1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Module: ZZTeX Programming Constructs
%
% Synopsis: This module contains definitions for ZZTeX's programming
% constructs. These constructs provide various extensions
% to TeX's sometimes meager repertoire of programming
% features.
%
% Author: Paul C. Anagnostopoulos
% Created: 27 March 1989
%
% Copyright 1989--2020 by Paul C. Anagnostopoulos
% under The MIT License (opensource.org/licenses/MIT)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Token Hackery
% ----- -------
% We need a name for a space token.
\def \\{\let \zspacetoken = } \\ % Now \zspacetoken is a space token.
% This macro discards the next token.
\def \discardtok #1{}% token
% This macro removes the `pt' following a dimension.
{\catcode `\p = \catother \catcode `\t = \catother
\gdef \zremovedu #1pt{#1}
} % \catcode
% Using that macro, we can define a macro that "converts" a dimen register
% into a factor.
\def \thefactor #1{\expandafter\zremovedu \the#1}
% This macro extracts the contents of a macro and returns it as plain text.
% Usage: \expandafter\zdefof \meaning\macro\zmark
\def \zdefof #1:->#2\zmark{#2}
% Control Sequence Names
% ------- -------- -----
\def \name #1{% {\tokens}
\csname \expandafter\discardtok \string#1\endcsname}
\def \withname #1#2{% {\command}{\tokens}
\expandafter#1\csname \expandafter\discardtok \string#2\endcsname}
% Macro Expansion
% ----- ---------
\def \expandaftertwice {\expandafter\expandafter\expandafter}
\def \expandafterthrice {\expandafter\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter}
\def \zoneoftwo #1#2{#1}% {first}{second}
\def \ztwooftwo #1#2{#2}% {first}{second}
\def \zoneofthree #1#2#3{#1}% {first}{second}{third}
\def \ztwoofthree #1#2#3{#2}% {first}{second}{third}
\def \zthreeofthree #1#2#3{#3}% {first}{second}{third}
\def \zoneoffour #1#2#3#4{#1}% {first}{second}{third}{fourth}
\def \ztwooffour #1#2#3#4{#2}% {first}{second}{third}{fourth}
\def \zthreeoffour #1#2#3#4{#3}% {first}{second}{third}{fourth}
\def \zfouroffour #1#2#3#4{#4}% {first}{second}{third}{fourth}
% Flags (Booleans)
% ----- ----------
% The boolean literals \true and \false are appropriate for use with
% the \if command, which tests the codes of the next two characters.
\def \true {TT}
\def \false {FL}
\def \setflag #1=#2{\edef #1{#2}}% \flag = boolean
% IF and Predicates
% -- --- ----------
% A "predicate" is a macro that returns \true or \false as its value.
% Such values are suitable for use with the \if conditional. For example:
%
% \if \oddp{\x} <then-clause> \else <else-clause> \fi
% A predicate can be used with \setflag as follows:
%
% \setflag \flag = {<predicate>}
% Here are the predicates for TeX's repertoire of conditional
% commands. These might be more appropriately interspersed with
% other definitions in this module, but what the heck.
% Some additional "obvious" predicates are defined.
\def \eqlp #1#2{\ifnum #1 = #2\true \else \false \fi}
\def \neqlp #1#2{\ifnum #1 = #2\false \else \true \fi}
\def \lssp #1#2{\ifnum #1 < #2\true \else \false \fi}
\def \gtrp #1#2{\ifnum #1 > #2\true \else \false \fi}
\def \zerop #1{\ifnum #1 = 0\true \else \false \fi}
\def \onep #1{\ifnum #1 = 1\true \else \false \fi}
\def \posp #1{\ifnum #1 > 0\true \else \false \fi}
\def \negp #1{\ifnum #1 < 0\true \else \false \fi}
\def \oddp #1{\ifodd #1\true \else \false \fi}
\def \evenp #1{\ifodd #1\false \else \true \fi}
\def \rangep #1#2#3{\if \orp{\lssp{#1}{#2}}{\gtrp{#1}{#3}}\false \else
\true \fi}
\def \tensp #1{\rangep{#1}{10}{19}}
\def \dimeqlp #1#2{\ifdim #1 = #2\true \else \false \fi}
\def \dimneqlp #1#2{\ifdim #1 = #2\false \else \true \fi}
\def \dimlssp #1#2{\ifdim #1 < #2\true \else \false \fi}
\def \dimgtrp #1#2{\ifdim #1 > #2\true \else \false \fi}
\def \dimzerop #1{\ifdim #1 = 0pt\true \else \false \fi}
\def \dimposp #1{\ifdim #1 > 0pt\true \else \false \fi}
\def \dimnegp #1{\ifdim #1 < 0pt\true \else \false \fi}
\def \vmodep {\ifvmode \true \else \false \fi}
\def \hmodep {\ifhmode \true \else \false \fi}
\def \mathmodep {\ifmmode \true \else \false \fi}
\def \textmodep {\ifmmode \false \else \true \fi}
\def \innermodep {\ifinner \true \else \false \fi}
\long\def \codeeqlp #1#2{\if #1#2\true \else \false \fi}
\long\def \cateqlp #1#2{\ifcat #1#2\true \else \false \fi}
\long\def \tokeqlp #1#2{\ifx #1#2\true \else \false \fi}
\long\def \xtokeqlp #1#2{\expandafter\ifx #1#2\true \else \false \fi}
\long\def \definedp #1{%
\expandafter\ifx \csname \expandafter\discardtok \string#1\endcsname
\relax \false \else \true \fi}
\long\def \undefinedp #1{%
\expandafter\ifx \csname \expandafter\discardtok \string#1\endcsname
\relax \true \else \false \fi}
\def \zempty {}
\def \emptydefp #1{\ifx #1\zempty \true \else \false \fi}% {\name}
\let \emptylistp = \emptydefp
\long\def \emptyargp #1{% {#n}
\zempargp #1\zempargq\zmark}
\long\def \zempargp #1#2\zmark{%
\ifx #1\zempargq \true \else \false \fi}
\def \zempargq {\zempargq}
\def \emptytoksp #1{% {\tokenreg}
\expandafter\zemptoksp \the#1\zmark}
\long\def \zemptoksp #1\zmark{\emptyargp{#1}}
\def \voidboxp #1{\ifvoid #1\true \else \false \fi}
\def \hboxp #1{\ifhbox #1\true \else \false \fi}
\def \vboxp #1{\ifvbox #1\true \else \false \fi}
\def \eofp #1{\ifeof #1\true \else \false \fi}
% Flags can also be used as predicates, as in:
%
% \if \flaga <then-clause> \else <else-clause> \fi
% Now here we have predicates for the common logical operators.
\def \notp #1{\if #1\false \else \true \fi}
\def \andp #1#2{\if #1#2\else \false \fi}% {boolean1}{boolean2}
\def \orp #1#2{\if #1\true \else #2\fi}% {boolean1}{boolean2}
% Pseudo-Predicates
% -----------------
\def \stringeql #1#2#3{% {\return-flag}{string1}{string2}
\edef \zstra {#2}%
\edef \zstrb {#3}%
\edef #1{\ifx \zstra\zstrb \true \else \false \fi}}
\def \gluevaries #1#2{% {\return-flag}{glue}
\zskipa = #2\relax
\tdimena = \zskipa
\stringeql{#1}{\the\zskipa}{\the\tdimena}%
\edef #1{\if #1\false \else \true \fi}}
% Arithmetic
% ----------
\def \negate #1{\multiply #1 by -1\relax}% {\register}
\def \increment #1{\advance #1 by 1\relax}% {\count}
\def \decrement #1{\advance #1 by -1\relax}% {\count}
% Looping
% -------
\def \loop #1\repeat{% body [actions] \if condition [actions] \repeat
\def \zloopbody {#1}%
\zloop}
\def \zloop {%
\zloopbody
%\if condition
\let \zloopnext = \zloop
\else
\let \zloopnext = \relax
\fi
\zloopnext}
\let \repeat = \fi
|