File: exer7-8.tex

package info (click to toggle)
texlive-lang 2016.20170123-5
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 1,093,148 kB
  • ctags: 15,901
  • sloc: perl: 46,074; xml: 29,603; makefile: 5,248; sh: 3,179; python: 2,949; ansic: 2,846; ruby: 945; lisp: 726; awk: 636; java: 159; sed: 142; cpp: 12
file content (10 lines) | stat: -rw-r--r-- 402 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
\documentclass{article}
\setlength{\textwidth}{135mm}
\begin{document}
\noindent
The gamma function $\Gamma(x)$ is defined as
\[ \Gamma(x)\equiv\lim_{n\to\infty}\prod_{\nu=0}^{n-1}\frac{n!n^{x-1}}{x+\nu}
	    = \lim_{n\to\infty}\frac{n!n^{x-1}}{x(x+1)(x+2)\cdots(x+n-1)}
	    \equiv\int_0^\infty e^{-t}t^{x-1}\,dt \]
The integral definition is valid only for $x>0$ (2nd Euler integral).
\end{document}