1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
% Introductory presentation:intropres.tex
\documentclass{foils}
\usepackage{amsmath}
\usepackage{amssymb,latexsym}
\usepackage{graphicx}
\begin{document}
\title{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin\\
Computer Science Department\\
University of Winnebago\\
Winnebago, MN 53714}
\date{March 15, 2006}
\maketitle
\begin{abstract}
In this presentation, we prove that there exist
\emph{complete-simple distributive lattices,}
that is, complete distributive lattices
with only two complete congruences.
\end{abstract}
\foilhead{The result}
%\section{Introduction}\label{S:intro}
In this presentation, we prove the following result:
\begin{Theorem}
There exists an infinite complete distributive
lattice~$K$ with only the two trivial complete
congruence relations.
\end{Theorem}
\foilhead{The construction}
%\section{The $\Pi^{*}$ construction}\label{S:P*}
The following construction is crucial in the proof
of our theorem:
\begin{Definition}\label{D:P*}
Let $D_{i}$, for $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Their
$\Pi^{*}$ product is defined as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) =
\Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new
unit element.
\end{Definition}
\foilhead{}
\begin{figure}[hbt]
\centering\includegraphics[scale=2]{products}
\caption{The product construction illustrated}\label{Fi:products}
\end{figure}
\foilhead{Notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \dots, 0, \dots, d, \dots, 0, \dots \rangle
\]
is the element of\, $\Pi^{*} ( D_{i} \mid i \in I )$ whose
$i$-th component is $d$ and all the other components
are $0$.
See also Ernest~T. Moynahan, 1957.
\foilhead{Second result}
\begin{Theorem}\label{T:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.
Let $\Theta$ be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
\begin{equation*}\label{E:cong1}
\langle \dots, d, \dots, 0, \dots \rangle \equiv
\langle \dots, c, \dots, 0, \dots \rangle
\pod{\Theta},
\end{equation*}
then $\Theta = \iota$.
\end{Theorem}
\foilhead{Verification}
Since
\begin{equation*}
\langle \dots, d, \dots, 0, \dots \rangle \equiv
\langle \dots, c, \dots, 0, \dots \rangle
\pod{\Theta},
\end{equation*}
and $\Theta$ is a complete congruence relation,
it follows from condition~(J) that modulo $\Theta$
\begin{equation*}\label{E:cong}
\langle \dots, d, \dots, 0, \dots \rangle \equiv
\bigvee ( \langle \dots, c, \dots, 0, \dots \rangle
\mid d \leq c < 1 ).
\end{equation*}
\foilhead{Verification completed}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the last congruence
with $\langle \dots, a, \dots, 0, \dots \rangle$,
we obtain that
\begin{equation*}
0 = \langle \dots, a, \dots, 0, \dots \rangle
\pod{\Theta},
\end{equation*}
Using the completeness of $\Theta$ and the previous equation,
we get:
\[
0 \equiv \bigvee ( \langle \dots, a, \dots, 0,
\dots \rangle \mid a \in D_{j}^{-} ) = 1
\pod{\Theta},
\]
hence $\Theta = \iota$.
\foilhead{}
\begin{thebibliography}{9}
\bibitem{sF90}
Soo-Key Foo,
\emph{Lattice Constructions},
Ph.D. thesis,
University of Winnebago, Winnebago, MN, December, 1990.
\bibitem{gM68}
George~A. Menuhin,
\emph{Universal Algebra},
D.~Van Nostrand, Princeton, 1968.
\bibitem{eM57}
Ernest~T. Moynahan,
\emph{On a problem of M. Stone},
Acta Math. Acad. Sci. Hungar. \textbf{8} (1957),
455--460.
\bibitem{eM57a}
Ernest~T. Moynahan,
\emph{Ideals and congruence relations in lattices.} II,
Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
(1957), 417--434.
\end{thebibliography}
\end{document}
|