1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
% \iffalse meta-comment
%
% by Stefan Hst 2007
%
% This file may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either
% version 1.2 of this license or (at your option) any later
% version. The latest version of this license is in:
%
% http://www.latex-project.org/lppl.txt
%
% and version 1.2 or later is part of all distributions of
% LaTeX version 1999/12/01 or later.
%
% \fi
%
% \iffalse
%<package>\NeedsTeXFormat{LaTeX2e}
%<package>\ProvidesPackage{polynomial}
%<*driver>
\documentclass{ltxdoc}
\usepackage{polynomial}
\usepackage{amsmath}
\usepackage{t1enc}
\usepackage[a4paper,body={150mm,230mm}]{geometry}
\def\labelitemi{$\blacktriangleright$}
\def\labelitemii{$\triangleright$}
\newdimen\tabsepadd
\tabsepadd=2mm
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\OnlyDescription
\begin{document}
\DocInput{polynomial.dtx}
\end{document}
%</driver>
% \fi
% \CheckSum{0}
% \changes{v1.0}{2007/02/04}{Initial version}
% \changes{v1.1}{2007/03/17}{Test}
% \DoNotIndex{\#,\$,\%,\&,\@,\\,\{,\},\^,\_,\~,\ }
% \title{The \textsf{polynomial.sty} package\thanks{Version 1.1, 2007/03/17}}
% \author{Stefan Hst}
% \date{}
% \maketitle
% \noindent
% The package \texttt{polynomial.sty} offers an easy way to write
% (univariate) polynomials and rational functions. It defines two commands,
% one for polynomials \verb|\polynomial{coeffs}| and one for rational functions
% \verb|\polynomialfrac{Numerator}{Denominator}|. The first of them,
% \verb|\polynomial|, prints a polynomial with the coefficients in the
% comma separated list of the argument. The second, \verb|\polynomialfrac|,
% prints a fraction of two polynomials. There is also an optional
% argument to the commands that changees the properties of the
% polynomials. The default values can be changed
% by the command \verb|\polynomialstyle|. In the following the commands
% are described by a set of explained examples.
% The coefficients of the polynomials are given as a comma separated
% lists. If a coefficient is a zero it is not printed, and if it is 1
% only the monomial is printed. By default there is a plus in
% between two terms, but if the first character of the coefficient is
% minus it is changed to minus.
% \par\strut\par
% \noindent
% \textbf{Examples:}
% \newline\strut
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial{1,2,3,4,5}|
% & $\polynomial{1,2,3,4,5}$\\[\tabsepadd]
% \verb|\polynomial{3,35,0,0,45}|
% & $\polynomial{3,35,0,0,45}$\\[\tabsepadd]
% \verb|\polynomial{c_0,-c_1,c_2,-c_3,c_4}|
% & $\polynomial{c_0,-c_1,c_2,-c_3,c_4}$\\[\tabsepadd]
% \verb|\polynomial{0,0,0,1,-1,1,0,1,0,0,1,0,0}|
% & $\polynomial{0,0,0,1,-1,1,0,1,0,0,1,0,0}$\\[\tabsepadd]
% \verb|\polynomial{-3,A\sin(\alpha t), e^{j\phi},|\newline
% \verb| \left(\sum_{k=0}^{\infty}a^k\right)}|
% & $\displaystyle\polynomial{-3,A\sin(\alpha t),e^{j\phi},
% \left(\sum_{k=0}^{\infty}a^k\right)}$\\[\tabsepadd]
% \verb|\polynomialfrac{a,b,c,-d,e}{f,g,h,i}|
% & $\displaystyle\polynomialfrac{a,b,c,-d,e}{f,g,h,i}$
% \end{tabular}
% \par\strut\par
% There is a set of variables that can be used in an optional
% argument, using the keyval-style. By default the the exponents
% increases from left to right. There are two Boolean variables,
% \verb|falling| and \verb|reciprocal|, that change this. Both are used
% as \verb|falling=true| or \verb|falling=false|. The default is
% \verb|true| for both variables, meaning, e.g., that \verb|falling| is
% the same as the first variant. The difference between the commands
% is that the first uses decreasing exponents from left to right instead
% of increasing, while the second uses increasing exponents from right
% to left (hence giving the reciprocal polynomial). If both are true the
% polynomial will be written with decreasing exponents from right to
% left.
% \par\strut\par
% \noindent
% \textbf{Examples:}
% \newline\strut
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial[falling]{a,b,c,-d,e}|
% & $\polynomial[falling]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[reciprocal]{a,b,c,-d,e}|
% & $\polynomial[reciprocal]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[reciprocal,falling]{a,b,c,-d,e}|
% & $\polynomial[reciprocal,falling]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomialfrac[falling]{a,b,c,-d,e}{f,g,h,i}|
% & $\displaystyle\polynomialfrac[falling]{a,b,c,-d,e}{f,g,h,i}$\\[\tabsepadd]
% \verb|\polynomialfrac[reciprocal]{a,b,c,-d,e}{f,g,h,i}|
% & $\displaystyle\polynomialfrac[reciprocal]{a,b,c,-d,e}{f,g,h,i}$
% \end{tabular}
% \par\strut\par
% It is also possible to change the polynomial variable through the
% optional argument \verb|var=<nbr>|. The starting value of the
% exponents can be changed through \verb|start=<nbr>|. There is also a
% variable \verb|step=<nbr>| that changes the incrementation steps of the
% exponents.
% \par\strut\par
% \noindent
% \textbf{Examples:}
% \newline\strut
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial[var=t]{a,b,c,-d,e}|
% & $\polynomial[var=t]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[var=\Phi,start=2]{a,b,c,-d,e}|
% & $\polynomial[var=\Phi,start=2]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[var=z,falling]{a,b,c,-d,e}|
% & $\polynomial[var=z,falling]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomialfrac[var=\varphi,reciprocal,start=-3]|\newline
% \verb| {a,b,c,-d,e}{f,g,h,i}|
% & $\displaystyle\polynomialfrac[var=\varphi,reciprocal,start=-3]
% {a,b,c,-d,e}{f,g,h,i}$\\[\tabsepadd]
% \verb|\polynomial[step=3,var=\pi]{a,b,c,-d,e}|
% & $\polynomial[step=3,var=\pi]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[step=2,reciprocal,falling,start=3]|\newline
% \verb| {a,b,c,-d,e}|
% & $\polynomial[step=2,reciprocal,falling,start=3]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[step=-3,start=2]{a,b,c,-d,e}|
% & $\polynomial[step=-3,start=2]{a,b,c,-d,e}$\\[\tabsepadd]
% \end{tabular}
% \par\strut\par
% Sometimes, it is desirable to use other addition and subtraction
% symbols than the default. This is done by the variables \verb|add| and
% \verb|sub|. If the first coefficient is negative this will also have
% the subtraction sign specified in \verb|sub|. In some cases the
% additive inverse is denoted by a normal minus, while the
% subtraction (if defined) something else, e.g., $\ominus$. For this
% purpose there is a third variable \verb|firstsub|.
% \par\strut\par
% \noindent
% \textbf{Examples:}
% \newline\strut
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial[add=\oplus,sub=\ominus]|\newline
% \verb| {a,-b,c,-d,e}|
% & $\polynomial[add=\oplus,sub=\ominus]{a,-b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[add=\oplus,sub=\ominus]|\newline
% \verb| {-a,b,-c,d,-e}|
% & $\polynomial[add=\oplus,sub=\ominus]{-a,b,-c,d,-e}$\\[\tabsepadd]
% \verb|\polynomial[add=\oplus,sub=\ominus,firstsub=-]|\newline
% \verb| {-a,b,-c,d,-e}|
% & $\polynomial[add=\oplus,sub=\ominus,firstsub=-]{-a,b,-c,d,-e}$
% \end{tabular}
% \par\strut\par
% All of the above variables can be set either for individual
% commands, as shown, or for the rest of the document with the command
% \verb|\polynomialstyle|. In this case there is also an option that
% resets all values to the starting values, called \verb|default|.
% \par\strut\par
% \noindent
% \textbf{Examples:}
% \newline\strut
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial{a,b,c,-d,e}|
% & $\polynomial{a,b,c,-d,e}$
% \end{tabular}\vspace*{\tabsepadd}\newline
% \verb|\polynomialstyle{var=z,falling}|
% \polynomialstyle{var=z,falling}\vspace*{\tabsepadd}\newline
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial{a,b,c,-d,e}|
% & $\polynomial{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[reciprocal]{a,b,c,-d,e}|
% & $\polynomial[reciprocal]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomial[start=3,falling=false]{a,b,c,-d,e}|
% & $\polynomial[start=3,falling=false]{a,b,c,-d,e}$\\[\tabsepadd]
% \verb|\polynomialfrac{a,b,c,-d,e}{f,g,h,i}|
% & $\displaystyle\polynomialfrac{a,b,c,-d,e}{f,g,h,i}$
% \end{tabular}\vspace*{\tabsepadd}\newline
% \verb|\polynomialstyle{add=\oplus,sub=\ominus}|
% \polynomialstyle{add=\oplus,sub=\ominus}\vspace*{\tabsepadd}\newline
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial{a,b,c,-d,e}|
% & $\polynomial{a,b,c,-d,e}$
% \end{tabular}\vspace*{\tabsepadd}\newline
% \verb|\polynomialstyle{default}|
% \polynomialstyle{default}\vspace*{\tabsepadd}\newline
% \begin{tabular}{@{}p{0.6\linewidth}p{0.4\linewidth}}
% \verb|\polynomial{a,b,c,-d,e}|
% & $\polynomial{a,b,c,-d,e}$
% \end{tabular}
% \StopEventually{}
%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% polynomial.sty
%%
%% v1.1
%% 2007-03-17
%%
%% Stefan Hst
%% (stefan.host@it.lth.se)
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Problems:
%% * Very long numbers in coefficient result in overflow.
%%
%% Fixes
%% 2007-03-17: Removed allocation of counter for each call of \polynomial.
%% 2007-03-17: Replaced some other counters with \def.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Counters
\newcount\shpol@numcoeff% Number of coeffs parsed
\newcount\shpol@coeffnum% loop var for coeffs
\newcount\shpol@exponent% loop var for exponents (not same as coeffnum)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ifs
\newif\if@shpol@firstterm% If first term no '+'
\newif\if@shpol@falling% If exponents falling
\newif\if@shpol@reciprocal% If reciprocal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% variables
\def\shpol@var{x}% keyval: poly var
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% keyval
\RequirePackage{keyval}
%% in function
\define@key{shpol}{start}[0]{\def\shpol@start{#1}}%{\shpol@start=#1}
\define@key{shpol}{var}[x]{\def\shpol@tmpvar{#1}}
\define@key{shpol}{step}[1]{\def\shpol@expstep{#1}}%{\shpol@expstep=#1}
\define@key{shpol}{falling}[true]{\csname @shpol@falling#1\endcsname}
\define@key{shpol}{reciprocal}[true]{\csname @shpol@reciprocal#1\endcsname}
\define@key{shpol}{add}[+]{\def\shpol@add{#1}}
\define@key{shpol}{sub}[-]{\def\shpol@sub{#1}\def\shpol@firstsub{#1}}
\define@key{shpol}{firstsub}[-]{\def\shpol@firstsub{#1}}
%% default values
\define@key{shpoldefault}{start}[0]{\def\shpol@start{#1}}%{\shpol@start=#1}
\define@key{shpoldefault}{var}[x]{\def\shpol@var{#1}}
\define@key{shpoldefault}{step}[1]{\def\shpol@expstep{#1}}%{\shpol@expstep=#1}
\define@key{shpoldefault}{falling}[true]{\csname @shpol@falling#1\endcsname}
\define@key{shpoldefault}{reciprocal}[true]{\csname @shpol@reciprocal#1\endcsname}
\define@key{shpoldefault}{add}[+]{\def\shpol@add@default{#1}}
\define@key{shpoldefault}{sub}[-]{%
\def\shpol@sub@default{#1}\def\shpol@firstsub@default{#1}}
\define@key{shpoldefault}{firstsub}[-]{\def\shpol@firstsub@default{#1}}
%%
\define@key{shpoldefault}{default}[true]{%
\setkeys{shpoldefault}{start,var,step,falling=false,reciprocal=false,add,sub,firstsub}}
\setkeys{shpoldefault}{default}
\def\polynomialstyle#1{\setkeys{shpoldefault}{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%
%% help defs
\def\shpol@splitcoeff#1{\shpol@@splitcoeff#1\@nil}
\def\shpol@@splitcoeff#1#2\@nil{%
\def\shpol@firstofcoeff{#1}%
\def\shpol@restofcoeff{#2}
}
\def\shpol@minus{-}
%% If #1 is a number that is =1 then #2 else #3
%% see www.tex.ac.uk/cgi-bin/texfaq2html?label=isitanum
\def\if@@one#1#2#3{%
\ifcat_\ifnum1=0#1 _\else A\fi #2\else #3\fi}
%% If #1 a number that is =0 then #2 else #3
\def\if@@zero#1#2#3{%
\ifcat_\ifnum0=0#1 _\else A\fi #2\else #3\fi}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set one term in polynomial
\def\shpol@setterm[#1]#2#3{% [variable]{koefficient}{exponent}
\def\@shpol@koeff{#2} %% To make it more clear
\ifnum#3=0 %% x^0
\@shpol@koeff
\else
\if@@one{#2}{}{\@shpol@koeff}
#1
\ifnum#3=1\else
^{#3}
\fi
\fi}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\shpol@getcoeff#1{% Pars the coeffs and store in #1-vars
\shpol@numcoeff=0%
\@for\shpol@coeff:=#1\do{%
\advance\shpol@numcoeff by 1\relax%
\expandafter\let\csname shpol@coeff\romannumeral\shpol@numcoeff\endcsname\shpol@coeff%
}%
}
\def\shpol@writepoly{% Write the #1-vars as polynomial
\shpol@coeffnum=1
\shpol@exponent=0
\if@shpol@reciprocal
\if@shpol@falling
\advance\shpol@exponent by -\shpol@numcoeff
\advance\shpol@exponent by 1
\else
\advance\shpol@exponent by \shpol@numcoeff
\advance\shpol@exponent by -1
\fi
\multiply\shpol@exponent by \shpol@expstep
\fi
\advance\shpol@exponent by \shpol@start
\loop%
\expandafter\let\expandafter\shpol@coeff%
\csname shpol@coeff\romannumeral\shpol@coeffnum\endcsname
\if@@zero{\shpol@coeff}{}{% coeff not zero
%% Check if first char is '-'. Then remove it and replace + with -.
\expandafter\shpol@splitcoeff\expandafter{\shpol@coeff}
\ifx\shpol@firstofcoeff\shpol@minus
\if@shpol@firstterm\shpol@firstsub\else\shpol@sub\fi
\let\shpol@coeff\shpol@restofcoeff
\else
\if@shpol@firstterm\else\shpol@add\fi
\fi
%%\fi
\@shpol@firsttermfalse
\shpol@setterm[\shpol@tmpvar]%
{\shpol@coeff}%
{\the\shpol@exponent}%
}
\ifnum\shpol@coeffnum<\shpol@numcoeff
\advance\shpol@coeffnum by 1\relax%
\advance\shpol@exponent by
\if@shpol@falling
\if@shpol@reciprocal \shpol@expstep \else -\shpol@expstep \fi
\else
\if@shpol@reciprocal -\shpol@expstep \else \shpol@expstep \fi
\fi\relax%
\repeat
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\shpol@defaultvalues{% Set default values for keyval
\let\shpol@tmpvar\shpol@var
\let\shpol@add\shpol@add@default
\let\shpol@sub\shpol@sub@default
\let\shpol@firstsub\shpol@firstsub@default
\@shpol@firsttermtrue
}
\def\polynomial{%
\shpol@defaultvalues
\@ifnextchar[%]
{\opt@shpol@polynomial}{\shpol@polynomial}}
\def\opt@shpol@polynomial[#1]{%
\setkeys{shpol}{#1}
\shpol@polynomial}
\def\shpol@polynomial#1{%
\shpol@getcoeff{#1}
\shpol@writepoly
}
\def\polynomialfrac{%
\@ifnextchar[%]
{\opt@shpol@rational}{\@shpol@rational}}
\def\@shpol@rational#1#2{%
\frac{\polynomial{#1}}{\polynomial{#2}}}
\def\opt@shpol@rational[#1]#2#3{%
\frac{\polynomial[#1]{#2}}{\polynomial[#1]{#3}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\endinput
% \Finale
|