not lost.
% \begin{macrocode}
\let\pld@PrintInit\@empty}
% \end{macrocode}
% \begin{macrocode}
\def\pld@minustrue{\global\let\pld@ifminus\iftrue}
\def\pld@minusfalse{\global\let\pld@ifminus\iffalse}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@iffirst}
% from above.
% \begin{macrocode}
\def\pld@firsttrue{\global\let\pld@iffirst\iftrue}
\def\pld@firstfalse{\global\let\pld@iffirst\iffalse}
\pld@firstfalse
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintMonoms}
% While not reaching the end of the polynomial, the accumulator gets `1' and
% we redefine |\pld@R|,\ldots,|\pld@V|. For example, a rational is just saved
% by multiplying it with the current accumulator.
% \begin{macrocode}
\def\pld@PrintMonoms#1+{%
\ifx\relax#1\else
\begingroup
\pld@AccuSetX11%
\let\pld@R\pld@AccuMul
\let\pld@F\pld@PrintFrac
\let\pld@S\pld@PrintSymbol
\let\pld@V\pld@PrintSymbol
% \end{macrocode}
% Then we indicate that nothing has been printed so far, print the factors (if
% any) by executing the code, and finally print the accumulator if necessary.
% \begin{macrocode}
\pld@false
#1%
\pld@PrintInit
\pld@if\else \pld@AccuPrint \fi
\endgroup
\expandafter\pld@PrintMonoms
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintRational}
% is |\pld@R|: indicate that we print something, load the accumulator, and
% print it. Note that we don't need to call |\pld@PrintInit| since it has
% already been done!
% \begin{macrocode}
\def\pld@PrintRational#1#2{%
\pld@true \pld@AccuSetX{#1}{#2}\pld@AccuPrint}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintSymbol}
% is |\pld@S| or |\pld@V|: init, indicate, and print the symbol with exponent.
% \begin{macrocode}
\def\pld@PrintSymbol#1#2{%
\pld@PrintInit \pld@true #1\ifnum#2=\@ne\else^{#2}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintFrac}
% is |\pld@F|: init, indicate, and print the fraction \ldots\space no, wait!
% First we check whether the denominator is `1'. In that case we don't use a
% fraction; we enclose the nominator in delimiters if necessary.
% \begin{macrocode}
\def\pld@PrintFrac#1#2{%
\pld@PrintInit \pld@true
\ifx\@empty#2\@empty
\begingroup
\pld@IfSum{#1}\pld@true\pld@false
\pld@if\pld@leftdelim #1\pld@rightdelim\else #1\fi
\endgroup
\expandafter\@gobbletwo
\else
\expandafter\pld@PrintFrac@
\fi
{#1}{#2}}
% \end{macrocode}
% Otherwise we check the nominator.
% \begin{macrocode}
\def\pld@PrintFrac@#1#2{%
\ifx\@empty#1\@empty \frac1{#2}\else \frac{#1}{#2}\fi}
% \end{macrocode}
% \end{macro}
%
% These printing routines do \emph{not} handle all representations which are
% legal in the sense of section \ref{sInternalDataFormat}. For example,
% |\pld@R{1}{1}\pld@V{X}{1}\pld@R{-1}{1}| would be printed as $X-1$.
% A correct output is guaranteed if there is at most one rational at the
% very beginning of the representation. Thus we normalize the internal data:
% condense, sort and simplify factors and summands. This will keep us busy
% for the next (p)ages.
%
%
% \section{Simplifying}
%
%
% \subsection{Phase I: Condense factors of summands}
%
% \begin{macro}{\pld@CondenseFactors}
% \meta{polynomial macro}
% \begin{describe}
% Here we condense rationals, fractions, and the exponents of symbolic factors
% and variables of each monomial in \meta{polynomial macro}. Afterwards the
% factors appear exactly in this order: if present a rational number comes
% first, then fractions if any, then symbols, and finally the variables.
% For example, the representation of
% {\makeatletter\pld@Scan{\frac23\frac1e5X^3\frac32X}
% $\pld@PrintPoly\pld@tempoly$
% becomes \pld@CondenseFactors\pld@tempoly
% $\pld@PrintPoly\pld@tempoly$}.
% \end{describe}
% As for printing, we redefine |\pld@R|,\ldots,|\pld@V| and iterate through
% the monomials.
% \begin{macrocode}
\def\pld@CondenseFactors#1{%
\ifx\@empty#1\else
\begingroup
\let\pld@R\pld@AccuMul
\let\pld@F\pld@CondenseFrac
\let\pld@S\pld@CFSymbol
\let\pld@V\pld@CFVar
% \end{macrocode}
% The following two assignments allow |#1| to be |\pld@temp| or |\pld@tempoly|.
% \begin{macrocode}
\let\pld@temp#1\let\pld@tempoly\@empty
\expandafter\pld@CF@loop\pld@temp+\relax+%
\global\let\@gtempa\pld@tempoly
\endgroup
\let#1\@gtempa
\fi}
% \end{macrocode}
% For each monomial the factors are kept in separate `registers': rationals in
% the accumulator, fractions in |\pld@frac|, symbols in |\pld@symbols|, and
% variables in |\pld@vars|. |\pld@if| is set true if and only if there is a
% `general' fraction.
% \begin{macrocode}
\def\pld@CF@loop#1+{%
\ifx\relax#1\else
\begingroup
\pld@AccuSetX11%
\def\pld@frac{{}{}}\let\pld@symbols\@empty\let\pld@vars\@empty
\pld@false
#1%
\let\pld@temp\@empty
% \end{macrocode}
% Now we put together the collected data (if the rational constant is not
% zero): If the rational constant does not equal one, we place it in front of
% all other factors.
% \begin{macrocode}
\pld@AccuIfZero{}%
{\pld@AccuIfOne{}{\pld@AccuGet\pld@temp
\edef\pld@temp{\noexpand\pld@R\pld@temp}}%
% \end{macrocode}
% Then follow fractions, symbols and variables.^^A
% \footnote{This is the right place to \emph{simplify} general fractions and
% symbols. Here we are in the special case that they don't contain
% any rationals as `over all' factors except `$1=|\{\}|={}$ empty
% argument' in the nominator or denominator, e.g.~$\frac{a+b}{b+a}$ is
% now represented as $\frac{a+b}1\frac1{b+a}$.}
% \begin{macrocode}
\pld@if \pld@Extend\pld@temp{\expandafter\pld@F\pld@frac}\fi
\expandafter\pld@CF@loop@\pld@symbols\relax\@empty
\expandafter\pld@CF@loop@\pld@vars\relax\@empty
% \end{macrocode}
% Finally we add the result to |\pld@tempoly|. Note that |\endgroup| destroys
% all temporary garbage, for example the exponents of symbols and variables.
% \begin{macrocode}
\ifx\@empty\pld@temp
\def\pld@temp{\pld@R11}%
\fi}%
\global\let\@gtempa\pld@temp
\endgroup
\ifx\@empty\@gtempa\else
\pld@ExtendPoly\pld@tempoly\@gtempa
\fi
\expandafter\pld@CF@loop
\fi}
% \end{macrocode}
% For each symbol or variable, we look up the exponent |\pld@@|\meta{symbol}
% and add it together with |\pld@|\meta{\textup{\texttt{S}$\vert$\texttt{V}}}
% and the symbol to the summand |\pld@temp|.
% \begin{macrocode}
\def\pld@CF@loop@#1#2{%
\ifx\relax#1\else
\xdef\@gtempa{\csname pld@@\string#2\endcsname}%
\ifnum \@gtempa=\z@ \else
\pld@AddTo\pld@temp{#1{#2}}%
\pld@Extend\pld@temp{\expandafter{\@gtempa}}%
\fi
\expandafter\pld@CF@loop@
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CFSymbol}
% \begin{macro}{\pld@CFVar}
% These definitions collect the exponents. Here we only insert type arguments.
% \begin{macrocode}
\def\pld@CFSymbol{\pld@CFSV\pld@symbols\pld@S}
\def\pld@CFVar{\pld@CFSV\pld@vars\pld@V}
% \end{macrocode}
% A new symbol initializes |\pld@@|\meta{symbol} to the current exponent and
% adds the symbol to the list, whereas \ldots
% \begin{macrocode}
\def\pld@CFSV#1#2#3#4{%
\@ifundefined{pld@@\string#3}%
{\@namedef{pld@@\string#3}{#4}%
\pld@AddTo#1{#2{#3}}}%
% \end{macrocode}
% an existing one increases |\pld@@|\meta{symbol}.
% \begin{macrocode}
{\@tempcnta\csname pld@@\string#3\endcsname\relax
\advance\@tempcnta#4\relax
\expandafter\edef\csname pld@@\string#3\endcsname{\the\@tempcnta}}}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@CondenseFrac}
% For a fraction, we work on the nominator and denominator separately: a sum
% is added to |\pld@frac|, otherwise we `execute' the code---but of course the
% reciprocal of the denominator. This adds the appropriate data.
% \begin{macrocode}
\def\pld@CondenseFrac#1#2{%
\pld@IfSum{#1}{\pld@CFFracAdd{\pld@F{#1}{}}{}}%
{#1}%
\pld@IfSum{#2}{\pld@CFFracAdd{}{\pld@F{}{#2}}}%
{\begingroup
\pld@DefInverse\pld@temp{#2}%
\global\let\@gtempa\pld@temp
\endgroup
\@gtempa}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CFFracAdd}
% We just add the nominator and denominator to |\pld@frac| and indicate this
% by setting |\pld@if| true.
% \begin{macrocode}
\def\pld@CFFracAdd{\pld@true \expandafter\pld@CFFracAdd@\pld@frac}
\def\pld@CFFracAdd@#1#2#3#4{\def\pld@frac{{#1#3}{#2#4}}}
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Phase III: Condense monomials of same type}
%
% \begin{macro}{\pld@CondenseMonomials}
% $\langle$|\pld@true|$\vert$|pld@false|$\rangle$\meta{polynomial macro}
% \begin{describe}
% This definition sums up the monomials of \meta{polynomial macro}.
% For example, the representation of
% {\makeatletter\pld@Scan{X^2+e^{-1}X^2}^^A
% $\pld@PrintPoly\pld@tempoly$
% becomes \pld@CondenseMonomials\pld@true\pld@tempoly
% $\pld@PrintPoly\pld@tempoly$}.
% If and only if the first argument is |\pld@false|, the macro works on
% symbols instead of variables, for example
% {\makeatletter\pld@Scan{1-\pi+2\pi+e^{-1}+e^{-1}}^^A
% \pld@CondenseFactors\pld@tempoly
% $\pld@PrintPoly\pld@tempoly$
% becomes \pld@CondenseMonomials\pld@false\pld@tempoly
% $\pld@PrintPoly\pld@tempoly$}.
% \end{describe}
% Again we redefine |\pld@R|,\ldots,|\pld@V|. Here they will add their
% arguments to the current summand. To condense a sum of constants, i.e.~to
% work on symbols, we need to redefine two more macros and sort the constants
% first. To understand this, read ahead and notice the paragraph at the end
% of this subsection.
% \begin{macrocode}
\def\pld@CondenseMonomials#1#2{%
\ifx\@empty#2\else
\begingroup
#1%
\pld@if\else
\let\pld@SortVars@V\pld@SortVars@S
\let\pld@SplitMonom\pld@SplitMonomS
\pld@SortMonomials#2%
\fi
\let\pld@R\pld@CMRational
\let\pld@F\pld@CMFrac
\let\pld@S\pld@CMSymbol
\let\pld@V\pld@CMError
% \end{macrocode}
% Initialize temporary macros, expand the polynomial and work on it, and
% assign the result back to |#1|.
% \begin{macrocode}
\let\pld@temp#2\let\pld@tempoly\@empty
\pld@AccuSetX01\let\pld@symbols\@empty \let\pld@monom\relax
\expandafter\pld@CM@\pld@temp+\relax+%
\global\let\@gtempa\pld@tempoly
\endgroup
\let#2\@gtempa
\fi}
% \end{macrocode}
% Reaching the end of the polynomial, we just add the last summand to the
% temporary polynomial. Otherwise the monomial is split into `factors' and
% `variables', which are handled by |\pld@CM@do|. Afterwards we proceed to
% the next summand.
% \begin{macrocode}
\def\pld@CM@#1+{%
\ifx\relax#1\relax
\pld@CMAddToTempoly
\else
\pld@SplitMonom\pld@CM@do{#1}%
\expandafter\pld@CM@
\fi}
% \end{macrocode}
% The following macro gets the nonvariable and variable part as arguments. If
% we haven't worked on a summand yet, we don't need to do anything special. At
% the end of the macro we will add the nonvariable part to the currently empty
% nonvariable part.
% \begin{macrocode}
\def\pld@CM@do#1#2{%
\ifx\pld@monom\relax \else
% \end{macrocode}
% Otherwise we check whether the last and current monomials are of same type.
% Note that this simple |\ifx| requires the variables being in the same order.^^A
% \footnote{It's better to use |\bslash pld@IfMonomE|, but even this requires
% the mentioned restriction.}
% If the monomials are different, we add the last monomial to the temporary
% polynomial and initialize some macros again.
% \begin{macrocode}
\def\pld@temp{#2}%
\ifx\pld@temp\pld@monom \else
\pld@CMAddToTempoly
\pld@AccuSetX01\let\pld@symbols\@empty \let\pld@monom\relax
\fi
\fi
% \end{macrocode}
% In any case we add the nonvariable part to the current (possibly cleared)
% one.
% \begin{macrocode}
\let\pld@op+%
\ifx\@empty#1\@empty \pld@R11\relax \else #1\relax \fi
\def\pld@monom{#2}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CMAddToTempoly}
% According to whether the accumulator is zero, we save the value in
% |\pld@temp| or just empty that macro.
% \begin{macrocode}
\def\pld@CMAddToTempoly{%
\pld@AccuIfZero{\let\pld@temp\@empty}%
{\pld@AccuGet\pld@temp
\edef\pld@temp{\noexpand\pld@R\pld@temp}}%
% \end{macrocode}
% Then we we simplify the (possible) sum of symbols by calling the main
% definition of this section with |\pld@false|. Afterwards we append the
% symbols if necessary.
% \begin{macrocode}
\pld@CondenseMonomials\pld@false\pld@symbols
\ifx\pld@symbols\@empty \else
\pld@ExtendPoly\pld@temp\pld@symbols
\fi
% \end{macrocode}
% Now depending on the contents of |\pld@temp|, we do nothing---the sum of the
% monomials is zero---or add the factors together with the `variable part' to
% the polynomial. Note that we put |\pld@F{| and |}{}| around a sum if and
% only if |\pld@if| is true.\footnote{Why we don't need a fraction and also
% don't want it in the other case? We don't want it since it would make things
% more complex. We don't need it since, if we strip off both variables and
% symbols, there are only rationals left and these are evaluated completely
% and condensed in one single rational---no sum, no need for a fraction.}
% \begin{macrocode}
\ifx\pld@temp\@empty \else
\pld@if
\expandafter\pld@IfSum\expandafter{\pld@temp}%
{\expandafter\def\expandafter\pld@temp\expandafter
{\expandafter\pld@F\expandafter{\pld@temp}{}}}%
{}%
\fi
\pld@ExtendPoly\pld@tempoly\pld@temp
\pld@Extend\pld@tempoly{\pld@monom}%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CMFracAdd}
% Depending on the current operator |\pld@op|, we add a new summand to
% |\pld@symbols| or extend the last summand by another factor.
% \begin{macrocode}
\def\pld@CMFracAdd{%
\ifx +\pld@op \let\pld@op\@empty
\expandafter\pld@AddToPoly
\else \expandafter\pld@AddTo \fi
\pld@symbols}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CMRational}
% We add the rational to the accumulator if and only if there is no other
% (symbolic or fractional) factor. This is the reason for some |\relax|es
% above and below.
% \begin{macrocode}
\def\pld@CMRational#1#2#3{%
\ifx\relax#3%
\pld@AccuAdd{#1}{#2}%
\else
% \end{macrocode}
% If the rational belongs to a more complex factor, we add it to
% |\pld@symbols|. Note that the used macro was redefined above.
% \begin{macrocode}
\pld@CMFracAdd{\pld@R{#1}{#2}}%
\expandafter#3%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CMSymbol}
% A symbol is just copied.
% \begin{macrocode}
\def\pld@CMSymbol#1#2{\pld@CMFracAdd{\pld@S{#1}{#2}}}%
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CMFrac}
% Here we remove a possibly inserted |\pld@F{| and |}{}| around a sum and
% execute the nominator---or we add the (condensed) fraction.
% \begin{macrocode}
\def\pld@CMFrac#1#2{%
\ifx\@empty#2\@empty
\pld@CMFrac@nom#1+\relax+%
\else
\pld@CMFrac@{#1}{#2}%
\fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@CMFrac@#1#2{%
\pld@IfSum{#1}{\pld@CMFracAdd{\pld@F{#1}{}}}%
{#1}%
\pld@IfSum{#2}{\pld@CMFracAdd{\pld@F{}{#2}}}%
{\begingroup
\pld@DefInverse\pld@temp{#2}%
\global\let\@gtempa\pld@temp
\endgroup
\@gtempa}}
% \end{macrocode}
% A nominator is executed summand by summand.
% \begin{macrocode}
\def\pld@CMFrac@nom#1+{%
\ifx\relax#1\else
#1\relax
\expandafter\pld@CMFrac@nom
\fi}
% \end{macrocode}
% \end{macro}
%
% In this section we have made two assumptions: (a) \emph{variables have
% always the same order in monomials} and (b) \emph{monomials of the same
% type}---that means at most different in the nonvariable part---\emph{must
% follow each other}. The first condition has already been mentioned, the
% second is necessary for looking only at the next monomial to check whether
% we have to summarize their preceeding factors. Both are established in the
% following section.
%
%
% \subsection{Phase II: Sort monomials by type}
%
% \begin{macro}{\pld@SortMonomials}
% We first sort the variables of each monomial and then the monomials.
% \begin{macrocode}
\def\pld@SortMonomials#1{%
\ifx #1\@empty \else
\begingroup
% \end{macrocode}
% \begin{macrocode}
\let\pld@temp#1\let\pld@tempoly\@empty
\expandafter\pld@SortVars\pld@temp+\relax+%
% \end{macrocode}
% \begin{macrocode}
\let\pld@temp\pld@tempoly \let\pld@tempoly\@empty
\expandafter\pld@SortSummands\pld@temp+\relax+%
% \end{macrocode}
% \begin{macrocode}
\global\let\@gtempa\pld@tempoly
\endgroup
\let#1\@gtempa
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@SortVars}
% While not reaching the end \ldots
% \begin{macrocode}
\def\pld@SortVars#1+{%
\ifx\relax#1\relax\else
\pld@SplitMonom\pld@SortVars@{#1}%
\expandafter\pld@SortVars
\fi}
% \end{macrocode}
% we sort the variables if necessary---note the redefinitions of |\pld@V| and
% |\pld@S|---
% \begin{macrocode}
\def\pld@SortVars@#1#2{%
\begingroup
\def\pld@monom{#2}%
\ifx\@empty\pld@monom\else
\let\pld@V\pld@SVVar
\let\pld@S\pld@SVSymbol
\pld@SortVars@V
\fi
\global\let\@gtempa\pld@monom
\endgroup
% \end{macrocode}
% and put the things together again.
% \begin{macrocode}
\def\pld@factor{#1}%
\pld@Extend\pld@factor\@gtempa
\pld@ExtendPoly\pld@tempoly\pld@factor}
% \end{macrocode}
% We use good old bubble sort on the contents of |\pld@monom|. This macro
% terminates if no items have been interchanged.
% \begin{macrocode}
\def\pld@SortVars@V{%
\pld@false \let\pld@temp\pld@monom \let\pld@monom\@empty
\pld@temp\pld@V\relax\relax
\pld@if \expandafter\pld@SortVars@V \fi}
% \end{macrocode}
% The redefinition of |\pld@V| first checks whether the end of the variables
% has been reached. If this is not the case, we either add the current
% variable to |\pld@monom| and continue with the next one, or we interchange
% the variables and indicate this by |\pld@true|.
% \begin{macrocode}
\def\pld@SVVar#1#2\pld@V#3#4{%
\ifx\relax#3\relax
\pld@AddTo\pld@monom{\pld@V{#1}{#2}}%
\else
\pld@IfVarL{#1}{#3}{\pld@AddTo\pld@monom{\pld@V{#1}{#2}}%
\def\pld@next{\pld@V{#3}{#4}}}%
{\pld@true
\pld@AddTo\pld@monom{\pld@V{#3}{#4}}%
\def\pld@next{\pld@V{#1}{#2}}}%
\expandafter\pld@next
\fi}
% \end{macrocode}
% The similar for |\pld@S| instead of |\pld@V| for sorting symbols.
% \begin{macrocode}
\def\pld@SortVars@S{%
\pld@false \let\pld@temp\pld@monom \let\pld@monom\@empty
\pld@temp\pld@S\relax\relax
\pld@if \expandafter\pld@SortVars@S \fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@SVSymbol#1#2\pld@S#3#4{%
\ifx\relax#3\relax
\pld@AddTo\pld@monom{\pld@S{#1}{#2}}%
\else
\pld@IfVarL{#1}{#3}{\pld@AddTo\pld@monom{\pld@S{#1}{#2}}%
\def\pld@next{\pld@S{#3}{#4}}}%
{\pld@true
\pld@AddTo\pld@monom{\pld@S{#3}{#4}}%
\def\pld@next{\pld@S{#1}{#2}}}%
\expandafter\pld@next
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@SortSummands}
% Now comes the same for whole monomials except that we can't redefine any
% kind of |\pld@V| and that we will use insertion sort. So, while not reaching
% the end \ldots
% \begin{macrocode}
\def\pld@SortSummands#1+{%
\ifx\relax#1\relax\else
% \end{macrocode}
% we find the right place for |\pld@monom| in |\pld@tempoly|.
% \begin{macrocode}
\ifx\@empty\pld@tempoly
\def\pld@tempoly{#1}%
\else
\def\pld@monom{#1}%
\let\pld@temp\pld@tempoly \let\pld@tempoly\@empty
\expandafter\pld@SortSummands@i\pld@temp+\relax+%
\fi
\expandafter\pld@SortSummands
\fi}
% \end{macrocode}
% For this, we iterate down the intermediate result and \ldots
% \begin{macrocode}
\def\pld@SortSummands@i#1+{%
\ifx\relax#1\relax
\pld@ExtendPoly\pld@tempoly\pld@monom
\expandafter\@gobble
\else
\expandafter\pld@SortSummands@j
\fi
{#1}}
% \end{macrocode}
% we test whether we've found the right place and insert the monomial if
% necessary.
% \begin{macrocode}
\def\pld@SortSummands@j#1{%
\expandafter\pld@IfMonomL\expandafter{\pld@monom}{#1}%
{\pld@AddToPoly\pld@tempoly{#1}%
\pld@SortSummands@i}%
{\pld@SortSummands@k\pld@monom+#1+}}
\def\pld@SortSummands@k#1+\relax+{\pld@ExtendPoly\pld@tempoly{#1}}
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Phase II: Lexicographical order}
%
% \begin{macro}{\pld@IfVarL}
% \marg{varibale 1}\marg{variable 2}\marg{then}\marg{else}
% \begin{describe}
% This macro executes \meta{then} if and only if \meta{variable 1} is less
% than \meta{variable 2} (with respect to the lexicographical order defined
% by this macro).
% \end{describe}
% First we check whether the variables are equal.
% \begin{macrocode}
\def\pld@IfVarL#1#2{%
\begingroup
\def\pld@va{#1}\def\pld@vb{#2}%
\ifx\pld@va\pld@vb
\aftergroup\@secondoftwo
\else
% \end{macrocode}
% If the variables are not equal, we use their `|\meaning| expansion' for a
% string comparison.
% \begin{macrocode}
\edef\pld@next{\expandafter\strip@prefix\meaning\pld@va
\relax\noexpand\@empty
\expandafter\strip@prefix\meaning\pld@vb
\relax\noexpand\@empty}%
\expandafter\pld@IfVarL@\pld@next
\fi
\endgroup}
% \end{macrocode}
% If we've reached the end of a variable, we call the appropriate macro
% |\aftergroup|.
% \begin{macrocode}
\def\pld@IfVarL@#1#2\@empty#3#4\@empty{%
\let\pld@next\@empty
\ifx #3\relax \aftergroup\@secondoftwo
\else \ifx #1\relax \aftergroup\@firstoftwo
\else
% \end{macrocode}
% Otherwise we either need to look at the next characters or compare the two
% ones.
% \begin{macrocode}
\ifx#1#3%
\def\pld@next{\pld@IfVarL#2\@empty#4\@empty}%
\else
\ifnum`#1<`#3\relax \aftergroup\@firstoftwo
\else \aftergroup\@secondoftwo \fi
\fi
\fi \fi
\pld@next}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@IfMonomL}
% \marg{monomial 1}\marg{monomial 2}\marg{then}\marg{else}
% \begin{describe}
% This macro executes \meta{then} if and only if \meta{monomial 1} is less
% than \meta{monomial 2}. It is required that both monomials' variables are
% sorted.
% \end{describe}
% The implementation is straight forward if you know the last definitions.
% \begin{macrocode}
\def\pld@IfMonomL#1#2{%
\begingroup
\pld@IfMonomL@#1\pld@V\relax\relax\@empty
#2\pld@V\relax\relax\@empty
\endgroup}
% \end{macrocode}
% If we've reached the end of the variables, we call the appropriate macro.
% \begin{macrocode}
\def\pld@IfMonomL@#1\pld@V#2#3#4\@empty#5\pld@V#6#7#8\@empty{%
\let\pld@next\@empty
\ifx #6\relax \aftergroup\@secondoftwo
\else \ifx #2\relax \aftergroup\@firstoftwo
\else
% \end{macrocode}
% If we have two variables, there are two main cases in which the first
% monomial is smaller: the variable of the first one is smaller or the
% variables are equal but the first exponent is smaller. If both variable and
% exponent match, we have test the next variables.
% \begin{macrocode}
\def\pld@va{#2}\def\pld@vb{#6}%
\ifx\pld@va\pld@vb
\ifnum#3=#7\relax
\def\pld@next{\pld@IfMonomL@#4\@empty#8\@empty}%
\else
\ifnum#3<#7\relax \aftergroup\@firstoftwo
\else \aftergroup\@secondoftwo \fi
\fi
\else
\pld@IfVarL#2\relax\@empty#6\relax\@empty
{\aftergroup\@firstoftwo}%
{\aftergroup\@secondoftwo}%
\fi
\fi \fi
\pld@next}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@IfMonomE}
% \marg{monomial 1}\marg{monomial 2}\marg{then}\marg{else}
% \begin{describe}
% This macro executes \meta{then} if and only if \meta{monomial 1} has the
% same variables with identical exponents as \meta{monomial 2}. It is required
% that both monomials' variables are sorted.
% \end{describe}
% We just extract the `variable parts' and compare them with |\ifx|.
% \begin{macrocode}
\def\pld@IfMonomE#1#2{\pld@IfMonomE@#1\pld@V\@empty#2\pld@V\@empty}
% \end{macrocode}
% \begin{macrocode}
\def\pld@IfMonomE@#1\pld@V#2\@empty#3\pld@V#4\@empty{%
\begingroup
\def\pld@va{#2}\def\pld@vb{#4}%
\ifx\pld@va\pld@vb \aftergroup\@firstoftwo
\else \aftergroup\@secondoftwo \fi
\endgroup}
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Putting together the ingredients}
%
% \begin{macro}{\pld@Simplify}
% \meta{polynomial macro}
% \begin{describe}
% just calls the definitions of the last sections in the correct order.
% \end{describe}
% \begin{macrocode}
\def\pld@Simplify#1{%
\pld@CondenseFactors#1%
\pld@SortMonomials#1%
\pld@CondenseMonomials\pld@true#1}
% \end{macrocode}
% \end{macro}
%
%
% \section{Multiplication}
%
% \begin{macro}{\pld@MultiplyPoly}
% \begin{macro}{\pld@NMultiplyPoly}
% \meta{macro a}\meta{macro b}\meta{macro c}
% \begin{describe}
% \meta{macro a} gets \meta{macro b}${}\cdot{}$\meta{macro c} respectively
% the negative polynomial in the second case \texttt{N}.
% \end{describe}
% We use a switch to distinguish the positive and negative form.
% \begin{macrocode}
\def\pld@MultiplyPoly{\begingroup\pld@true \pld@MultiplyPoly@}
\def\pld@NMultiplyPoly{\begingroup\pld@false \pld@MultiplyPoly@}
% \end{macrocode}
% Multiply the polynomials and condense the result. Note that the latter is
% the main working procedure. To avoid problems with |\polyhornerscheme| (it
% uses empty macros for the representation of the number 0), we check for
% empty macros here---thanks go to Ludger Humbert.
% \begin{macrocode}
\def\pld@MultiplyPoly@#1#2#3{%
\let\pld@temp\@empty
\ifx\@empty#2\@empty\else \ifx\@empty#3\@empty\else
\expandafter\pld@MultiplyPoly@a\expandafter#2#3+\relax+%
\fi \fi
\global\let\@gtempa\pld@temp
\endgroup
\let#1\@gtempa \pld@CondenseFactors#1}
% \end{macrocode}
% Here we combine each (negated) summand |#2| of the second polynomial with
% \ldots
% \begin{macrocode}
\def\pld@MultiplyPoly@a#1#2+{%
\ifx\relax#2\else
\pld@if \def\pld@va{#2}\else \def\pld@va{#2\pld@R{-1}1}\fi
\expandafter\pld@MultiplyPoly@b#1+\relax+%
\expandafter\pld@MultiplyPoly@a\expandafter#1%
\fi}
% \end{macrocode}
% each summand |#1| of the first one.
% \begin{macrocode}
\def\pld@MultiplyPoly@b#1+{%
\ifx\relax#1\else
\pld@ExtendPoly\pld@temp{\pld@va#1}%
\expandafter\pld@MultiplyPoly@b
\fi}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \section{Division}
%
%
% \subsection{The algorithm}
%
% \begin{macro}{\pld@DividePoly}
% \begin{macro}{\pld@LongDividePoly}
% A polynomial long division is indicated by |\pld@true|. In this case we also
% need to initialize some macros.
% \begin{macrocode}
\def\pld@DividePoly{\pld@false \pld@DivPoly}
% \end{macrocode}
% \begin{macrocode}
\def\pld@LongDividePoly#1#2{%
\let\pld@pattern\@empty \let\pld@lastline\@empty
\let\pld@subline\@empty \let\pld@currentline\@empty
\let\pld@allines\@empty \let\pld@maxcol\z@
\let\pld@maxcolplustwo\z@ \let\pld@linepos\z@
\pld@true \pld@DivPoly#1#2%
\pld@ArrangeResult#1}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% The division algorithm has three main components: the division of two
% monomials, the subtraction of two polynomials, and a loop putting together
% both things.
%
% \begin{macro}{\pld@DivPoly}
% The loop: We initialize remainder, divisor, and quotient.
% \begin{macrocode}
\def\pld@DivPoly#1#2{%
\pld@currstage\pld@stage\relax
\let\pld@remainder#1\let\pld@divisor#2\let\pld@quotient\@empty
\pld@DivPoly@l}
% \end{macrocode}
% While the remainder isn't zero and needs to be divided, we extend the
% quotient and subtract the appropriate polynomial from the remainder.
% \begin{macrocode}
\def\pld@DivPoly@l{%
\ifx\pld@remainder\@empty\else
\pld@IfNeedsDivision\pld@remainder\pld@divisor
{\pld@ExtendPoly\pld@quotient\pld@factor
\pld@NMultiplyPoly\pld@sub\pld@divisor\pld@factor
\pld@SubtractPoly\pld@remainder\pld@sub
\expandafter\pld@DivPoly@l}%
{\ifpld@InsidePolylongdiv\expandafter\pld@insert@remainder
\pld@last@remainder+\relax\relax\fi}%
\fi}
% \end{macrocode}
% The fix by Hendrik Vogt.
% \begin{macrocode}
\def\pld@insert@remainder#1+#2\relax{%
\ifx\relax#1\relax\else\pld@InsertItems\@empty\@empty{#1}\fi
\ifx\relax#2\relax\else\pld@insert@remainder#2\relax\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@IfNeedsDivision}
% \meta{polynomial 1}\meta{polynomial 2}\marg{then}\marg{else}
% \begin{describe}
% executes \meta{then} if and only if \meta{polynomial 1} must be divided by
% \meta{polynomial 2} (with possibly nonzero remainder!). |\pld@factor| can be
% used in \meta{then} and holds the quotient of the first monomials. Note that
% this macro requires the polynomials to be sorted.
% \end{describe}
% We expand the two polynomials and add terminators |+\@empty|.
% \begin{macrocode}
\def\pld@IfNeedsDivision#1#2{%
\pld@ExpandTwo\pld@IfND{#1+\@empty}{#2+\@empty}}
% \end{macrocode}
% Now we can divide the first summands of the two polynomials and \ldots
% \begin{macrocode}
\def\pld@IfND#1+#2\@empty#3+#4\@empty{%
\pld@DefInverse\pld@factor{#3}%
\pld@AddTo\pld@factor{#1}%
\pld@CondenseFactors\pld@factor
% \end{macrocode}
% check whether all variables have a non-negative exponent.
% Depending on that, we choose the correct argument.
% \begin{macrocode}
\begingroup
\pld@true
\expandafter\pld@IfND@\pld@factor\pld@V\relax\z@
\pld@if \aftergroup\@firstoftwo
\else \aftergroup\@secondoftwo \fi
\endgroup}
% \end{macrocode}
% And here we check for (non-)negative exponents.
% \begin{macrocode}
\def\pld@IfND@#1\pld@V#2#3{%
\ifx\relax#2\@empty \expandafter\@gobble
\else \ifnum#3<\z@ \pld@false \fi
\fi \pld@IfND@}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@SubtractPoly}
% Here we perform the subtraction. We could define one very short macro for
% `short' and another for polynomial long division, but this macro covers both
% cases. We do nothing if |#2| is empty. This test shouldn't be necessary, but
% who knows how I'll change |\pld@DivPoly| in future.
% \begin{macrocode}
\def\pld@SubtractPoly#1#2{%
\ifx#2\@empty\else
% \end{macrocode}
% For long division, we initialize the horizontal rule's first and last column.
% \begin{macrocode}
\pld@if
\let\pld@firstcol\maxdimen \let\pld@lastcol\z@
\fi
% \end{macrocode}
% The submacro does the subtraction and defines appropriate data
% |\pld@lastline|, |\pld@subline|, \ldots\space.
% \begin{macrocode}
\let\pld@tempoly\@empty
\pld@ExpandTwo\pld@SubtractPoly@
{#1+\relax+\@empty}{#2+\relax+\@empty}%
\let#1\pld@tempoly
% \end{macrocode}
% For long divisions, we now add the calculated lines and a horizontal rule
% to |\pld@allines| (if the current stage allows it). Eventually we reset data.
% \begin{macrocode}
\pld@if
\ifnum\pld@currstage>\z@
\pld@Extend\pld@allines{\pld@lastline\cr}%
\else
\pld@InsertFake\pld@lastline
\fi
\advance\pld@currstage-\tw@
\ifnum\pld@currstage>\z@
\pld@Extend\pld@allines{\pld@subline\cr}%
\edef\pld@subline{%
\noexpand\cline{\pld@firstcol-\pld@lastcol}
\noalign{\vskip\jot}}%
\pld@Extend\pld@allines\pld@subline
\else
\pld@InsertFake\pld@subline
\fi
\advance\pld@currstage\m@ne
\let\pld@lastline\pld@currentline
\let\pld@subline\@empty
\let\pld@currentline\@empty
\fi
\fi}
% \end{macrocode}
% The following submacro reads both first monomials. The difference must be
% zero, so we just gobble the monomials except for long division. This is
% coded explicitly to always reduce the degree---no matter what the
% calculations in behind say is true. For long division, we take the
% original monomial, negate it, and use these two for the visualization.
% \begin{macrocode}
\def\pld@SubtractPoly@#1+#2\@empty#3+{%
\pld@if
\pld@DefNegative\pld@monom{#1}%
\expandafter\pld@InsertItems\expandafter\@empty
\expandafter{\pld@monom}{#1}%
\fi
\pld@SubtractPoly@l#2\@empty}
% \end{macrocode}
% All other monomials are read here. We have to distinguish several cases.
% If we've reached the end of both polynomials, the next operation is empty.
% \begin{macrocode}
\def\pld@SubtractPoly@l#1+#2\@empty#3+#4\@empty{%
\ifx\relax#1\relax
\let\pld@last@remainder\@empty
\ifx\relax#3\relax \let\pld@next\@empty \else
% \end{macrocode}
% If we've reached the end of the first polynomial, we add the monomial of the
% second polynomial, subtract it from the result, use it for visualization, and
% call this macro again to read the rest of the polynomial.
% \begin{macrocode}
\pld@AddToPoly\pld@tempoly{#3}%
\pld@if \pld@InsertItems{#3}{#3}{}\fi
\def\pld@next{\pld@SubtractPoly@l\relax+\@empty#4\@empty}%
\fi
\else
\ifx\relax#3\relax
% \end{macrocode}
% If we've reached the end of the second polynomial, we just add the rest of
% the first polynomial to the result |\pld@tempoly|.
% \begin{macrocode}
\pld@SubtractPoly@r#1+#2\@empty
\let\pld@next\@empty
\else
% \end{macrocode}
% There are three cases if we have two monomials. If they are equal---which
% means that the variables and their exponents match---, we add the monomials
% and use the result to extend the temporary polynomial as well as for the
% visualization.
% \begin{macrocode}
\pld@IfMonomE{#1}{#3}%
{\def\pld@temp{#1+#3}%
\pld@CondenseMonomials\pld@true\pld@temp
\ifx\pld@temp\@empty\else
\pld@ExtendPoly\pld@tempoly\pld@temp
\fi
\pld@if \expandafter\pld@InsertItems\expandafter
{\pld@temp}{#3}{#1}\fi
\def\pld@next{\pld@SubtractPoly@l#2\@empty#4\@empty}}%
% \end{macrocode}
% If the second monomial is stricly smaller, we extend the temporary polynomial
% and the visualization by this monomial and re-insert the first monomial to be
% read again.
% \begin{macrocode}
{\pld@IfMonomL{#1}{#3}%
{\pld@AddToPoly\pld@tempoly{#3}%
\pld@if \pld@InsertItems{#3}{#3}{}\fi
\def\pld@next{\pld@SubtractPoly@l#1+#2\@empty#4\@empty}}%
% \end{macrocode}
% If the first monomial is stricly smaller, we extend the temporary polynomial
% and the visualization by this monomial and re-insert the other to be read
% again (since we haven't reached the correct place in the table yet).
% Note that these two last cases are some kind of insertion sort.
% \begin{macrocode}
{\pld@AddToPoly\pld@tempoly{#1}%
\pld@if \pld@InsertItems{#1}{}{#1}\fi
\def\pld@next{\pld@SubtractPoly@l#2\@empty#3+#4\@empty}}%
}%
\fi \fi
\pld@next}
% \end{macrocode}
% Finally the macro used to add the rest of the first polynomial.
% \begin{macrocode}
\def\pld@SubtractPoly@r#1+\relax+\@empty{%
\pld@AddToPoly\pld@tempoly{#1}%
\def\pld@last@remainder{#1}}
% \end{macrocode}
% \end{macro}
%
%
% \subsection{Tweaking the alignment}
%
% Here comes important code for partial output of long divisions.
%
% \begin{macro}{\pld@InsertFake}
% This macro is somewhat like |\pld@InsertItems| but gets a whole line. Thus
% we iterate down each entry and compare its width with the next dimension
% from |\pld@fakeline| (which is the current width of the column). In detail:
% We iterate down each entry and \ldots
% \begin{macrocode}
\def\pld@InsertFake#1{%
\let\pld@temp\@empty
\expandafter\pld@InsertFake@l#1&\relax&}
% \end{macrocode}
% \ldots\space either append the rest of |\pld@fakeline| or get the next
% dimension from the macro.
% \begin{macrocode}
\def\pld@InsertFake@l#1&{%
\ifx\relax#1\@empty
\pld@Extend\pld@temp{\expandafter&\pld@fakeline}%
\let\pld@fakeline\pld@temp
\else
\expandafter\pld@InsertFake@do\pld@fakeline\relax{#1}%
\expandafter\pld@InsertFake@l
\fi}
\def\pld@InsertFake@do#1\relax#3{%
% \end{macrocode}
% We assign the remaining column dimensions or, if there is no dimension left,
% we insert 0pt.
% \begin{macrocode}
\ifx\@empty#2\@empty \def\pld@fakeline{0pt&}%
\else \def\pld@fakeline{#2}\fi
\@tempdima#1\relax
\setbox\z@=\hbox{\ensuremath{#3}}%
% \end{macrocode}
% Then we add the maximum of the current dimension and the width of |#3| to
% |\pld@temp| (which will be assigned to |\pld@fakeline| as seen above).
% \begin{macrocode}
\ifdim\@tempdima<\wd\z@ \@tempdima=\wd\z@ \fi
\ifx\pld@temp\@empty
\edef\pld@temp{\the\@tempdima}%
\else
\pld@Extend\pld@temp{\expandafter&\the\@tempdima}%
\fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@fakeline{0pt&}% init
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@ConvertFake}
% The contents of |\pld@fakeline| are converted into an appropriate sequence
% of |\vrule|\texttt{ height 0pt depth 0pt width }\meta{column dimension}.
% This put inside the |\halign| below will ensure stable column widths.
% \begin{macrocode}
\def\pld@ConvertFake#1&{%
\ifx\relax#1\@empty\else
\ifx\@empty#1\@empty
&%
\else
\noexpand\vrule\noexpand\@height\z@\noexpand\@depth\z@
\noexpand\@width#1\relax&%
\fi
\expandafter\pld@ConvertFake
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@SplitQuotient}
% splits |\pld@quotient| into the visible |\pld@real| and invisible
% |\pld@shadow|---according to the given |\pld@stage|. We just iterate down
% the summands:
% \begin{macrocode}
\def\pld@SplitQuotient{%
\let\pld@real\@empty \let\pld@shadow\empty
\pld@currstage\pld@stage\relax
\expandafter\pld@SplitQuotient@\pld@quotient+\relax+}
\def\pld@SplitQuotient@#1+{%
\ifx\relax#1\@empty
% \end{macrocode}
% reaching the end, we check whether the remainder needs to be printed;
% \begin{macrocode}
\advance\pld@currstage-\tw@
\ifnum\pld@currstage<\z@
\let\pld@PrintRemain\pld@XPLD
\else
\let\pld@PrintRemain\pld@PLD
\fi
\else
% \end{macrocode}
% otherwise we either add the current summand to |\pld@real| or |\pld@shadow|.
% \begin{macrocode}
\ifx\@empty#1\@empty\else
\advance\pld@currstage-\tw@
\ifnum\pld@currstage<\z@
\pld@AddToPoly\pld@shadow{#1}%
\else
\pld@AddToPoly\pld@real{#1}%
\fi
\advance\pld@currstage\m@ne
\fi
\expandafter\pld@SplitQuotient@
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintPolyShadow}
% prints |\pld@real| and leaves space for |\pld@shadow|.
% \begin{macrocode}
\def\pld@PrintPolyShadow{%
\pld@firsttrue
\ifx\pld@real\@empty\else
\expandafter\pld@PrintMonoms\pld@real+\relax+%
\fi
\ifx\pld@shadow\@empty\else
\setbox\z@\hbox{$\expandafter\pld@PrintMonoms\pld@shadow
+\relax+$}%
\phantom{\copy\z@}%
\fi}
% \end{macrocode}
% \end{macro}
%
% \subsection{Aligning long division}\label{iAligningLongDivision}
%
% \begin{macro}{\pld@PrintLongDiv}
% does the horizontal alignment. It puts |\pld@allines| into |\halign|.
% \begin{macrocode}
\def\pld@PrintLongDiv{%
\ensuremath{\hbox{\vtop{\begingroup
\offinterlineskip \tabskip=\z@
\edef\pld@fakeline{\expandafter\pld@ConvertFake\pld@fakeline&\relax&}%
\halign{\strut\pld@firsttrue\hfil$##$%
&\pld@firsttrue\hfil$##$%
&&\hfil$##$\cr
\pld@fakeline\cr \noalign{\vskip-\normalbaselineskip}%
\pld@allines}%
\endgroup}}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@InsertItems}
% Here now we place the monomials. |\pld@pattern| gives the columns in which
% monomials have been put and thus has to be put now. So we first define the
% monomial and look for it in |\pld@pattern|.
% \begin{macrocode}
\def\pld@InsertItems#1#2#3{%
\ifx\@empty#1\@empty
\ifx\@empty#2\@empty \def\pld@monom{#3}%
\else \def\pld@monom{#2}\fi
\else \def\pld@monom{#1}\fi
\@tempcnta\@ne \let\pld@recentmonom\@empty
\expandafter\pld@InsertItems@find\pld@pattern\relax&%
% \end{macrocode}
% This column |\@tempcnta| must not exceed the current column range, which is
% used to draw the horizontal line: we change the range if necessary.
% \begin{macrocode}
\ifnum\pld@firstcol>\@tempcnta \edef\pld@firstcol{\the\@tempcnta}\fi
\ifnum\pld@lastcol<\@tempcnta \edef\pld@lastcol{\the\@tempcnta}\fi
\ifnum\pld@maxcol<\@tempcnta
\edef\pld@maxcol{\the\@tempcnta}
\@tempcntb\pld@maxcol\relax\advance\@tempcntb\tw@
\edef\pld@maxcolplustwo{\the\@tempcntb}
\fi
% \end{macrocode}
% Finally we insert the arguments.
% \begin{macrocode}
\pld@InsertItems@do\pld@lastline{\pld@PLD{#3}}%
\pld@InsertItems@do\pld@subline{\pld@PLD{#2}}%
\pld@InsertItems@do\pld@currentline{\pld@PLD{#1}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@InsertItems@do}
% For this, we iterate down the specified line |#1|---five items at the same
% time---\ldots
% \begin{macrocode}
\def\pld@InsertItems@do#1#2{%
\let\pld@temp\@empty \@tempcntb\@tempcnta
\expandafter\pld@InsertItems@do@a#1&&&&&\relax{#2}%
\let#1\pld@temp}
% \end{macrocode}
% until we've found the item number |\@tempcnta|$=$|\@tempcntb|$-k\cdot 5$.
% \begin{macrocode}
\def\pld@InsertItems@do@a#1\relax{%
\ifcase\@tempcntb \or
\or \pld@AddTo\pld@temp{#1&}%
\or \pld@AddTo\pld@temp{#1&}%
\or \pld@AddTo\pld@temp{#1&}%
\or \pld@AddTo\pld@temp{#1&}%
\else
% \end{macrocode}
% If this is not the case, we call this macro again.
% \begin{macrocode}
\pld@AddTo\pld@temp{#1&}%
\advance\@tempcntb-5\relax
\def\pld@next{\pld@InsertItems@do@a#6&&&&&\relax}%
\expandafter\@firstoftwo\expandafter\pld@next
\fi
% \end{macrocode}
% Otherwise we add the monomial to |\pld@temp|, which is assigned to the
% correct macro above.
% \begin{macrocode}
\pld@InsertItems@do@b}
\def\pld@InsertItems@do@b#1{\pld@AddTo\pld@temp{#1}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@InsertItems@find}
% To find the monomial in |\pld@pattern|, we just test each monomial against
% the defined |\pld@monom|. If we've reached the end of the pattern, we `append'
% (see below) the monomial to the pattern and we're done for.
% \begin{macrocode}
\def\pld@InsertItems@find#1&{%
\ifx\relax#1\relax
\expandafter\pld@InsertItems@find@fill\pld@recentmonom\pld@V{}0\@empty
\else
% \end{macrocode}
% Otherwise we either drop the rest of the pattern since we've found the
% monomial, or we advance the temporary counter and continue.
% \begin{macrocode}
\def\pld@recentmonom{#1}%
\expandafter\pld@IfMonomE\expandafter{\pld@monom}{#1}%
{\expandafter\pld@InsertItems@find@\expandafter&}%
{\advance\@tempcnta\@ne \expandafter\pld@InsertItems@find}%
\fi}
\def\pld@InsertItems@find@#1&\relax&{}
% \end{macrocode}
% And now for `appending' a monomial to the pattern. Thanks to Karl Heinz
% Marbaise wrong implementation has been replaced by filling in also the
% monomials between the most recent and current monomial---if that wouldn't be
% done, a higher degree monomial could be preceded by a lower degree one and
% thus would never get printed as $x^7$ in |\polylongdiv{x^{15}+1}{x^5+x^3+x+1}|.
% \begin{macrocode}
\def\pld@InsertItems@find@fill#1\pld@V#2#3#4\@empty{%
\expandafter\pld@InsertItems@find@fill@\pld@monom\pld@V{}0\@empty{#3}}
\def\pld@InsertItems@find@fill@#1\pld@V#2#3#4\@empty#5{%
\ifx\pld@pattern\@empty
\def\pld@pattern{\pld@V&\pld@V{#2}{#3}&}%
\@tempcnta\tw@
\else
\@tempcntb#5\relax
\loop \ifnum #3<\@tempcntb
\advance\@tempcnta\@ne
\advance\@tempcntb\m@ne
\ifnum\@tempcntb=\z@
\def\pld@temp{#1}%
\else
\edef\pld@temp{\noexpand\pld@V{#2}{\the\@tempcntb}}%
\fi
\pld@Extend\pld@pattern{\pld@temp&}%
\repeat
\advance\@tempcnta\m@ne
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@ArrangeResult}
% Here the dividend, divisor, and quotient are added to the `|\halign|' data
% macro. First we add a $0$ below the last horizontal rule if the remainder is
% zero.
% \begin{macrocode}
\def\pld@ArrangeResult#1{%
\ifx\pld@remainder\@empty
\@tempcnta\pld@maxcol\relax
\pld@InsertItems@do\pld@lastline
{\pld@firsttrue\pld@PLD{\pld@R{0}{1}}}%
\fi
\ifnum\pld@currstage>\z@
\pld@Extend\pld@allines{\pld@lastline\cr}%
\else
\pld@InsertFake\pld@lastline
\fi
% \end{macrocode}
% We begin to build the first line. For the quotient printed atop, the divisor
% is the first element. Otherwise we either use a left parentheses or just let
% the first element empty. Note that the size of the parentheses is hard-wired.
% \begin{macrocode}
\pld@iftopresult
\def\pld@lastline{\pld@PrintPoly\pld@divisor\bigr)&}%
\else
\let\pld@lastline\@empty
\ifx C\pld@style
\def\pld@lastline{\pld@leftdelim\strut\pld@rightxdelim&}%
\fi
\fi
% \end{macrocode}
% Now we put the monomials of the dividend in the correct columns and split the
% quotient into its visible and invisible part.
% \begin{macrocode}
\expandafter\pld@AR@col\expandafter\pld@PLD
\expandafter\pld@lastline#1+\relax+%
\pld@SplitQuotient
% \end{macrocode}
% For a result at top, we put the quotient into |\pld@currentline| and add a
% horizontal line below it.
% \begin{macrocode}
\pld@iftopresult
\let\pld@currentline\@empty
\expandafter\pld@AR@col\expandafter\pld@PLD
\expandafter\pld@currentline
\pld@quotient+\relax+%
\expandafter\pld@AR@col\expandafter\pld@XPLD
\expandafter\pld@currentline
\pld@shadow+\relax+%
\edef\pld@subline{%
\noexpand\cline{\tw@-\pld@maxcol}%
\noalign{\vskip\jot}}%
\pld@Extend\pld@currentline{\expandafter\cr\pld@subline}%
\else
% \end{macrocode}
% For a result next to the dividend, we first calculate the number of columns
% it spans. It's the maximal column minus the last column of the dividend
% (which is |\@tempcnta|) plus one extra column not to squeeze it all into
% the last column of the `normal' table.
% \begin{macrocode}
\@tempcnta-\@tempcnta
\advance\@tempcnta\pld@maxcol\relax \advance\@tempcnta\@ne
\edef\pld@span{\the\@tempcnta}%
\@tempcntb\pld@maxcol\relax\advance\@tempcntb\pld@span%
\advance\@tempcntb\@ne%
\edef\pld@linepos{\the\@tempcntb}%
% \end{macrocode}
% Then we can add divisor, quotient, and remainder. First we go for style B.
% \begin{macrocode}
\ifx B\pld@style
\pld@AddTo\pld@lastline{%
&\multispan\pld@span${}=%
\pld@PrintPolyWithDelims\pld@divisor
\expandafter\pld@IfSum\expandafter{\pld@divisor}{}{\cdot}%
\expandafter\pld@IfSum\expandafter{\pld@quotient}\pld@true
\pld@false
\pld@if \pld@leftdelim
\pld@PrintPolyShadow
\pld@rightdelim
\else \pld@PrintPolyShadow \fi
\pld@firstfalse
\expandafter\pld@PrintRemain\expandafter{\pld@remainder}$}%
\else
% \end{macrocode}
% And now for style C. Note that we `smash' the depth of the fraction.
% \begin{macrocode}
\if C\pld@style
\pld@AddTo\pld@lastline{%
&\multispan\pld@span$\pld@leftxdelim\strut\pld@rightdelim
\pld@div
\pld@PrintPolyWithDelims\pld@divisor=
\pld@PrintPolyShadow
\ifx\pld@remainder\@empty\else
+{}%
\setbox\z@=\hbox{$\displaystyle
\frac{\let\strut\@empty\pld@firsttrue \expandafter
\pld@PrintRemain\expandafter{\pld@remainder}}%
{\let\strut\@empty\pld@PrintPoly\pld@divisor}$}%
\dp\z@=\z@\box\z@
\fi
$}%
\else
% \end{macrocode}
% Finally, style D.
% \begin{macrocode}
\pld@AddTo\pld@lastline{%
\cr%
\noalign{\vskip-\normalbaselineskip}%
\multispan\pld@maxcol~&~&\multispan\pld@span${}\vrule~%
\pld@PrintPoly\pld@divisor\hfil\hfil$\cr%
\cline{\pld@maxcolplustwo-\pld@linepos}%
\multispan\pld@maxcol~&~&\multispan\pld@span${}\vrule height
2.25ex~\pld@PrintPolyShadow$\hfil\cr\noalign{\vskip-2\normalbaselineskip}}%
\fi
\fi
\fi
% \end{macrocode}
% Eventually we replace the first line in |\pld@allines| by |\pld@lastline|
% or add |\pld@currentline| before doing so.
% \begin{macrocode}
\expandafter\pld@AR@\pld@allines\relax}
\def\pld@AR@#1\cr#2\relax{%
\pld@iftopresult
\let\pld@allines\pld@currentline
\pld@AddTo\pld@allines{\pld@lastline\cr #2}%
\else
\let\pld@allines\pld@lastline
\pld@AddTo\pld@allines{\cr #2}%
\fi}
% \end{macrocode}
% The dividend and quotient above are built by looking up the position of each
% monomial in |\pld@pattern| and inserting these monomials. |#1|, which is
% |\pld@PLD| or |\pld@XPLD|, is used to print the monomial.
% \begin{macrocode}
\def\pld@AR@col#1#2#3+{%
\ifx\relax#3\@empty\else
\ifx\@empty#3\@empty\else
\def\pld@monom{#3}\@tempcnta\@ne
\expandafter\pld@InsertItems@find\pld@pattern\relax&%
\pld@InsertItems@do#2{#1{#3}}%
\fi
\expandafter\pld@AR@col\expandafter#1\expandafter#2%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PLD}
% \begin{macro}{\pld@XPLD}
% have been used above several times. They print single monomials in the
% horizontal alignment of a long division or put a |\phantom| around it.
% \begin{macrocode}
\def\pld@PLD#1{\ifx\@empty#1\@empty\else\pld@PrintMonoms#1+\relax+\fi}
\def\pld@XPLD#1{\phantom{\pld@PLD{#1}}}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%
% \section{Euclidean algorithm}
%
% \begin{macro}{\pld@LongEuclideanPoly}
% Assign the `smaller' polynom to |\pld@remainder| and the other to
% |\pld@divisor| by doing one or two divisions. Additionally |\pld@vb| is
% initialized for the case that no further division is needed (v0.15).
% \begin{macrocode}
\def\pld@LongEuclideanPoly#1#2{%
\pld@false \let\pld@allines\@empty
\pld@DivPoly#1#2%
\ifx\pld@quotient\@empty
\pld@DivPoly#2#1%
\pld@InsertEuclidean#2#1%
\let\pld@vb#1%
\else
\pld@InsertEuclidean#1#2%
\let\pld@vb#2%
\fi
% \end{macrocode}
% Now we start the well known Euclidean algorithm. |\pld@va| and |\pld@vb|
% are used as temporary scratch `registers'.
% \begin{macrocode}
\pld@LongEuclideanPoly@l}
\def\pld@LongEuclideanPoly@l{%
\ifx\pld@remainder\@empty \else
\let\pld@va\pld@divisor
\let\pld@vb\pld@remainder
% \end{macrocode}
% \begin{macrocode}
\pld@DivPoly\pld@va\pld@vb
\pld@Simplify\pld@quotient \pld@Simplify\pld@remainder
\pld@InsertEuclidean\pld@va\pld@vb
% \end{macrocode}
% \begin{macrocode}
\expandafter\pld@LongEuclideanPoly@l
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@InsertEuclidean}
% Each step inserts one line with dividend, divisor, quotient, and remainder.
% \begin{macrocode}
\def\pld@InsertEuclidean#1#2{%
\ifx \pld@allines\@empty \else
\pld@AddTo\pld@allines{\noalign{\vskip\jot}}%
\fi
\pld@Extend\pld@allines{\expandafter\pld@PrintPolyArg
\expandafter{#1}&}%
\pld@Extend\pld@allines{\expandafter\pld@PrintPolyWithDelimsArg
\expandafter{#2}\hfil\cdot\hfil}%
\pld@Extend\pld@allines{\expandafter\pld@PrintPolyWithDelimsArg
\expandafter{\pld@quotient}&}%
\pld@Extend\pld@allines{\expandafter\pld@PrintPolyWithDelimsArg
\expandafter{\pld@remainder}\cr}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@PrintLongEuclidean}
% just like |\pld@PrintLongDiv|.
% \begin{macrocode}
\def\pld@PrintLongEuclidean{
\ensuremath{\hbox{\vtop{\begingroup
\offinterlineskip \tabskip=\z@
\halign{\strut\pld@firsttrue\hfil$##$%
&${}={}$\hfil$##$\hfil
&${}+##$\hfil\cr \pld@allines}%
\endgroup}}}}
% \end{macrocode}
% \end{macro}
%
%
% \section{Factorization}
%
% The algorithm is based on the following proposition:
% All \emph{rational} zeros of a polynomial $a_nX^n+\ldots+a_1X+a_0$ with
% \emph{integer} coefficients are among the fractions $\pm\frac\beta\alpha$
% where $\beta$ is a divisor of $a_0$ and $\alpha$ a divisor of the leading
% coefficient $a_n$.
% So our first tasks are to iterate through divisors and to test for zeros.
%
% \begin{macro}{\pld@NextDivisorPair}
% \marg{integer $a$}\marg{integer $b$}
% \begin{describe}
% |\@tempcnta| and |\@tempcntb| get the next divisors of \meta{integer $a$}
% and \meta{integer $b$}. |\pld@if| is set false if and only if all divisor
% pairs has been iterated through. At the beginning we must initialize
% |\@tempcnta=\z@| and |\@tempcntb=\@ne|.
% \end{describe}
% First |\@tempcnta| becomes the next divisor of |#1| and then |\@tempcntb|
% the next one of |#2| if and only if |#1| has no more divisors (which resets
% |\@tempcnta| automatically).
% \begin{macrocode}
\def\pld@NextDivisorPair#1#2{%
\pld@NextDivisor\@tempcnta{#1}%
\pld@if\else
\pld@NextDivisor\@tempcntb{#2}%
\fi}
% \end{macrocode}
% Here we advance the counter by one until the counter gets too big (note that
% this `$>$' requires the arguments to |\pld@NextDivisorPair| being positive)
% \ldots
% \begin{macrocode}
\def\pld@NextDivisor#1#2{%
\advance#1\@ne
\ifnum #1>#2\relax
#1\@ne \pld@false
\expandafter\@gobbletwo
\else
% \end{macrocode}
% or a divisor of |#2|.
% \begin{macrocode}
\@multicnt #2\relax
\divide\@multicnt#1\multiply\@multicnt#1%
\advance\@multicnt-#2\relax
\ifnum \@multicnt=\z@
\pld@true
\expandafter\expandafter\expandafter\@gobbletwo
\else
\expandafter\expandafter\expandafter\pld@NextDivisor
\fi
\fi
#1{#2}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@FindZeros}
% \marg{integer $a$}\marg{integer $b$}
% \begin{describe}
% is the main loop: while not all divisor pairs has been processed, we check
% whether $\pm$|\@tempcntb|$/$|\@tempcnta| is a zero.
% \end{describe}
% \begin{macrocode}
\def\pld@FindZeros#1#2{%
\pld@NextDivisorPair{#1}{#2}%
\pld@if
\pld@CheckZeros
\def\pld@next{\pld@FindZeros{#1}{#2}}%
\expandafter\pld@next
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@CheckZeros}
% When $\frac\beta\alpha$ isn't a zero any more, we add the zero with
% multiplicity |\@multicnt| \ldots
% \begin{macrocode}
\def\pld@CheckZeros{%
\pld@true \@multicnt\z@
\loop \pld@if
\pld@CheckZero{\the\@tempcnta}{\the\@tempcntb}%
\repeat
\pld@AddRationalZero{\the\@tempcnta}{\the\@tempcntb}%
% \end{macrocode}
% and do the same for $-\frac\beta\alpha$. Note that the multiplicity might be
% zero.
% \begin{macrocode}
\pld@true \@multicnt\z@
\loop \pld@if
\pld@CheckZero{-\the\@tempcnta}{\the\@tempcntb}%
\repeat
\pld@AddRationalZero{-\the\@tempcnta}{\the\@tempcntb}}
% \end{macrocode}
% To check for the zero $\frac\beta\alpha$, we divide |\pld@current| by the
% linear factor $X-\frac\beta\alpha$. Note that |\pld@tempoly| contains the
% string |\pld@V{X}1| where |X| is replaced by the actual variable; so we just
% need to append the fraction.
% \begin{macrocode}
\def\pld@CheckZero#1#2{%
\begingroup
\edef\pld@temp{{-#2}{#1}}%
\pld@Extend\pld@tempoly{\expandafter+\expandafter\pld@R\pld@temp}%
\let\pld@stage\maxdimen \pld@DividePoly\pld@current\pld@tempoly
\ifx\pld@remainder\@empty
\global\let\@gtempa\pld@quotient
\aftergroup\pld@true
\else
\aftergroup\pld@false
\fi
\endgroup
% \end{macrocode}
% If the division was successful, we advance the multiplicity and assign the
% new polynomial.
% \begin{macrocode}
\pld@if
\advance\@multicnt\@ne
\let\pld@current\@gtempa
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AddRationalZero}
% Here we add code to |\pld@allines| to \emph{print} the factor with its
% multiplicity.
% \begin{macrocode}
\def\pld@AddRationalZero#1#2{%
\ifnum\@multicnt=\z@\else
\pld@AccuSetX{#2}{-#1}%
\pld@AccuGet\pld@temp
\edef\pld@temp{\noexpand\pld@R\pld@temp}%
% \end{macrocode}
% Yet |\pld@temp| contains the rational. Note that the `accumulator detour' is
% needed to get rid of |\@tempcnta| and |b|. Eventually append the zero with
% the exponent if necessary.
% \begin{macrocode}
\expandafter\pld@AddZero\expandafter{\pld@temp}%
\ifnum\@multicnt=\@ne\else
\edef\pld@temp{^{\the\@multicnt}}%
\pld@Extend\pld@allines\pld@temp
\fi
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AddZero}
% We add |\pld@leftdelim| |\pld@firsttrue| |\pld@PLD{X+#1}| |\pld@rightdelim|
% to the current factorization |\pld@allines|.
% \begin{macrocode}
\def\pld@AddZero#1{%
\pld@Extend\pld@allines{\expandafter\pld@leftdelim
\expandafter\pld@firsttrue
\expandafter\pld@PLD
\expandafter{\pld@tempoly+#1}%
\pld@rightdelim}}
% \end{macrocode}
% \end{macro}
%
% These are the basic definitions. Now remember that the proposition above
% requires integers coefficients, but we want to support rationals. To do
% this, we multiply the polynomial virtually by the least common multiple of
% all denominators. `Virtually' means that we only multiply the leading
% coefficient and the absolute term to get the correct divisors, but not the
% real polynomial.
%
% \begin{macro}{\pld@FactorizeInit}
% And this is done here. The argument is a definition to be executed with
% appropriate data (the multiplied coeffients) as arguments at the end of this
% macro. Again we redefine |\pld@R|,\ldots,|\pld@V| and iterate through the
% monomials. The accumulator holds the least common multiple and |\@multicnt|
% the least exponent of the variable (since we need to divide by $X^k$ to get
% an absolute term).
% \begin{macrocode}
\def\pld@FactorizeInit#1{%
\begingroup
\pld@firsttrue \let\pld@sub\@empty
\pld@AccuSetX11%
\let\pld@R\pld@FRational
\let\pld@F\@gobbletwo
\let\pld@S\@gobbletwo
\let\pld@V\pld@FVar
\expandafter\pld@FactorizeInit@\pld@current+\relax+%
% \end{macrocode}
% Below you'll see |\@gtemp| $=$ leading coeffients and |\pld@lastline| $=$
% coefficient of absolute term (after division by $X^k$). Here we multiply by
% the accumulator and make the results positive (if we're advised to do this)
% and \ldots
% \begin{macrocode}
\pld@if
\pld@AccuGet\pld@temp
\expandafter\pld@AccuMul\@gtempa
\pld@AccuIfNegative{\pld@AccuNegate}{}%
\pld@AccuGet\pld@va
\expandafter\pld@AccuSetX\pld@temp
\expandafter\pld@AccuMul\pld@lastline
\pld@AccuIfNegative{\pld@AccuNegate}{}%
\pld@AccuGet\pld@vb
\else
\let\pld@va\@gtempa
\let\pld@vb\pld@lastline
\fi
% \end{macrocode}
% set the coefficient of $X^1$ if necessary---or any other variable power 1.
% \begin{macrocode}
\ifx\pld@sub\@empty \def\pld@sub{01}\fi
% \end{macrocode}
% Then we prepare the arguments for the macro to be executed at the end. In
% particular, |\pld@tempoly| is defined to define |\def\pld@tempoly{\pld@V{X}}|
% below, and this definition is cared out before we execute the macro |#2|.
% \begin{macrocode}
\edef\pld@temp{\noexpand#1\pld@va\pld@vb{\the\@multicnt}\pld@sub}%
\pld@Extend\pld@tempoly{\pld@temp}%
\global\let\@gtempa\pld@tempoly
\endgroup
\@gtempa}
% \end{macrocode}
% The submacro just iterates down the monomials.
% \begin{macrocode}
\def\pld@FactorizeInit@#1+{%
\ifx\relax#1\else
\def\pld@lastline{11}%
#1%
\expandafter\pld@FactorizeInit@
\fi}
% \end{macrocode}
% The following two definitions store the leading coefficient in |\@gtempa|,
% the last in |\pld@lastline|, the coefficient of $X^1$ in |\pld@sub|, update
% the least common multiple, \ldots
% \begin{macrocode}
\def\pld@FRational#1#2{%
\def\pld@lastline{{#1}{#2}}%
\pld@iffirst
\global\let\@gtempa\pld@lastline
\def\pld@tempoly{\@multicnt\z@}%
\fi
\pld@LCM{#2}%
\@multicnt\z@}
% \end{macrocode}
% and save the variable and its `leading' exponent in |\@multicnt|. Note that
% these two definitions are cared out later on, and the assignment of
% |\@multicnt| here saves the exponent of the last monomial.
% \begin{macrocode}
\def\pld@FVar#1#2{%
\pld@iffirst
\pld@firstfalse
\global\let\@gtempa\pld@lastline
\def\pld@tempoly{\def\pld@tempoly{\pld@V{#1}}%
\@multicnt#2\relax}%
\fi
\@multicnt#2\relax
% \end{macrocode}
% \begin{macrocode}
\ifnum\@multicnt=\@ne
\let\pld@sub\pld@lastline
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@Factorize}
% If the given polynomial is zero, the factorization is `$0$'. Otherwise we
% initialize data and start the algorithm. Note that |\pld@Factorize@| is an
% argument to |\pld@FactorizeInit| and called from inside with appropriate
% arguments.
% \begin{macrocode}
\def\pld@Factorize#1{%
\ifx\@empty#1\@empty
\def\pld@allines{\pld@PrintPolyWithDelims\@empty}%
\else
\let\pld@allines\@empty
\let\pld@current#1%
\pld@true \pld@FactorizeInit
\pld@Factorize@
\fi}
% \end{macrocode}
% Now the arguments are
% |#1#2|$=$\meta{`leading coefficient'},
% |#3#4|$=$\meta{`coefficient of least monomial'},
% |#5|$=$\meta{least exponent},
% |#6#7|$=$\meta{coefficient of linear summand}.
% Here the first two coefficient have been multiplied by the least common
% multiple of all denominators. The factorization gets `variable power |#5|'
% and the current polynomial is divided this.
% \begin{macrocode}
\def\pld@Factorize@#1#2#3#4#5#6#7{%
\ifnum #5=\z@\else
\pld@Extend\pld@allines{\expandafter\pld@firsttrue
\expandafter\pld@PLD
\expandafter{\pld@tempoly{#5}}}%
\let\pld@va\pld@tempoly
\pld@AddTo\pld@va{{-#5}}%
\pld@MultiplyPoly\pld@current\pld@current\pld@va
\fi
% \end{macrocode}
% Then we initialize the variable's exponent and the two divisors and really
% start the algorithm.
% \begin{macrocode}
\pld@AddTo\pld@tempoly{1}%
\@tempcnta\z@ \@tempcntb\@ne
\pld@FindZeros{#1}{#3}%
% \end{macrocode}
% Eventually we scan the remaining polynomial without multiplying the
% coefficient by the least common multiple of the denominators.
% \begin{macrocode}
\pld@false \pld@FactorizeInit
\pld@FactorizeFinal}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@FactorizeFinal}
% Thus we might find nonrational zeros here. Let $a={}$|#1#2|, $b={}$|#6#7|,
% and $c={}$|#3#4|. Then we have to calculate
% $\frac b{2a}\pm\sqrt{\frac{b^2}{4a^2}-\frac ca}$.
% \begin{macrocode}
\def\pld@FactorizeFinal#1#2#3#4#5#6#7{%
\ifnum\@multicnt=\tw@
\pld@AddTo\pld@tempoly{1}%
\pld@AccuSetX{#6}{#7}%
\pld@AccuIfZero{\let\pld@va\@empty}%
{\pld@AccuMul12%
\pld@AccuMul{#2}{#1}%
\pld@AccuGet\pld@sub
\edef\pld@va{\noexpand\pld@R\pld@sub+}%
% \end{macrocode}
% That's $\frac b{2a}$ so far, stored away in |\pld@va|.
% \begin{macrocode}
\expandafter\pld@AccuMul\pld@sub}%
\begingroup
\pld@AccuSetX{#3}{#4}%
\pld@AccuMul{-#2}{#1}%
\pld@AccuGet\pld@temp
\global\let\@gtempa\pld@temp
\endgroup
\expandafter\pld@AccuAdd\@gtempa
% \end{macrocode}
% And now the accumulator holds $\frac{b^2}{4a^2}-\frac ca$. Depending on the
% sign---complex zeros are not supported, even though the complex analysis was
% my field of activity for some years---we do nothing more or get a printable
% version of the square root and \ldots
% \begin{macrocode}
\pld@AccuIfNegative
{\@multicnt\tw@}%
{\pld@AccuGet\pld@temp
\expandafter\pld@FDefSqrt\pld@temp
% \end{macrocode}
% append two nonrational zeros.
% \begin{macrocode}
\let\pld@vb\pld@va
\pld@AddTo\pld@vb{\pld@R{-1}1}%
\pld@Extend\pld@va{\pld@temp}%
\pld@Extend\pld@vb{\pld@temp}%
\expandafter\pld@AddZero\expandafter{\pld@va}%
\expandafter\pld@AddZero\expandafter{\pld@vb}%
\@multicnt\z@
}%
\fi
% \end{macrocode}
% In this latter case or if the polynomial's degree has been zero from the
% beginning of this macro, we check whether we can omit the leading coeffient.
% \begin{macrocode}
\ifnum\@multicnt=\z@
\pld@AccuSetX{#1}{#2}%
\pld@AccuIfOne{\let\pld@current\@empty}%
{\def\pld@current{\pld@R{#1}{#2}}}%
\fi
\ifx\pld@current\@empty\else
\let\pld@temp\pld@allines
\def\pld@allines{\pld@PrintPolyWithDelims\pld@current}%
\pld@Extend\pld@allines{\pld@temp}%
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@FDefSqrt}
% Finally we need a printable version of the square root of |#1|$/$|#2|.
% We use the fact, that the root is not rational, thus only one of nominator
% and denominator can be a square. Depending on the actual numbers, the
% submacro defines |\pld@temp| correctly. Note that this submacro is used to
% make the code more readable.
% \begin{macrocode}
\def\pld@FDefSqrt#1#2{%
\pld@IfSquare{#1}%
{\pld@FDefSqrt@{\pld@R{\pld@temp}1}%
{\sqrt{\noexpand\pld@R{#2}1}}}%
{\pld@IfSquare{#2}%
{\ifnum\pld@temp=\@ne
\pld@FDefSqrt@{\sqrt{\noexpand\pld@R{#1}1}}{}%
\else
\pld@FDefSqrt@{\sqrt{\noexpand\pld@R{#1}1}}%
{\pld@R{\pld@temp}1}%
\fi}%
{\def\pld@temp{\pld@F{\sqrt{\pld@R{#1}{#2}}}{}}}%
}}
% \end{macrocode}
% It just (e)defines a general fraction without expanding some control
% sequences.
% \begin{macrocode}
\def\pld@FDefSqrt@#1#2{%
\edef\pld@temp{\noexpand\pld@F
{\noexpand#1}%
{\ifx\@empty#2\@empty\else \noexpand#2\fi}}}
% \end{macrocode}
% \end{macro}
%
%
% \section{Arithmetic}
%
% \begin{macro}{\pld@IfSquare}
% Let's begin with the macro used in the last section. As always, we initialize
% data.
% \begin{macrocode}
\def\pld@IfSquare#1{%
\@tempcnta=#1\relax
\@multicnt\@tempcnta \@tempcntb\@tempcnta
\divide\@tempcntb\tw@ \advance\@tempcntb\@ne
% \end{macrocode}
% Then we use the iteration
% $x_{n+1}=\left\lfloor \frac12\left(a+\lfloor\frac a{x_n}\rfloor\right)
% \right\rfloor$
% to calculate $\lfloor \sqrt{|#1|}\rfloor$. In version 0.11 there was a bug
% in the loop condition.
% \begin{macrocode}
\loop \ifnum\@tempcntb<\@multicnt
\@multicnt\@tempcntb
\@tempcntb\@tempcnta
\divide\@tempcntb\@multicnt
\advance\@tempcntb\@multicnt
\divide\@tempcntb\tw@
\repeat
% \end{macrocode}
% Now it is easy to decide whether |#1| is a square.
% \begin{macrocode}
\edef\pld@temp{\the\@multicnt}%
\multiply\@multicnt\@multicnt
\ifnum \@multicnt=\@tempcnta
\expandafter\@firstoftwo
\else
\expandafter\@secondoftwo
\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@Euclidean}
% \begin{macro}{\pld@XEuclidean}
% \meta{macro}\marg{integer $a$}\marg{integer $b$}
% \begin{describe}
% The base of our rational arithmetic is the Euclidean algorithm. The contents
% of \meta{macro} becomes |{|$\frac a{\gcd(a,b)}$|}{|$\frac b{\gcd(a,b)}$|}|
% in the first case. The eXtended version adds the greatest common divisor:
% |{|$\frac a{\gcd(a,b)}$|}{|$\frac b{\gcd(a,b)}$|}{|$\gcd(a,b)$|}|.
% \end{describe}
% As described, the second version extends the first definition.
% \begin{macrocode}
\def\pld@XEuclidean#1#2#3{\pld@Euclidean#1{#2}{#3}%
\edef#1{#1{\the\@tempcntb}}}
% \end{macrocode}
% Here we assign the number smaller in size (in fact not bigger) to
% |\@tempcnta| and the other to |\@tempcntb|, and make both nonnegative.
% \begin{macrocode}
\def\pld@Euclidean#1#2#3{%
\@tempcnta#2\relax \divide\@tempcnta#3\relax
\ifnum\@tempcnta=\z@ \@tempcnta#2\relax \@tempcntb#3\relax
\else \@tempcnta#3\relax \@tempcntb#2\relax \fi
\ifnum\@tempcnta<\z@ \@tempcnta -\@tempcnta \fi
\ifnum\@tempcntb<\z@ \@tempcntb -\@tempcntb \fi
% \end{macrocode}
% The loop leaves the greatest common divisor in |\@tempcntb|.
% \begin{macrocode}
\pld@Euclidean@l
% \end{macrocode}
% Now we only have to divide the numbers and define the macro |#1|.
% \begin{macrocode}
\@tempcnta#3\relax \divide\@tempcnta\@tempcntb
\edef#1{{\the\@tempcnta}}%
\@tempcnta#2\relax \divide\@tempcnta\@tempcntb
\edef#1{{\the\@tempcnta}#1}}
% \end{macrocode}
% And here is the usual Euclidean algorithm.\footnote{Note that
% \texttt{\bslash @multicnt} is used as a third scratch counter.}
% \begin{macrocode}
\def\pld@Euclidean@l{%
\ifnum\@tempcnta=\z@\else
\@multicnt\@tempcntb
\divide\@tempcntb\@tempcnta
\multiply\@tempcntb\@tempcnta
\advance\@multicnt -\@tempcntb
\@tempcntb\@tempcnta
\@tempcnta\@multicnt
\expandafter\pld@Euclidean@l
\fi}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@AccuGet}
% A rational number is stored as \marg{nominator}\marg{denominator} in
% the accumulator |\pld@accu|. Here we ensure that the denominator is
% positive.
% \begin{macrocode}
\def\pld@AccuGet{\expandafter\pld@AccuGet@\pld@accu}
\def\pld@AccuGet@#1#2#3{%
\ifnum #2<\z@ \edef#3{{-#1}{-#2}}\else\edef#3{{#1}{#2}}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AccuSet}
% \begin{macro}{\pld@AccuSetX}
% Setting the accumulator is also simple. We divide the nominator and
% denominator by their greatest common divisor only in the first case.
% \begin{macrocode}
\def\pld@AccuSet#1#2{%
\def\pld@accu{{#1}{#2}}%
\expandafter\pld@Euclidean\expandafter\pld@accu\pld@accu
\expandafter\pld@AccuGet@\pld@accu\pld@accu}
\def\pld@AccuSetX#1#2{\pld@AccuGet@{#1}{#2}\pld@accu}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@AccuPrint}
% Here we typeset the rational via |\frac| only if necessary.
% \begin{macrocode}
\def\pld@AccuPrint{\expandafter\pld@AccuPrint@\pld@accu}
\def\pld@AccuPrint@#1#2{%
\ifnum #2=\@ne \number#1\else \frac{\number#1}{\number#2}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AccuNegate}
% We just negate the nominator.
% \begin{macrocode}
\def\pld@AccuNegate{\expandafter\pld@AccuNegate@\pld@accu}
\def\pld@AccuNegate@#1#2{\def\pld@accu{{-#1}{#2}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AccuIfZero}
% \begin{macro}{\pld@AccuIfOne}
% \begin{macro}{\pld@AccuIfAbsOne}
% \begin{macro}{\pld@AccuIfNegative}
% All these definitions work the same way: expand |\pld@accu|, do the test,
% and either execute the first \meta{then} or the second \meta{else} part.
% \begin{macrocode}
\def\pld@AccuIfZero{\expandafter\pld@AccuIfZero@\pld@accu}
\def\pld@AccuIfZero@#1#2{%
\ifnum #1=\z@ \expandafter\@firstoftwo
\else \expandafter\@secondoftwo \fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@AccuIfOne{\expandafter\pld@AccuIfOne@\pld@accu}
\def\pld@AccuIfOne@#1#2{%
\ifnum #1=#2\relax \expandafter\@firstoftwo
\else \expandafter\@secondoftwo \fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@AccuIfAbsOne{\expandafter\pld@AccuIfAbsOne@\pld@accu}
\def\pld@AccuIfAbsOne@#1#2{%
\ifnum #1=#2\relax \expandafter\@firstoftwo \else
\ifnum -#1=#2\relax
\expandafter\expandafter\expandafter\@firstoftwo
\else
\expandafter\expandafter\expandafter\@secondoftwo
\fi
\fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@AccuIfNegative{\expandafter\pld@AccuIfNegative@\pld@accu}
\def\pld@AccuIfNegative@#1#2{%
\ifnum #1<\z@ \@tempcnta\m@ne \else \@tempcnta\@ne \fi
\ifnum #2<\z@ \@tempcnta -\@tempcnta \fi
\ifnum \@tempcnta<\z@ \expandafter\@firstoftwo
\else \expandafter\@secondoftwo \fi}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\pld@LCM}
% \marg{integer}
% \begin{describe}
% puts the least common multiple of \meta{integer} and \meta{nominator} into
% the accumulator.
% \end{describe}
% We use $\mathop{\mathrm{lcm}}(a,b)=\frac{a\cdot b}{\gcd(a,b)}=
% \frac{|\#1|}{\gcd(|\#1|,|\#3|)}\cdot |#3|$.
% \begin{macrocode}
\def\pld@LCM{\expandafter\pld@LCM@\pld@accu}
\def\pld@LCM@#1#2#3{%
\pld@Euclidean\pld@accu{#1}{#3}%
\@tempcnta\expandafter\@firstoftwo\pld@accu\relax
\multiply\@tempcnta#3\relax
\edef\pld@accu{{\the\@tempcnta}1}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AccuMul}
% We use the Euclidean algorithm before \ldots
% \begin{macrocode}
\def\pld@AccuMul{\expandafter\pld@AccuMul@\pld@accu}
\def\pld@AccuMul@#1#2#3#4{%
\begingroup
\pld@Euclidean\pld@va{#1}{#4}%
\pld@Euclidean\pld@vb{#3}{#2}%
\pld@ExpandTwo\pld@AccuMul@m\pld@va\pld@vb
\xdef\@gtempa{{\the\@tempcnta}{\the\@tempcntb}}%
\endgroup
\let\pld@accu\@gtempa}
% \end{macrocode}
% we multiply nominators and denominators.
% \begin{macrocode}
\def\pld@AccuMul@m#1#2#3#4{%
\@tempcnta#1\relax \multiply\@tempcnta#3\relax
\@tempcntb#2\relax \multiply\@tempcntb#4\relax}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\pld@AccuAdd}
% The addition of two rationals is the most interesting part in this section.
% It is based upon the fact that $\frac ab+\frac cd=\frac{ad+bc}{bd}$ has
% \begin{eqnarray*}
% \meta{nominator}&=&\left(\textstyle\frac a{\gcd(a,c)}\cdot\frac d{\gcd(b,d)}+\frac b{\gcd(b,d)}\cdot\frac c{\gcd(a,c)}\right)\cdot\gcd(a,c),\\
% \meta{denominator}&=&\frac{bd}{\gcd(b,d)},
% \end{eqnarray*}
% where the factors and sums are all integers and potentially smaller in size
% than in $\frac{ad+bc}{db}$. As one quickly verifies\footnote{Sorry for that
% phrase, I'm a mathematician $:\!-)$}, the nominator and denominator has the
% greatest common divisor
% \[\gcd(-\cdot-,b)\cdot\gcd\left(\textstyle-\cdot-,\frac d{\gcd(b,d)}\right),\]
% where $-\cdot-$ stands for the big parenthesized sum of the nominator.
%^^A The greatest common divisor is even \[\gcd(-\cdot-,b)\gcd(-\cdot-,d)\),
%^^A but we don't need either of this explicitly, the Euclidean algorithm will
%^^A take care of this.
%
% The implementation again expands |\pld@accu|, \ldots
% \begin{macrocode}
\def\pld@AccuAdd{\expandafter\pld@AccuAdd@a\pld@accu}
% \end{macrocode}
% and provides another submacro with the necessary fractions.
% \begin{macrocode}
\def\pld@AccuAdd@a#1#2#3#4{%
\ifnum#3=\z@\else
\pld@AccuAdd@c{#1}{#2}{#3}{#4}%
\fi}
\def\pld@AccuAdd@c#1#2#3#4{%
\begingroup
\pld@XEuclidean\pld@va{#1}{#3}%
\pld@XEuclidean\pld@vb{#2}{#4}%
\edef\pld@va{\pld@va\pld@vb}%
\expandafter\pld@AccuAdd@b\pld@va{#2}{#4}}
% \end{macrocode}
% We now have
% \begin{eqnarray*}
% \meta{nominator}&=&\left(|#1|\cdot|#5|+|#4|\cdot|#2|\right)\cdot |#3|,\\
% \meta{denominator}&=&|#7|\cdot|#5|.
% \end{eqnarray*}
% \begin{macrocode}
\def\pld@AccuAdd@b#1#2#3#4#5#6#7#8{%
\endgroup
\@tempcnta#1\relax \multiply\@tempcnta#5\relax
\@tempcntb#2\relax \multiply\@tempcntb#4\relax
\advance\@tempcnta\@tempcntb
% \end{macrocode}
% Finally we divide by $\gcd(-\cdot-,b)$ and multiply with
% $\frac{|\#3|}{|\#5|}$, which implicitly divides the result by
% $\gcd\left(-\cdot-,\frac d{\gcd(b,d)}\right)$.
% \begin{macrocode}
\expandafter\pld@Euclidean\expandafter\pld@accu\expandafter
{\the\@tempcnta}{#7}%
\pld@AccuMul{#3}{#5}}
% \end{macrocode}
% \end{macro}
%
%
% \section{Horner's scheme}
%
% The following code lines come without comments. Good luck!
%
% \begin{macrocode}
\def\pld@KVCases#1#2#3{%
\@ifundefined{pld@#1@#2}%
{\PackageError{Polynom}{Unknown value #2}{Try #3.}}%
{\csname pld@#1@#2\endcsname}}
\def\pld@KVIf#1#2{%
\@ifundefined{if#2}%
{\PackageError{Polynom}{Unknown value #2}{Try `true' or `false'.}}%
{\expandafter\let\expandafter#1\csname if#2\endcsname}}
% \end{macrocode}
% \begin{macrocode}
\define@key{pld}{showbase}[middle]{\pld@KVCases{showbase}{#1}{`false', `top', `middle', or `bottom'}}%
\def\pld@showbase@false{\let\pld@basepos=f}
\def\pld@showbase@top{\let\pld@basepos=t}
\def\pld@showbase@middle{\let\pld@basepos=m}
\def\pld@showbase@bottom{\let\pld@basepos=b}
\define@key{pld}{showvar}[true]{\pld@KVIf\pld@ifshowvar{#1}}
\define@key{pld}{showbasesep}[true]{\pld@KVIf\pld@ifshowbasesep{#1}}
\define@key{pld}{showmiddlerow}[true]{\pld@KVIf\pld@ifshowmiddlerow{#1}}
\define@key{pld}{resultstyle}{\def\pld@resultstyle{#1}}
\define@key{pld}{resultleftrule}[true]{\pld@KVIf\pld@ifhornerresultleftrule{#1}}
\define@key{pld}{resultrightrule}[true]{\pld@KVIf\pld@ifhornerresultrightrule{#1}}
\define@key{pld}{resultbottomrule}[true]{\pld@KVIf\pld@ifhornerresultbottomrule{#1}}
\define@key{pld}{tutor}[true]{\pld@KVCases{tutor}{#1}{`true', or `false'}}%
\def\pld@tutor@true{\let\pld@iftutor\iftrue}
\def\pld@tutor@false{\let\pld@iftutor\iffalse}
\define@key{pld}{tutorstyle}{\def\pld@tutorstyle{#1}}
\define@key{pld}{tutorlimit}{\@tempcnta#1\relax \advance\@tempcnta\@ne
\edef\pld@tutorlimit{\the\@tempcnta}}
\define@key{pld}{equalcolwidths}[true]{\pld@KVIf\pld@ifhornerequalcolwidths{#1}}
\define@key{pld}{arraycolsep}{\def\pld@hornerarraycolsep{#1\relax}}
\define@key{pld}{arrayrowsep}{\def\pld@hornerarrayrowsep{#1\relax}}
\polyset{showbase,
showvar=false,
showbasesep=true,
showmiddlerow=true,
tutor=false,
tutorlimit=1,
tutorstyle=\scriptscriptstyle,
resultstyle=,
resultleftrule=false,
resultrightrule=false,
resultbottomrule=false,
equalcolwidths=true,
arraycolsep=\arraycolsep,
arrayrowsep=.5\arraycolsep}
\define@key{pld}{mul}{\def\pld@mul{#1}}%
\define@key{pld}{plusface}{\pld@KVCases{hornerplusface}{#1}{`left' or 'right'}}%
\define@key{pld}{plusyoffset}{\@tempdima#1\relax \edef\pld@hornerplusyoffset{\the\@tempdima}}
\define@key{pld}{downarrowxoffset}{\@tempdima#1\relax \edef\pld@hornerdownarrowxoffset{\the\@tempdima}}
\define@key{pld}{diagarrowxoffset}{\@tempdima#1\relax \edef\pld@hornerdiagarrowxoffset{\the\@tempdima}}
\define@key{pld}{downarrow}{\def\pld@hornerdownarrow{#1}}
\define@key{pld}{diagarrow}{\def\pld@hornerdiagarrow{#1}}
\def\pld@hornerplusface@left{\let\pld@hornerplusface\llap}
\def\pld@hornerplusface@right{\let\pld@hornerplusface\rlap}
\polyset{mul=\cdot,
plusface=right,
plusyoffset=\z@,
downarrowxoffset=\z@,
diagarrowxoffset=\z@,
downarrow={\vector(0,-1){2.5}},
diagarrow={\vector(2,1){1.6}}}
% \end{macrocode}
% \begin{macrocode}
\newcommand*\polyhornerscheme[1][]{%
\begingroup
\let\pld@stage\maxdimen \polyset{#1}%
\pld@GetPoly{\pld@polya}%
{\expandafter\pld@Horner\expandafter{\pld@polya}%
\endgroup \ignorespaces}}
\def\pld@Horner#1{%
\pld@GetTotalDegree\pld@degree{#1}%
\pld@Horner@#1++%
\pld@ArrangeHorner}
\def\pld@Horner@#1+{%
\pld@SplitMonom\pld@HornerInit{#1}%
\pld@HornerIterate}
\def\pld@HornerIterate#1+{%
\advance\@tempcnta\m@ne
\ifx\@empty#1\@empty
\ifnum \@tempcnta<\z@
\let\pld@next\@empty
\else
\pld@HornerStep{\pld@R01}{}%
\def\pld@next{\pld@HornerIterate+}%
\fi
\else
\pld@GetTotalDegree\pld@degree{#1}%
\ifnum \pld@degree=\@tempcnta
\pld@SplitMonom\pld@HornerStep{#1}%
\let\pld@next\pld@HornerIterate
\else
\pld@HornerStep{\pld@R01}{}%
\def\pld@next{\pld@HornerIterate#1+}%
\fi
\fi
\pld@next}
\def\pld@HornerStep#1#2{%
\pld@AddTo\pld@lastline{&\pld@PrintPolyArg{#1}}%
\pld@MultiplyPoly\pld@lastsum\pld@lastsum\pld@value
\pld@Simplify\pld@lastsum
\ifx\pld@lastsum\@empty \def\pld@lastsum{\pld@R 01}\fi
\pld@AddTo\pld@subline{&}%
\pld@HornerExtendLine\pld@subline
\pld@AddTo\pld@lastsum{+#1}%
\pld@Simplify\pld@lastsum
\pld@AddTo\pld@currentline{&}%
\pld@iftutor
\pld@HornerExtendCurrentLine
\advance\@multicnt\@ne
\pld@HornerIfTutorStage{\pld@HornerExtendTutor\pld@HornerOtherDown}%
\advance\@multicnt\m@ne
\ifnum\@tempcnta>\z@
\pld@HornerIfTutorStage{\pld@HornerExtendTutor\pld@HornerDiag}%
\fi
\else
\pld@HornerExtendCurrentLine
\fi}
\def\pld@HornerExtendTutor#1{%
\ifnum\@tempcnta=\z@ \pld@AddTo\pld@hornerresult#1%
\else \pld@AddTo\pld@currentline#1\fi}
\def\pld@HornerExtendCurrentLine{%
\ifnum\@tempcnta=\z@
\let\pld@hornerresult\@empty
\pld@Extend\pld@hornerresult{\expandafter{\expandafter\pld@resultstyle\expandafter{%
\expandafter\pld@PrintPolyArg\expandafter{\pld@lastsum}}}}%
\pld@HornerIfStage{}%
{\let\pld@lastsum\@empty
\pld@Extend\pld@lastsum{\expandafter\phantom\expandafter{\pld@hornerresult}}%
\let\pld@hornerresult\pld@lastsum}%
\expandafter\@gobbletwo
\fi
\pld@HornerExtendLine\pld@currentline}
\def\pld@HornerExtendLine#1{%
\pld@HornerIfStage{\pld@Extend#1{\expandafter\pld@PrintPolyArg\expandafter{\pld@lastsum}}}%
{\pld@Extend#1{\expandafter\phantom\expandafter{%
\expandafter\pld@PrintPolyArg\expandafter{\pld@lastsum}}}}%
}
\def\pld@HornerFirstDown{%
\rlap{\kern\pld@hornerdownarrowxoffset\relax
\unitlength\ht\@arstrutbox
\begin{picture}(0,0)%
\setbox\z@\hbox{$\pld@tutorstyle{\pld@hornerdownarrow}$}%
\put(0,.5){\raise\ht\z@\hbox{\raise\dp\z@\copy\z@}}%
\end{picture}}}
\def\pld@HornerOtherDown{%
\pld@HornerFirstDown
\pld@hornerplusface{\kern\pld@hornerdownarrowxoffset\relax
\smash{\raise\pld@hornerplusyoffset
\hbox{\raise.5\ht\@arstrutbox
\vbox to 2.5\ht\@arstrutbox
{\vss$\pld@tutorstyle{+}$\vss}}}}}
\def\pld@HornerDiag{%
\rlap{\kern\pld@hornerdiagarrowxoffset\relax
\unitlength\ht\@arstrutbox
\begin{picture}(0,0)%
\setbox\z@\hbox{$\pld@tutorstyle{\pld@hornerdiagarrow}$}%
\put(0,.5){\box\z@}%
\put(0,.5){\kern.55\ht\@arstrutbox
$\pld@tutorstyle{\pld@mul \pld@hornerleftdelim
\pld@PrintPolyWithDelims\pld@value
\pld@hornerrightdelim}$}%
\end{picture}}}
\def\pld@HornerIfStage{%
\advance\@multicnt\m@ne
\ifnum\@multicnt>\z@ \expandafter\@firstoftwo
\else \expandafter\@secondoftwo \fi}
\def\pld@HornerIfTutorStage{%
\ifnum\@multicnt>\@ne
\ifnum\@multicnt>\pld@tutorlimit
\expandafter\expandafter\expandafter\@gobble
\else
\expandafter\expandafter\expandafter\@firstofone
\fi
\else
\expandafter\@gobble
\fi}
\def\pld@HornerInit#1#2{%
\let\pld@V\@firstoftwo
\ifx\@empty#2\@empty\else
\edef\pld@var{#2}%
\@ifundefined{pld@value@\pld@var}%
{\PackageError{Polynom}{Missing value for variable \pld@var}{}%
\@namedef{pld@value@\pld@var}{\pld@R01}}%
{}%
\expandafter\let\expandafter\pld@value\csname pld@value@\pld@var\endcsname
\fi
%
\setbox\@tempboxa\hbox{$\pld@PrintPoly\pld@value$}%
\pld@ifminus
\let\pld@hornerleftdelim(%
\let\pld@hornerrightdelim)%
\else
\let\pld@hornerleftdelim\@empty
\let\pld@hornerrightdelim\@empty
\fi
%
\@multicnt\pld@stage\relax
\@tempcnta\pld@degree\relax
\def\pld@lastline{\pld@PrintPolyArg{#1}}%
\let\pld@subline\@empty
\let\pld@currentline\@empty
\def\pld@lastsum{#1}%
\pld@iftutor
\pld@HornerExtendCurrentLine
\advance\@multicnt\@ne
\pld@HornerIfTutorStage{\pld@AddTo\pld@currentline\pld@HornerFirstDown}%
\advance\@multicnt\m@ne
\ifnum\@tempcnta>\z@
\pld@HornerIfTutorStage{\pld@AddTo\pld@currentline\pld@HornerDiag}%
\fi
\else
\pld@HornerExtendCurrentLine
\fi
\def\pld@lastsum{#1}%
\@tempcnta\pld@degree\relax % init moved up, delete this?
\advance\@tempcnta\thr@@
\edef\pld@hornermaxcol{\the\@tempcnta}%
\@tempcnta\pld@degree\relax}
% \end{macrocode}
% \begin{macrocode}
\def\pld@ArrangeHorner{%
\begingroup
\@tempdima\z@
\pld@MeasureCells\pld@lastline
\pld@MeasureCells\pld@subline
\pld@MeasureCells\pld@currentline
\pld@MeasureCells\pld@hornerresult
\everycr{}\tabskip\z@skip
\@tempdimb\ht\strutbox \advance\@tempdimb\pld@hornerarrayrowsep
\@tempdimc\dp\strutbox \advance\@tempdimc\pld@hornerarrayrowsep
\setbox\@arstrutbox\hbox{\vrule \@height\@tempdimb
\@depth\@tempdimc
\@width\z@}%
\pld@ifhornerequalcolwidths\else
\def\@startpbox##1{\hfil\vtop\bgroup \hbox\bgroup \@arrayparboxrestore}%
\def\@endpbox{\@finalstrut\@arstrutbox \egroup\par\egroup}%
\fi
\def\pld@leftdelim{(}\def\pld@rightdelim{)}%
\leavevmode
\hbox{$\vcenter{\offinterlineskip \arraycolsep\pld@hornerarraycolsep
\halign{\@arstrut
\hskip\arraycolsep \hfill\ensuremath{##}\hskip\arraycolsep
&##&&%
\hskip\arraycolsep \@startpbox\@tempdima\hfill\ensuremath{##}\@endpbox \hskip\arraycolsep\cr
\pld@ShowBase t&\pld@ifshowbasesep\vrule\fi&\pld@lastline\cr
\pld@ifshowmiddlerow \pld@ShowBase m&\pld@ifshowbasesep\vrule\fi&\pld@subline\cr \fi \cline{2-\pld@hornermaxcol}%
\pld@ShowBase b&&\pld@currentline\omit
\pld@ifhornerresultleftrule \vrule \fi
\hskip\arraycolsep \@startpbox\@tempdima\relax\hfill\ensuremath{\pld@hornerresult}\@endpbox \hskip\arraycolsep
\pld@ifhornerresultrightrule \vrule \fi \cr
\pld@ifhornerresultbottomrule \cline{\pld@hornermaxcol-\pld@hornermaxcol} \fi
}%
}$}%
\endgroup}
% \end{macrocode}
% \begin{macrocode}
\def\pld@ShowBase#1{%
\ifx#1\pld@basepos
\pld@ifshowvar x=\fi\pld@PrintPoly\pld@value
\fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@MeasureCells#1{\expandafter\pld@MeasureCells@#1&\@nil&}
\def\pld@MeasureCells@#1&{%
\ifx\@nil#1\relax\else
\setbox\@tempboxa\hbox{\ensuremath{#1}}%
\ifdim\wd\@tempboxa>\@tempdima
\@tempdima\wd\@tempboxa
\fi
\expandafter\pld@MeasureCells@
\fi}
% \end{macrocode}
% \begin{macrocode}
\def\pld@GetTotalDegree#1#2{%
\begingroup
\let\pld@R\@gobbletwo \let\pld@F\@gobbletwo \let\pld@S\@gobbletwo
\def\pld@V##1##2{\advance\@tempcnta##2\relax}%
\def#1##1+##2\@nil{##1}%
\edef#1{\@tempcnta\z@#1#2+\@nil}%
#1\xdef\@gtempa{\the\@tempcnta}%
\endgroup
\let#1\@gtempa}
% \end{macrocode}
%
% \begin{macrocode}
%</package>
% \end{macrocode}
%
%
% \begingroup\small
% \section{History}
% \renewcommand\labelitemi{--}
% \begin{itemize}
% \item[0.1] from 2000/04/18 (private test version)
% \item long division algorithm et al, basic scanner, basic simplification
% \item[0.11] from 2001/03/23
% \item total reimplementation except division algorithm et al
% \item improved: scanner, simplification, handling of symbols
% \item new: gcd, factorization, rational arithmetic, key $=$ value interface
% \item[0.12] from 2001/04/11
% \item bugs in |\pld@IfSquare| and |\pld@ScanOpen| removed
% \item slightly improved scanner (|^| on expressions) and new key \texttt{delims}
% \item[0.13] from 2001/09/27
% \item new \texttt{stage} key allows stepwise printing of polynomial long divisions
% \item[0.14] from 2002/01/10
% \item added \texttt{style=C}; this led to the new \texttt{div} key and the optional argument of \texttt{delims}
% \item[0.15] from 2002/10/29
% \item bugs fixed in |\polygcd| and |\pld@LongEuclideanPoly|
% \item[0.16] from 2004/08/12
% \item added (bugfixed version of) Horner's scheme and fixed bug in |\pld@InsertItems@find|
% \end{itemize}
% The phrase `et al' stands for the definitions directly related to the
% division algorithm: polynomial multiplication, |\pld@IfNeedsDivision|,
% subtraction, and alignment.
% \medskip
%
% \noindent TODO:
% \begin{itemize}
% \item PBZ
% \item use \texttt{stage} also on \cs{polylonggcd}
% \item possibility to highlight the most recent \texttt{stage}
% \item remove problems inside array and tabular
% \item carry out dependencies in the implementation part (or remove them)
% \item internal data format: introduce linear, square factors?
% \item generalize exponents for printing $y^{(4)}-y^{(2)}+\ldots$ ?
% \item define derivatives?
% \end{itemize}
% \endgroup
%
%
% \Finale
%
%%
%%
\endinput
|