File: exer7-6.tex

package info (click to toggle)
texlive-lang 2016.20170123-5
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 1,093,148 kB
  • ctags: 15,901
  • sloc: perl: 46,074; xml: 29,603; makefile: 5,248; sh: 3,179; python: 2,949; ansic: 2,846; ruby: 945; lisp: 726; awk: 636; java: 159; sed: 142; cpp: 12
file content (11 lines) | stat: -rw-r--r-- 512 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
\documentclass{article}
\begin{document}
The union of two sets $\mathcal{A}$ and $\mathcal{B}$ is the set of elements
that are in at least one of the two sets,  and is designated as
$\mathcal{A\cup B}$. This operation is commutative
$\mathcal{A\cup B = B\cup A}$ and associative $\mathcal{(A\cup B)\cup C =
A\cup(B\cup C)}$.  If $\mathcal{A\subseteq B}$, then
$\mathcal{A\cup B = B}$. It then follows that $\mathcal{A\cup A = A}$,
$\mathcal{A\cup\{\emptyset\} = A}$ and $\mathcal{J\cup A = J}$. 

\end{document}