1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
|
% This is part of the book TeX for the Impatient.
% Copyright (C) 2003, 2014 Paul W. Abrahams, Kathryn A. Hargreaves, Karl Berry.
% See file fdl.tex for copying conditions.
\input macros
\chapter {Commands \linebreak for composing \linebreak math formulas}
\bix^^{math}
\chapterdef{math}
This section covers commands for constructing math formulas.
For an explanation of the conventions used in this section,
see \headcit{Descriptions of the commands}{cmddesc}.
\begindescriptions
%==========================================================================
\section {Simple parts of formulas}
%==========================================================================
\subsection {Greek letters}
\begindesc
\bix^^{Greek letters}
\dothreecolumns 40
\easy\ctsdisplay alpha {}
\ctsdisplay beta {}
\ctsdisplay chi {}
\ctsdisplay delta {}
\ctsdisplay Delta {}
\ctsdisplay epsilon {}
\ctsdisplay varepsilon {}
\ctsdisplay eta {}
\ctsdisplay gamma {}
\ctsdisplay Gamma {}
\ctsdisplay iota {}
\ctsdisplay kappa {}
\ctsdisplay lambda {}
\ctsdisplay Lambda {}
\ctsdisplay mu {}
\ctsdisplay nu {}
\ctsdisplay omega {}
\ctsdisplay Omega {}
\ctsdisplay phi {}
\ctsdisplay varphi {}
\ctsdisplay Phi {}
\ctsdisplay pi {}
\ctsdisplay varpi {}
\ctsdisplay Pi {}
\ctsdisplay psi {}
\ctsdisplay Psi {}
\ctsdisplay rho {}
\ctsdisplay varrho {}
\ctsdisplay sigma {}
\ctsdisplay varsigma {}
\ctsdisplay Sigma {}
\ctsdisplay tau {}
\ctsdisplay theta {}
\ctsdisplay vartheta {}
\ctsdisplay Theta {}
\ctsdisplay upsilon {}
\ctsdisplay Upsilon {}
\ctsdisplay xi {}
\ctsdisplay Xi {}
\ctsdisplay zeta {}
\egroup
\explain
These commands produce Greek letters suitable for mathematics.
You can only use them
within a math formula, so if you need a Greek letter within ordinary
text you must enclose it in dollar signs (|$|). \TeX\ does not have
commands for Greek letters that look like their roman
counterparts, since you can get them by using those roman
counterparts. For example, you can get a lowercase
^{omicron} in a formula by writing the letter `o', i.e.,
`|{\rm o}|' or an uppercase ^{beta} (`B') by writing
`|{\rm B}|'.
Don't confuse the following letters:
\ulist \compact
\li |\upsilon| (`$\upsilon$'), |{\rm v}| (`v'), and |\nu| (`$\nu$').
\li |\varsigma| (`$\varsigma$') and |\zeta| (`$\zeta$').
\endulist
You can get slanted capital Greek letters by using the math italic
(|\mit|) \minref{font}.
\TeX\ treats Greek letters as ordinary symbols when it's figuring how
much space to put around them.
\example
If $\rho$ and $\theta$ are both positive, then $f(\theta)
-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
|
\produces
If $\rho$ and $\theta$ are both positive, then
$f(\theta)-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
\endexample
\eix^^{Greek letters}
\enddesc
%==========================================================================
\subsection {Miscellaneous ordinary math symbols}
\begindesc
\xrdef{specsyms}
\dothreecolumns 34
\easy\ctsdisplay infty {}
\ctsdisplay Re {}
\ctsdisplay Im {}
\ctsdisplay angle {}
\ctsdisplay triangle {}
\ctsdisplay backslash {}
\ctsdisplay vert {}
\ctsydisplay | @bar {}
\ctsdisplay Vert {}
\ctsdisplay emptyset {}
\ctsdisplay bot {}
\ctsdisplay top {}
\ctsdisplay exists {}
\ctsdisplay forall {}
\ctsdisplay hbar {}
\ctsdisplay ell {}
\ctsdisplay aleph {}
\ctsdisplay imath {}
\ctsdisplay jmath {}
\ctsdisplay nabla {}
\ctsdisplay neg {}
\ctsdisplay lnot {}
\actdisplay ' @prime \ (apostrophe)
\ctsdisplay prime {}
\ctsdisplay partial {}
\ctsdisplay surd {}
\ctsdisplay wp {}
\ctsdisplay flat {}
\ctsdisplay sharp {}
\ctsdisplay natural {}
\ctsdisplay clubsuit {}
\ctsdisplay diamondsuit {}
\ctsdisplay heartsuit {}
\ctsdisplay spadesuit {}
\egroup
\explain
^^{music symbols} ^^{card suits}
These commands produce various symbols. They are called
``^{ordinary symbol}s'' to distinguish them from other classes of
symbols such as relations. You can only use
an ordinary symbol
within a math formula, so if you need an ordinary symbol within ordinary text
you must enclose it in dollar signs (|$|).
The commands |\imath| and |\jmath| are useful when you need to put an
accent on top of an `$i$' or a `$j$'.
An apostrophe (|'|) is a short way of writing a superscript |\prime|. (The
|\prime| command by itself generates a big ugly prime.)
The |\!|| and ^|\Vert| commands are synonymous, as
are the ^|\neg| and ^|\lnot| commands.
\margin{explanation of {\tt\\vert} added}
The |\vert| command produces the same result as `|!||'.
\indexchar |
The symbols produced by |\backslash|, |\vert|, and |\Vert|
are \minref{delimiter}s. These symbols can be produced in larger sizes
by using ^|\bigm| et al.\ (\xref \bigm).
\example
The Knave of $\heartsuit$s, he stole some tarts.
|
\produces
The Knave of $\heartsuit$s, he stole some tarts.
\nextexample
If $\hat\imath < \hat\jmath$ then $i' \leq j^\prime$.
|
\produces
If $\hat\imath < \hat\jmath$ then $i' \leq j^\prime$.
\nextexample
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
|
\dproduces
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
\endexample
\enddesc
%==========================================================================
\subsection {Binary operations}
\begindesc
\bix^^{operations}
\xrdef{binops}
\dothreecolumns 34
\easy\ctsdisplay vee {}
\ctsdisplay wedge {}
\ctsdisplay amalg {}
\ctsdisplay cap {}
\ctsdisplay cup {}
\ctsdisplay uplus {}
\ctsdisplay sqcap {}
\ctsdisplay sqcup {}
\ctsdisplay dagger {}
\ctsdisplay ddagger {}
\ctsdisplay land {}
\ctsdisplay lor {}
\ctsdisplay cdot {}
\ctsdisplay diamond {}
\ctsdisplay bullet {}
\ctsdisplay circ {}
\ctsdisplay bigcirc {}
\ctsdisplay odot {}
\ctsdisplay ominus {}
\ctsdisplay oplus {}
\ctsdisplay oslash {}
\ctsdisplay otimes {}
\ctsdisplay pm {}
\ctsdisplay mp {}
\ctsdisplay triangleleft {}
\ctsdisplay triangleright {}
\ctsdisplay bigtriangledown {}
\ctsdisplay bigtriangleup {}
\ctsdisplay ast {}
\ctsdisplay star {}
\ctsdisplay times {}
\ctsdisplay div {}
\ctsdisplay setminus {}
\ctsdisplay wr {}
\egroup
\explain
These commands produce the symbols for various binary operations.
Binary operations are one of \TeX's \minref{class}es of math symbols.
\TeX\ puts different amounts of space around different classes of math
symbols. When \TeX\ needs to break a line of text within a math
formula, \minrefs{line break} it will consider placing the break
after a binary operation---but only if
the operation is at the outermost level of
the formula, i.e., not enclosed in~a~group.
In addition to these commands, \TeX\ also treats `|+|' and `|-|'
as binary operations. It considers `|/|' to be an ordinary symbol,
despite the fact that mathematically it is a binary operation,
because it looks better with less space around it.
\example
$$z = x \div y \quad \hbox{if and only if} \quad
z \times y = x \;\hbox{and}\; y \neq 0$$
|
\dproduces
$$z = x \div y \quad \hbox{if and only if} \quad
z \times y = x \;\hbox{and}\; y \neq 0$$
\endexample
\enddesc
\begindesc
\ctspecial * \ctsxrdef{@star}
\explain
The |\*| command indicates a discretionary multiplication symbol
($\times$), which is a binary operation. This multiplication symbol
behaves like a discretionary hyphen when it appears in a formula within
text\minrefs{text math}. That is, \TeX\ will typeset the |\times|
symbol \emph{only} if the formula needs to be broken at that point.
There's no point in using |\*| in a displayed formula \minrefs{display
math} since \TeX\ never breaks displayed formulas on its own.
\example
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
|
\produces
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
\eix^^{operations}
\endexample
\enddesc
%==========================================================================
\subsection {Relations}
\begindesc
\xrdef {relations}
\bix^^{relations}
\dothreecolumns 39
\easy\ctsdisplay asymp {}
\ctsdisplay cong {}
\ctsdisplay dashv {}
\ctsdisplay vdash {}
\ctsdisplay perp {}
\ctsdisplay mid {}
\ctsdisplay parallel {}
\ctsdisplay doteq {}
\ctsdisplay equiv {}
\ctsdisplay ge {}
\ctsdisplay geq {}
\ctsdisplay le {}
\ctsdisplay leq {}
\ctsdisplay gg {}
\ctsdisplay ll {}
\ctsdisplay models {}
\ctsdisplay ne {}
\ctsdisplay neq {}
\ctsdisplay notin {}
\ctsdisplay in {}
\ctsdisplay ni {}
\ctsdisplay owns {}
\ctsdisplay prec {}
\ctsdisplay preceq {}
\ctsdisplay succ {}
\ctsdisplay succeq {}
\ctsdisplay bowtie {}
\ctsdisplay propto {}
\ctsdisplay approx {}
\ctsdisplay sim {}
\ctsdisplay simeq {}
\ctsdisplay frown {}
\ctsdisplay smile {}
\ctsdisplay subset {}
\ctsdisplay subseteq {}
\ctsdisplay supset {}
\ctsdisplay supseteq {}
\ctsdisplay sqsubseteq {}
\ctsdisplay sqsupseteq {}
\egroup
\explain
These commands produce the symbols for various relations.
Relations are one of \TeX's \minref{class}es of math symbols.
\TeX\ puts different amounts of space
around different \minref{class}es of math symbols.
When \TeX\ needs to break a line of text
within a math formula, \minrefs{line break} it will consider
placing the break after a relation---but only if
the relation is at the outermost level of the formula,
i.e., not enclosed in a group.
In addition to the commands listed here, \TeX\ treats `^|=|' and the
``arrow'' commands (\xref{arrows}) as relations.
Certain relations have more than one command that you can use
to produce them:
\ulist \compact
\li `$\ge$' (|\ge| and |\geq|).
\li `$\le$' (|\le| and |\leq|).
\li `$\ne$' (|\ne|, |\neq|, and |\not=|).
\li `$\ni$' (|\ni| and |\owns|).
\endulist
\xrdef{\not}
You can produce negated relations by prefixing them with |\not|, as follows:
\nobreak
\threecolumns 21
\basicdisplay {$\not\asymp$}{\\not\\asymp}\ctsidxref{asymp}
\basicdisplay {$\not\cong$}{\\not\\cong}\ctsidxref{cong}
\basicdisplay {$\not\equiv$}{\\not\\equiv}\ctsidxref{equiv}
\basicdisplay {$\not=$}{\\not=}\ttidxref{=}
\basicdisplay {$\not\ge$}{\\not\\ge}\ctsidxref{ge}
\basicdisplay {$\not\geq$}{\\not\\geq}\ctsidxref{geq}
\basicdisplay {$\not\le$}{\\not\\le}\ctsidxref{le}
\basicdisplay {$\not\leq$}{\\not\\leq}\ctsidxref{leq}
\basicdisplay {$\not\prec$}{\\not\\prec}\ctsidxref{prec}
\basicdisplay {$\not\preceq$}{\\not\\preceq}\ctsidxref{preceq}
\basicdisplay {$\not\succ$}{\\not\\succ}\ctsidxref{succ}
\basicdisplay {$\not\succeq$}{\\not\\succeq}\ctsidxref{succeq}
\basicdisplay {$\not\approx$}{\\not\\approx}\ctsidxref{approx}
\basicdisplay {$\not\sim$}{\\not\\sim}\ctsidxref{sim}
\basicdisplay {$\not\simeq$}{\\not\\simeq}\ctsidxref{simeq}
\basicdisplay {$\not\subset$}{\\not\\subset}\ctsidxref{subset}
\basicdisplay {$\not\subseteq$}{\\not\\subseteq}\ctsidxref{subseteq}
\basicdisplay {$\not\supset$}{\\not\\supset}\ctsidxref{supset}
\basicdisplay {$\not\supseteq$}{\\not\\supseteq}\ctsidxref{supseteq}
\basicdisplay {$\not\sqsubseteq$}{\\not\\sqsubseteq}%
\ctsidxref{sqsubseteq}
\basicdisplay {$\not\sqsupseteq$}{\\not\\sqsupseteq}%
\ctsidxref{sqsupseteq}
\egroup
\example
We can show that $AB \perp AC$, and that
$\triangle ABF \not\sim \triangle ACF$.
|
\produces
We can show that $AB \perp AC$, and that
$\triangle ABF \not\sim \triangle ACF$.
\eix^^{relations}
\endexample
\enddesc
%==========================================================================
\subsection {Left and right delimiters}
\begindesc
\bix^^{delimiters}
%
\dothreecolumns 12
\easy\ctsdisplay lbrace {}
\ctsydisplay { @lbrace {}
\ctsdisplay rbrace {}
\ctsydisplay } @rbrace {}
\ctsdisplay lbrack {}
\ctsdisplay rbrack {}
\ctsdisplay langle {}
\ctsdisplay rangle {}
\ctsdisplay lceil {}
\ctsdisplay rceil {}
\ctsdisplay lfloor {}
\ctsdisplay rfloor {}
\egroup
\explain
These commands produce left and right \minref{delimiter}s.
Mathematicians use delimiters to indicate the boundaries between parts
of a formula. Left delimiters are also called ``^{opening}s'', and
right delimiters are also called ``^{closing}s''. Openings and closings
are two of \TeX's \minref{class}es of math symbols. \TeX\ puts
different amounts of space around different \minref{class}es of math
symbols. You might expect the space that \TeX\ puts around openings and
closings to be symmetrical, but in fact it isn't.
Some left and right delimiters have more than one command that you can
use to produce them:
\ulist\compact
\li `$\{$' (|\lbrace| and |\{|)
\li `$\}$' (|\rbrace| and |\}|)
\li `$[$' (|\lbrack| and `|[|')
\li `$]$' (|\rbrack| and `|]|')
\endulist
\noindent You can also use the left and right bracket characters
(in either form) outside of math mode.
In addition to these commands, \TeX\ treats `|(|' as a left
delimiter and `|)|' as a right delimiter.
You can have \TeX\
choose the size for a delimiter by using |\left| and |\right| (\xref\left).
Alternatively,
you can get a delimiter of a specific size by using one of the |\big|$x$
commands (see |\big| et al., \xref{\big}).
\example
The set $\{\,x \mid x>0\,\}$ is empty.
|
\produces
The set $\{\,x \mid x>0\,\}$ is empty.
\eix^^{delimiters}
\endexample
\enddesc
%==========================================================================
\subsection {Arrows}
\begindesc
\bix^^{arrows}
\xrdef{arrows}
%
{\symbolspace=24pt \makecolumns 34/2:
\easy%
\ctsdisplay leftarrow {}
\ctsdisplay gets {}
\ctsdisplay Leftarrow {}
\ctsdisplay rightarrow {}
\ctsdisplay to {}
\ctsdisplay Rightarrow {}
\ctsdisplay leftrightarrow {}
\ctsdisplay Leftrightarrow {}
\ctsdisplay longleftarrow {}
\ctsdisplay Longleftarrow {}
\ctsdisplay longrightarrow {}
\ctsdisplay Longrightarrow {}
\ctsdisplay longleftrightarrow {}
\ctsdisplay Longleftrightarrow {}
\basicdisplay {$\Longleftrightarrow$}{\\iff}\pix\ctsidxref{iff}\xrdef{\iff}
\ctsdisplay hookleftarrow {}
\ctsdisplay hookrightarrow {}
\ctsdisplay leftharpoondown {}
\ctsdisplay rightharpoondown {}
\ctsdisplay leftharpoonup {}
\ctsdisplay rightharpoonup {}
\ctsdisplay rightleftharpoons {}
\ctsdisplay mapsto {}
\ctsdisplay longmapsto {}
\ctsdisplay downarrow {}
\ctsdisplay Downarrow {}
\ctsdisplay uparrow {}
\ctsdisplay Uparrow {}
\ctsdisplay updownarrow {}
\ctsdisplay Updownarrow {}
\ctsdisplay nearrow {}
\ctsdisplay searrow {}
\ctsdisplay nwarrow {}
\ctsdisplay swarrow {}
}
\explain
These commands provide arrows of different kinds. They
are classified as relations (\xref{relations}).
The vertical arrows in the list are also \minref{delimiter}s, so you can make
them larger by using |\big| et al.\ (\xref \big).
The command |\iff| differs from |\Longleftrightarrow| in that
it produces extra space to the left and right of the arrow.
You can place symbols or other legends on top of a left or right arrow
with |\buildrel| (\xref \buildrel).
\example
$$f(x)\mapsto f(y) \iff x \mapsto y$$
|
\dproduces
$$f(x)\mapsto f(y) \iff x \mapsto y$$
\eix^^{arrows}
\endexample
\enddesc
%==========================================================================
\subsection {Named mathematical functions}
\begindesc
\xrdef{namedfns}
\bix^^{functions, names of}
{\symbolspace = 36pt
\threecolumns 32
\easy\ctsdisplay cos {}
\ctsdisplay sin {}
\ctsdisplay tan {}
\ctsdisplay cot {}
\ctsdisplay csc {}
\ctsdisplay sec {}
\ctsdisplay arccos {}
\ctsdisplay arcsin {}
\ctsdisplay arctan {}
\ctsdisplay cosh {}
\ctsdisplay coth {}
\ctsdisplay sinh {}
\ctsdisplay tanh {}
\ctsdisplay det {}
\ctsdisplay dim {}
\ctsdisplay exp {}
\ctsdisplay ln {}
\ctsdisplay log {}
\ctsdisplay lg {}
\ctsdisplay arg {}
\ctsdisplay deg {}
\ctsdisplay gcd {}
\ctsdisplay hom {}
\ctsdisplay ker {}
\ctsdisplay inf {}
\ctsdisplay sup {}
\ctsdisplay lim {}
\ctsdisplay liminf {}
\ctsdisplay limsup {}
\ctsdisplay max {}
\ctsdisplay min {}
\ctsdisplay Pr {}
\egroup}
\explain
These commands set the names of various mathematical functions
in roman type, as is customary.
If you apply a superscript or subscript to one of these commands,
\TeX\ will in most cases typeset it in the usual place.
In display style, \TeX\ typesets superscripts and subscripts
on |\det|, |\gcd|, |\inf|, |\lim|, |\liminf|,
|\limsup|, |\max|, |\min|, |\Pr|, and |\sup|
as though they were limits,
i.e., directly above or directly below the function name.
\example
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
|
\produces
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
\endexample\enddesc
\begindesc
\cts bmod {}
\explain
This command produces a binary operation for indicating a ^{modulus}
within a formula.
\example
$$x = (y+1) \bmod 2$$
|
\dproduces
$$x = (y+1) \bmod 2$$
\endexample
\enddesc
\begindesc
\cts pmod {}
\explain
This command provides a notation for indicating a ^{modulus} in parentheses
at the end of a formula.
\example
$$x \equiv y+1 \pmod 2$$
|
\dproduces
$$x \equiv y+1 \pmod 2$$
\eix^^{functions, names of}
\endexample
\enddesc
%==========================================================================
\subsection {Large operators}
\begindesc
\bix^^{operators//large}
\threecolumns 15
\easy\ctsdoubledisplay bigcap {}
\ctsdoubledisplay bigcup {}
\ctsdoubledisplay bigodot {}
\ctsdoubledisplay bigoplus {}
\ctsdoubledisplay bigotimes {}
\ctsdoubledisplay bigsqcup {}
\ctsdoubledisplay biguplus {}
\ctsdoubledisplay bigvee {}
\ctsdoubledisplay bigwedge {}
\ctsdoubledisplay coprod {}
{\symbolspace = 42pt\basicdisplay {\hskip 26pt$\smallint$}%
{\\smallint}\ddstrut}%
\xrdef{\smallint} \pix\ctsidxref{smallint}
\ctsdoubledisplay int {}
\ctsdoubledisplay oint {}
\ctsdoubledisplay prod {}
\ctsdoubledisplay sum {}
}
\explain
These commands produce various large operator symbols.
\TeX\ produces the smaller size when it's in ^{text style}
\minrefs{math mode} and the larger size when it's in ^{display style}.
Operators are one of \TeX's \minref{class}es of math symbols.
\TeX\ puts different amounts of space
around different classes of math symbols.
The large operator symbols with `|big|' in their names are different
from the corresponding binary operations (see \xref{binops}) such as
|\cap| ($\cap$) since they usually appear at the beginning
of a formula. \TeX\ uses different spacing for a large operator
than it does for a binary operation.
Don't confuse `$\sum$' (|\sum|) with `$\Sigma$'^^|\Sigma| (|\Sigma|)
or confuse `$\prod$' (|\prod|) with `$\Pi$' ^^|\Pi| (|\Pi|).
|\Sigma| and |\Pi| produce capital Greek letters, which are smaller and
have a different appearance.
A large operator can have ^{limits}. The lower limit is specified as a
subscript and the upper limit as a superscript.
\example
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
|
\dproduces
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
\endexample
\interexampleskip
\example
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
|
\dproduces
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
\endexample
\enddesc
\begindesc
\cts limits {}
\explain
In text style, \TeX\ normally places limits after a large operator.
This command tells \TeX\ to place limits above and below a large
operator rather than after it.
If you specify more than one of |\limits|, |\nolimits|,
and |\display!-limits|, the last command rules.
\example
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
two elements.
|
\produces
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
two elements.
\endexample
\enddesc
\begindesc
\cts nolimits {}
\explain
In display style, \TeX\ normally places limits above and below a large
operator. This command tells \TeX\ to place limits after a large
operator rather than above and below it.
The integral operators |\int| and |\oint| are exceptions---\TeX\ places
limits after them in all cases, unless overridden, as in |\int\limits|.
(\plainTeX\ defines ^|\int| and ^|\oint| as macros that specify the
operator symbol followed by |\nolimits|---this is what causes them to
behave differently by default.)
^^|\int//limits after|
If you specify more than one of |\limits|, |\nolimits|,
and |\display!-limits|, the last command rules.
\example
$$\bigcap\nolimits_{i=1}^Nq_i$$
|
\dproduces
$$\bigcap\nolimits_{i=1}^Nq_i$$
\endexample
\enddesc
\begindesc
\cts displaylimits {}
\explain
This command tells \TeX\ to place limits above and below all operators
(including the integrals) if in display style, and after all operators
if in text style.
If you specify more than one of |\limits|, |\nolimits|,
and |\display!-limits|, the last command rules.
\example
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
|
\dproduces
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
\eix^^{operators//large}
\endexample
\enddesc
%==========================================================================
\subsection {Punctuation}
\begindesc
\bix^^{punctuation in math formulas}
\cts cdotp {}
\cts ldotp {}
\explain
These two commands respectively produce a centered dot and a dot
positioned on the \minref{baseline}. They are valid only in math
\minref{mode}. \TeX\ treats them as punctuation, putting no extra space in
front of them but a little extra space after them.
In contrast, \TeX\ puts an equal amount of space on both sides
of a centered dot generated by the ^|\cdot| command (\xref \cdot).
\example
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
|
\produces
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
\endexample
\enddesc
\begindesc
\cts colon {}
\explain
This command produces a colon punctation symbol.
It is valid only in math mode.
The difference between |\colon| and the colon character (|:|) is that
`|:|' is an operator, so \TeX\ puts extra space to the left of it whereas
it doesn't put extra space to the left of |\colon|.
\example
$f \colon t \quad f : t$
|
\produces
$f \colon t \quad f : t$
\eix^^{punctuation in math formulas}
\endexample
\enddesc
%==========================================================================
\secondprinting{\vfill\eject\null\vglue-30pt\vskip0pt}
\section {Superscripts and subscripts}
\begindesc
\margin{Two groups of commands have been combined here.}
\bix^^{superscripts}
\bix^^{subscripts}
\secondprinting{\vglue-12pt}
\makecolumns 4/2:
\easy\ctsact _ \xrdef{@underscore} {\<argument>}
\cts sb {\<argument>}
\ctsact ^ \xrdef{@hat} {\<argument>}
\cts sp {\<argument>}
\secondprinting{\vglue-4pt}
\explain
The commands in each column are equivalent. The commands in the first
column typeset \<argument> as a subscript, and those in the second
column typeset \<argument> as a superscript. The |\sb| and |\sp|
commands are mainly useful if you're working on a terminal that lacks an
underscore or caret, or if you've redefined `|_|' or `|^|' and need
access to the original definition. These commands are also used for
setting lower and upper limits on summations and integrals. ^^{lower
limits} ^^{upper limits}
If a subscript or superscript is not a single \minref{token}, you need
to enclose it in a \minref{group}. \TeX\ does not prioritize subscripts
or superscripts, so it will reject formulas such as |a_i_j|, |a^i^j|, or
|a^i_j|.
Subscripts and superscripts are normally typeset in ^{script style}, or
in ^{scriptscript style} if they are second-order, e.g., a subscript on
a subscript or a superscript on a a subscript. You can set \emph{any}
text in a math formula in a script or scriptscript \minref{style} with
the ^|\scriptstyle| and ^|\scriptscriptstyle| commands (\xref
\scriptscriptstyle).
You can apply a subscript or superscript to any of the commands that
produce named mathematical functions in roman type (see
\xref{namedfns}). In certain cases (again, see \xref{namedfns}) the
subscript or superscript appears directly above or under the function
name as shown in the examples of ^|\lim| and ^|\det| below.
\example
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
\int_0^\infty{f(x)\,dx}$
$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$
|
\produces
\secondprinting{\divide\abovedisplayskip by 2}
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
\int_0^\infty{f(x)\,dx}$
$$\lim_{x \leftarrow 0} f(x)\qquad
\det^{z \in A}\qquad \sin^2 t$$
\eix^^{superscripts}
\eix^^{subscripts}
\endexample
\enddesc
\secondprinting{\vfill\eject}
%==========================================================================
\subsection {Selecting and using styles}
\begindesc
\bix^^{styles}
\cts textstyle {}
\cts scriptstyle {}
\cts scriptscriptstyle {}
\cts displaystyle {}
\explain
^^{text style} ^^{script style} ^^{scriptscript style} ^^{display style}
These commands override the normal \minref{style} and hence the
font that \TeX\ uses in setting a formula. Like
font-setting commands such as |\it|, they are in
effect until the end of the group containing them.
They are useful when \TeX's choice of style is inappropriate for the formula
you happen to be setting.
\example
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
|
\produces
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
\endexample
\enddesc
\begindesc
\cts mathchoice {%
\rqbraces{\<math$_1$>}
\rqbraces{\<math$_2$>}
\rqbraces{\<math$_3$>}
\rqbraces{\<math$_4$>}}
\explain
This command tells \TeX\ to typeset one of the subformulas
\<math$_1$>, \<math$_2$>, \<math$_3$>, or \<math$_4$>, making its choice
according to the current \minref{style}.
That is, if \TeX\ is in
display style it sets the |\mathchoice| as \<math$_1$>; in text style it sets
it as \<math$_2$>; in script style it sets it as \<math$_3$>;
and in scriptscript style it sets it as \<math$_4$>.
\example
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a
mathchoice.
|
\produces
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a
mathchoice.
\endexample
\enddesc
\begindesc
\cts mathpalette {\<argument$_1$> \<argument$_2$>}
\explain
^^{math symbols}
This command provides a convenient way of
producing a math construct that works in all four \minref{style}s.
To use it, you'll normally need to define an additional macro,
which we'll call |\build|.
The call on |\math!-palette| should then have the form
|\mathpalette|\allowbreak|\build|\<argument>.
|\build| tests what style \TeX\ is in and typesets \<argu\-ment> accordingly.
It should be defined to have two parameters.
When you call |\math!-palette|, it will in turn call |\build|,
with |#1| being a
command that selects the current style and |#2| being \<argument>.
Thus, within the definition of |\build| you can typeset something
in the current style by preceding it with `|#1|'.
See \knuth{page~360} for examples of using |\mathpalette|
and \knuth{page~151} for a further explanation of how it works.
\eix^^{styles}
\enddesc
%==========================================================================
\section {Compound symbols}
%==========================================================================
\subsection {Math accents}
\begindesc
\xrdef{mathaccent}
^^{accents}
^^{math//accents}
%
\easy\ctsx acute {^{acute accent} as in $\acute x$}
\ctsx b {^{bar-under accent} as in $\b x$}
\ctsx bar {^{bar accent} as in $\bar x$}
\ctsx breve {^{breve accent} as in $\breve x$}
\ctsx check {^{check accent} as in $\check x$}
\ctsx ddot {^{double dot accent} as in $\ddot x$}
\ctsx dot {^{dot accent} as in $\dot x$}
\ctsx grave {^{grave accent} as in $\grave x$}
\ctsx hat {^{hat accent} as in $\hat x$}
\ctsx widehat {^{wide hat accent} as in $\widehat {x+y}$}
\ctsx tilde {^{tilde accent} as in $\tilde x$}
\ctsx widetilde {^{wide tilde accent} as in $\widetilde {z+a}$}
\ctsx vec {^{vector accent} as in $\vec x$}
\explain
These commands produce accent marks in math formulas. You'll ordinarily
need to leave a space after any one of them.
A wide accent can be applied to a multicharacter subformula;
\TeX\ will center the accent over the subformula.
The other accents are usefully applied only to a single character.
\example
$\dot t^n \qquad \widetilde{v_1 + v_2}$
|
\produces
$\dot t^n \qquad \widetilde{v_1 + v_2}$
\endexample
\begindesc
\cts mathaccent {\<mathcode>}
\explain
This command tells \TeX\ to typeset a math accent
whose family and character code are given by \<mathcode>. (\TeX\ ignores
the class of the \minref{mathcode}.)
See \knuth{Appendix~G} for the details of how \TeX\ positions such an accent.
The usual way to use |\mathaccent| is to put it in a macro definition
that gives a name to a math accent.
\example
\def\acute{\mathaccent "7013}
|
\endexample
\enddesc
\see ``Accents'' (\xref {accents}).
\enddesc
%==========================================================================
\subsection {Fractions and other stacking operations}
\begindesc
\bix^^{fractions}
\bix^^{stacking subformulas}
\easy\cts over {}
\cts atop {}
\cts above {\<dimen>}
\cts choose {}
\cts brace {}
\cts brack {}
\explain
{\def\fri{\<formula$_1$>}%
\def\frii{\<formula$_2$>}%
These commands stack one subformula on top of another one. We will explain how
|\over| works, and then relate the other commands to it.
|\over| is the command that you'd normally use to produce a fraction.
^^{fractions//produced by \b\tt\\over\e}
If you write something in one of the following forms:
\csdisplay
$$!fri\over!frii$$
$!fri\over!frii$
\left!<delim>!fri\over!frii\right!<delim>
{!fri\over!frii}
|
you'll get a fraction with numerator \fri\ and denominator \<for\-mu\-la$_2$>,
i.e., \fri\ over \frii.
In the first three of
these forms the |\over| is not implicitly contained in a group;
it absorbs
everything to its left and to its right until it comes to a boundary,
namely, the beginning or end of a group.
You can't use |\over| or any of the other commands in this group
more than once in a formula.
Thus a formula such as:
\csdisplay
$$a \over n \choose k$$
|
isn't legal.
This is not a severe restriction because
you can always enclose one of the commands in braces.
The reason for the restriction is that if you had two of these commands
in a single formula, \TeX\ wouldn't know how to group them.
The other commands are similar to |\over|, with the following exceptions:
\ulist\compact
\li |\atop| leaves out the fraction bar.
\li |\above| provides a fraction bar of thickness \<dimen>.
\li |\choose|
leaves out the fraction bar and encloses the construct in parentheses.
(It's called ``choose'' because $n \choose k$ is the notation for the
number of ways of choosing $k$ things out of $n$ things.)
\li |\brace| leaves out the fraction bar and encloses the construct in braces.
\li |\brack|
leaves out the fraction bar and encloses the construct in brackets.
\endulist
}%
\example
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
|
\dproduces
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
\endexample
\enddesc
\begindesc
\cts overwithdelims {\<delim$_1$> \<delim$_2$>}
\cts atopwithdelims {\<delim$_1$> \<delim$_2$>}
\cts abovewithdelims {\<delim$_1$> \<delim$_2$> \<dimen>}
\explain
Each of these commands stacks one subformula on top of another one and
surrounds the entire construct with \<delim$_1$> on the left and
\<delim$_2$> on the right. These commands follow the same rules as
|\over|, |\atop|, and |\above|. The \<dimen> in |\abovewithdelims|
specifies the thickness of the fraction bar.
\example
$${m \overwithdelims () n}\qquad
{m \atopwithdelims !|!| n}\qquad
{m \abovewithdelims \{\} 2pt n}$$
|
\dproduces
$${m \overwithdelims () n}\qquad
{m \atopwithdelims || n}\qquad
{m \abovewithdelims \{\} 2pt n}$$
\endexample
\enddesc
\begindesc
\cts cases {}
\explain
^^{combinations, notation for}
This command produces the mathematical form that denotes a choice among
several cases.
Each case has two parts, separated by `|&|'.
\TeX\ treats the first part as a math formula
and the second part as ordinary text. Each
case must be followed by |\cr|.
\example
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
f(y,x),&if $x>y$\cr
0,&otherwise.\cr}$$
|
\dproduces
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
f(y,x),&if $x>y$\cr
0,&otherwise.\cr}$$
\endexample
\enddesc
\begindesc
\cts underbrace {\<argument>}
\cts overbrace {\<argument>}
\cts underline {\<argument>}
\cts overline {\<argument>}
\cts overleftarrow {\<argument>}
\cts overrightarrow {\<argument>}
\explain
These commands place extensible ^{braces}, lines, or ^{arrows}
over or under the subformula given by \<argument>.
\TeX\ will make these constructs as wide as they need to be for
the context.
When \TeX\ produces the extended braces, lines, or arrows, it considers
only the dimensions of the \minref{box} containing \<argument>.
If you use more than one of these commands in a single formula, the
braces, lines, or arrows they produce
may not line up properly with each other.
You can use the |\mathstrut| command (\xref \mathstrut)
to overcome this difficulty.
\example
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
|
\dproduces
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
\endexample
\enddesc
\begindesc\secondprinting{\vglue-.5\baselineskip\vskip0pt}
\cts buildrel {\<formula> {\bt \\over} \<relation>}
\explain
^^{relations//putting formulas above}
This command produces a \minref{box} in which \<formula>
is placed on top of \<relation>. \TeX\ treats the result as a relation
for spacing purposes \seeconcept{class}.
\example
$\buildrel \rm def \over \equiv$
|
\produces
$\buildrel \rm def \over \equiv$
\eix^^{fractions}
\eix^^{stacking subformulas}
\endexample
\enddesc
\secondprinting{\vfill\eject}
%==========================================================================
\subsection {Dots}
\begindesc
\bix^^{dots}
\easy\cts ldots {}
\cts cdots {}
\explain
These commands produce three ^{dots} in a row. For |\ldots|, the dots
are on the baseline; for |\cdots|, the dots are centered with respect to
the axis (see the explanation of |\vcenter|, \xref\vcenter).
\example
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
|
\produces
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
\endexample
\enddesc
\begindesc
\easy\cts vdots {}
\explain
This command produces three vertical dots.
\example
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
\noalign{\kern -4pt}%
&\phantom{a}\vdots\cr % moves the dots right a bit
f(\alpha_k)& = f(\beta_k)\cr}$$
|
\dproduces
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
\noalign{\kern -4pt}%
&\phantom{a}\vdots\cr
f(\alpha_k)& = f(\beta_k)\cr}$$
\endexample
\enddesc
\begindesc
\cts ddots {}
\explain
This command produces three dots on a diagonal.
Its most common use is to indicate repetition along the diagonal of a matrix.
\example
$$\pmatrix{0&\ldots&0\cr
\vdots&\ddots&\vdots\cr
0&\ldots&0\cr}$$
|
\dproduces
$$\pmatrix{0&\ldots&0\cr
\vdots&\ddots&\vdots\cr
0&\ldots&0\cr}$$
\eix^^{dots}
\endexample
\enddesc
\see |\dots| \ctsref\dots.
%==========================================================================
\subsection {Delimiters}
\begindesc
\bix^^{delimiters}
%
\cts lgroup {}
\cts rgroup {}
\explain
These commands produce large left and right ^{parentheses}
that are defined as opening and closing \minref{delimiter}s.
The smallest available size for these delimiters is |\Big|.
If you use smaller sizes, you'll get weird characters.
\example
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
|
\dproduces
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
\endexample
\enddesc
\begindesc
\margin{{\tt\\vert} and {\tt\\Vert} were explained elsewhere.}
\easy\cts left {}
\cts right {}
\explain
These commands must be used together in the pattern:
\display
{{\bt \\left} \<delim$_1$> \<subformula> {\bt \\right} \<delim$_2$>}
This construct causes \TeX\ to produce \<subformula>,
enclosed in the \minref{delimiter}s \<delim$_1$> and \<delim$_2$>.
The vertical size of the delimiter is adjusted to fit the
vertical size (height plus depth) of \<subformula>. \<delim$_1$> and
\<delim$_2$> need not correspond.
For instance, you could use `|]|' as a left delimiter
and `|(|' as a right delimiter in a single use of |\left|
and |\right|.
|\left| and |\right| have the important property that they define a
group, i.e., they act like left and right braces. This grouping
property is particularly useful when you put ^|\over| (\xref{\over}) or
a related command between |\left| and |\right|, since you don't need to
put braces around the fraction constructed by |\over|.
If you want a left delimiter but not a right delimiter, you can use `|.|' in
place of the delimiter you don't want and it will turn into empty space
(of width ^|\nulldelimiterspace|).
\example
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
\qquad \left\uparrow q_1\atop q_2\right.$$
|
\dproduces
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
\qquad \left\uparrow q_1\atop q_2\right.$$
\endexample
\enddesc
\begindesc
\cts delimiter {\<number>}
\explain
This command produces a delimiter whose characteristics are given by
\<number>. \<number> is normally written in hexadecimal notation.
You can use the |\delimiter| command instead of a character in any context
where \TeX\ expects a delimiter (although the command is rarely used
outside of a macro definition).
Suppose that \<number> is the hexadecimal number $cs_1s_2s_3
l_1l_2l_3$. Then \TeX\ takes the delimiter to have
\minref{class} $c$, small variant
$s_1s_2s_3$, and large variant $l_1l_2l_3$. Here $s_1s_2s_3$ indicates
the math character found in position $s_2s_3$ of family $s_1$, and
similarly for $l_1l_2l_3$. This is the same convention as the one
used for ^|\mathcode| (\xref\mathcode).
\example
\def\vert{\delimiter "026A30C} % As in plain TeX.
|
\endexample
\enddesc
\begindesc
\margin{{\tt\\delcode} was explained in two places. The
combined explanation is now in `General operations'.}
\cts delimiterfactor {\param{number}}
\cts delimitershortfall {\param{number}}
\explain
^^{delimiters//height of}
These parameters together tell \TeX\ how the height of a \minref{delimiter}
should be related to the vertical size of the subformula
with which the delimiter is associated.
|\delimiterfactor| gives the minimum
ratio of the delimiter size to the vertical size of the subformula, and
|\delimitershortfall| gives the maximum by which the height of the
delimiter will be reduced from that of the vertical size of the subformula.
Suppose that the \minref{box} containing the subformula
has height $h$ and depth $d$, and let $y=2\,\max(h,d)$.
Let the value of |\delimiterfactor| be $f$ and the value of
|\delimitershortfall| be $\delta$.
Then \TeX\ takes the minimum delimiter size to be at least $y \cdot
f/1000$ and at least $y-\delta$. In particular, if |\delimiterfactor|
is exactly $1000$ then \TeX\ will try to make a delimiter at least as tall
as the formula to which it is attached.
See \knuth{page~152 and page~446 (Rule 19)}
for the exact details of how \TeX\ uses these parameters.
\PlainTeX\ sets |\delimiter!-factor| to $901$ and
|\delimiter!-shortfall| to |5pt|.
\enddesc
\see |\delcode| (\xref\delcode), |\vert|, |\Vert|,
and |\backslash| (\xref\vert).
\eix^^{delimiters}
%==========================================================================
\subsection {Matrices}
\begindesc
\cts matrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts pmatrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts bordermatrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
Each of these three commands produces a ^{matrix}.
The elements of each row of the input matrix
are separated by `|&|' and each row in turn is ended
by |\cr|.
(This is the same form that is used for an
\minref{alignment}.)
The commands differ in the following ways:
\ulist\compact
\li |\matrix| produces a matrix without any surrounding or inserted
\minref{delimiter}s.
\li |\pmatrix| produces a matrix surrounded by parentheses.
\li |\bordermatrix| produces a matrix in which the first row and the first
column are treated as labels. (The first element of the first row is
usually left blank.) The rest of the matrix is enclosed in
parentheses.
\endulist
\TeX\ can make the parentheses for |\pmatrix| and |\bordermatrix| as large as
they need to be by inserting vertical extensions. If you want a matrix
to be surrounded by delimiters other than parentheses, you should use
|\matrix| in conjunction with |\left| and |\right| (\xref \left).
\example
$$\displaylines{
\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
r_1&t_{11}&t_{12}&t_{13}\cr
r_2&t_{21}&t_{22}&t_{23}\cr
r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
|
\dproduces
$$\displaylines{
\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
r_1&t_{11}&t_{12}&t_{13}\cr
r_2&t_{21}&t_{22}&t_{23}\cr
r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
\endexample
\enddesc
%==========================================================================
\subsection {Roots and radicals}
\begindesc
\easy\cts sqrt {\<argument>}
\explain
This command produces the notation for the square root of \<argument>.
\example
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
|
\dproduces
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
\endexample
\enddesc
\begindesc
\easy\cts root {\<argument$_1$> {\bt \\of} \<argument$_2$>}
\explain
This command produces the notation for a root of \<argument$_2$>, where the
root is given by \<argument$_1$>.
\example
$\root \alpha \of {r \cos \theta}$
|
\produces
$\root \alpha \of {r \cos \theta}$
\endexample
\enddesc
\begindesc
\cts radical {\<number>}
\explain
This command produces a radical sign
whose characteristics are given by
\<number>. It uses the same representation as the delimiter code
^^{delimiter codes}
in the ^|\delcode| command (\xref \delcode).
\example
\def\sqrt{\radical "270370} % as in plain TeX
|
\endexample
\enddesc
%==========================================================================
\section {Equation numbers}
\begindesc
\easy\cts eqno {}
\cts leqno {}
\explain
These commands attach an equation number to a displayed formula.
|\eqno| puts the equation number on the right and |\leqno| puts it on
the left.
The commands must be given at the end of the formula.
If you have a multiline display and you want to number more than one
of the lines, use the |\eq!-alignno| or |\leq!-alignno| command
(\xref \eqalignno).
These commands are valid only in display math mode.
\example
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
|
\produces
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
\endexample
\example
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
\endexample
\enddesc
%==========================================================================
\section {Multiline displays}
\begindesc
\bix^^{displays//multiline}
\cts displaylines
{{\bt \rqbraces{\<line>\ths\\cr$\ldots$\<line>\ths\\cr}}}
\explain
This command produces a multiline math display in which each line is
centered independently of the other lines.
You can use the |\noalign| command (\xref \noalign) to change the amount
of space between two lines of a multiline display.
If you want to attach equation numbers to some or all of the equations
in a multiline math display, you should use |\eqalignno| or
|\leqalignno|.
\example
$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr}$$
|
\dproduces\centereddisplays
$$\displaylines{
(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr
}$$
\endexample
\enddesc
\begindesc
\cts eqalign {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts eqalignno {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts leqalignno {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
^^{equation numbers}
These commands produce a multiline math display
in which certain corresponding parts of the lines are lined up vertically.
The |\eqalignno| and |\leqalignno| commands also let you
provide equation numbers for some or all of the lines.
|\eqalignno| puts the equation numbers on the right and
|\leqalignno| puts them on the left.
Each line in the display is ended by |\cr|. Each of the parts to be aligned
(most often an equals sign) is preceded by
`|&|'. An `|&|' also precedes each equation number, which comes at the
end of a line.
You can put more than one of these commands in a single display in order
to produce several groups of equations. In this case, only the rightmost
or leftmost group can be produced by |\eqalignno| or |\leqalignno|.
You can use the |\noalign| command (\xref \noalign) to change the amount
of space between two lines of a multiline display.
\example
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
|
\dproduces
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
\nextexample
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
&=E(x^2)-\mu^2\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
&=E(x^2)-\mu^2\cr}$$
\nextexample
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
&=E(x^2)-\mu^2&(7)\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
&=E(x^2)-\mu^2&(7)\cr}$$
\nextexample
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr}$$
% same effect as \displaylines but with an equation number
|
\dproduces
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr
}$$
% same effect as \displaylines but with an equation number
\eix^^{displays//multiline}
\endexample
\enddesc
%==========================================================================
\section {Fonts in math formulas}
\begindesc
^^{fonts}
\xrdef{mathfonts}
%
\easy\ctsx cal {use calligraphic uppercase font}
\ctsx mit {use math italic font}
\ctsx oldstyle {use old style digit font}
\explain
These commands cause \TeX\ to typeset the following text in the
specified font. You can only use them in \minref{math mode}.
The |\mit| command is useful for producing slanted capital ^{Greek letters}.
You can also use the commands given in
\headcit{Selecting fonts}{selfont} to change fonts in math mode.
\example
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad
{\oldstyle 0123456789}$
|
\produces
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad
{\oldstyle 0123456789}$
\endexample
\enddesc
^^{type styles}
\begindesc
\ctsx itfam {family for italic type}
\ctsx bffam {family for boldface type}
\ctsx slfam {family for slanted type}
\ctsx ttfam {family for typewriter type}
\explain
These commands define type families \minrefs{family} for use in
\minref{math mode}. Their principal use is in defining the
|\it|, |\bf|, |\sl|, and |\tt| commands so that they work in math mode.
\enddesc
\begindesc
\cts fam {\param{number}}
\explain
When \TeX\ is in \minref{math mode}, it ordinarily typesets a character
using the font family ^^{class} given in its \minref{mathcode}.
^^{family//given by \b\tt\\fam\e}
However, when \TeX\ is in math mode and encounters a character whose
\minref{class} is $7$ (Variable), it typesets that character using
the font \minref{family} given by the value of |\fam|, provided that the
value of |\fam| is between $0$ and $15$.
If the value of |\fam| isn't in that range, \TeX\ uses the family in
the character's mathcode as in the ordinary case.
\TeX\ sets |\fam| to $-1$ whenever it enters math mode.
Outside of math mode, |\fam| has no effect.
By assigning a value to
|\fam| you can change the way that \TeX\ typesets ordinary
characters such as variables.
For instance, by setting |\fam| to |\ttfam|, you cause \TeX\ to typeset
variables using a typewriter font.
\PlainTeX\ defines |\tt| as a \minref{macro} that, among other things,
sets |\fam| to |\ttfam|.
\example
\def\bf{\fam\bffam\tenbf} % As in plain TeX.
|
\endexample
\enddesc
\begindesc
\cts textfont {\<family>\param{fontname}}
\cts scriptfont {\<family>\param{fontname}}
\cts scriptscriptfont {\<family>\param{fontname}}
\explain
^^{text style}
^^{script style}
^^{scriptscript style}
Each of these parameters specifies the font that \TeX\ is to use for
typesetting the indicated \minref{style} in the indicated \minref{family}.
These choices have no effect outside of \minref{math mode}.
\example
\scriptfont2 = \sevensy % As in plain TeX.
|
\endexample
\enddesc
\see ``Type styles'' (\xref{seltype}).
%==========================================================================
\section {Constructing math symbols}
%==========================================================================
\subsection {Making delimiters bigger}
\begindesc
\makecolumns 16/4:
\easy\cts big {}
\cts bigl {}
\cts bigm {}
\cts bigr {}
\cts Big {}
\cts Bigl {}
\cts Bigm {}
\cts Bigr {}
\cts bigg {}
\cts biggl {}
\cts biggm {}
\cts biggr {}
\cts Bigg {}
\cts Biggl {}
\cts Biggm {}
\cts Biggr {}
\explain
^^{delimiters//enlarging}
These commands make \minref{delimiter}s bigger than their normal size.
The commands in the four columns
produce successively larger sizes. The difference between |\big|,
|\bigl|, |\bigr|, and |bigm| has to do with the \minref{class} of the
enlarged delimiter:
\ulist\compact
\li |\big| produces an ordinary symbol.
\li |\bigl| produces an opening symbol.
\li |\bigr| produces a closing symbol.
\li |\bigm| produces a relation symbol.
\endulist
\noindent
\TeX\ uses the class of a symbol in order to decide how much space to put
around that symbol.
These commands, unlike |\left| and |\right|,
do \emph{not} define a group.
\example
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
|
\dproduces
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
\endexample
\enddesc
%==========================================================================
\subsection {Parts of large symbols}
\begindesc
\cts downbracefill {}
\cts upbracefill {}
\explain
These commands respectively produce upward-pointing
and downward-pointing extensible ^{horizontal braces}. ^^{braces}
\TeX\ will make the braces as wide as necessary.
These commands
are used in the definitions of ^|\overbrace| and ^|\underbrace|
(\xref \overbrace).
\example
$$\hbox to 1in{\downbracefill} \quad
\hbox to 1in{\upbracefill}$$
|
\dproduces
$$\hbox to 1in{\downbracefill} \quad
\hbox to 1in{\upbracefill}$$
\endexample
\enddesc
\begindesc
\cts arrowvert {}
\cts Arrowvert {}
\cts lmoustache {}
\cts rmoustache {}
\cts bracevert {}
\explain
These commands produce portions of certain large
delimiters
^^{delimiters//parts of}
and can themselves be used as delimiters.
They refer to characters in the ^|cmex10| math font.
\example
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
\Big\lmoustache \cdots \Big\rmoustache \cdots
\Big\bracevert \cdots$$
|
\dproduces
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
\Big\lmoustache \cdots \Big\rmoustache \cdots
\Big\bracevert \cdots$$
\endexample
\enddesc
%==========================================================================
\section {Aligning parts of a formula}
%==========================================================================
\subsection {Aligning accents}
\begindesc
\bix^^{accents//aligning}
\cts skew {\<number> \<argument$_1$> \<argument$_2$>}
\explain
This command shifts the accent \<argument$_1$> by
\<number> \minref{mathematical unit}s to the right of its normal position
with respect to \<argu\-ment$_2$>.
The most common use of this command is for
modifying the position of an accent that's over
another accent.
\example
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
\skew 4\tilde{\hat x}$$
|
\dproduces
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
\skew 4\tilde{\hat x}$$
\endexample
\enddesc
\begindesc
\cts skewchar {\<font>\param{number}}
\explain
The |\skewchar| of a font
is the character in the font whose kerns,
as defined in the font's metrics file, determine the positions
of math accents. That is, suppose that \TeX\ is applying a math accent
to the character `|x|'. \TeX\ checks if the character pair
`|x\skewchar|' has a kern; if so, it moves the accent by the amount of
that kern. The complete algorithm that \TeX\ uses to position math
accents (which involves many more things) is in \knuth{Appendix~G}.
If the value of |\skewchar| is not in the range $0$--$255$,
\TeX\ takes the kern value to be zero.
Note that \<font> is a control sequence
that names a font, not a \<font\-name> that names font files.
Beware:
an assignment to |\skewchar| is \emph{not} undone at the end
of a group.
If you want to change |\skewchar| locally, you'll need to
save and restore its original value explicitly.
\enddesc
\begindesc
\cts defaultskewchar {\param{number}}
\explain
When \TeX\ reads the metrics file
^^{metrics file//default skew character in}
for a font in response to a
^|\font| command, it sets the font's ^|\skewchar| to
|\default!-skewchar|.
If the value of |\default!-skewchar| is
not in the range $0$--$255$, \TeX\ does not assign any
skew characters by default.
\PlainTeX\ sets |\defaultskewchar| to $-1$, and it's usually best
to leave it there.
\margin{Misleading example deleted.}
\eix^^{accents//aligning}
\enddesc
%==========================================================================
\subsection {Aligning material vertically}
\begindesc
\cts vcenter {\rqbraces{\<vertical mode material>}}
\ctsbasic {\\vcenter to \<dimen> \rqbraces{\<vertical mode material>}}{}
\ctsbasic {\\vcenter spread \<dimen> \rqbraces{\<vertical mode material>}}{}
\explain
Every math formula has an invisible
``^{axis}'' that \TeX\ treats as a kind of
horizontal centering line for that formula.
For instance, the axis of a formula consisting of a
fraction is at the center of the fraction bar.
The |\vcenter| command tells \TeX\ to place the \<vertical mode material>
in a \minref{vbox} and to center the vbox
with respect to the axis of the formula it is currently constructing.
The first form of the command
centers the material as given. The second and third
forms expand or shrink the material vertically as in the |\vbox| command
(\xref \vbox).
\example
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of
combinations of $n$ things taken $k$ at a time}$$
|
\dproduces
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of
combinations of $n$ things taken $k$ at a time}$$
\endexample
\enddesc
%==========================================================================
\section {Producing spaces}
%==========================================================================
\subsection {Fixed-width math spaces}
\begindesc
\bix^^{space//in math formulas}
\ctspecial ! \ctsxrdef{@shriek}
\ctspecial , \ctsxrdef{@comma}
\ctspecial > \ctsxrdef{@greater}
\ctspecial ; \ctsxrdef{@semi}
\explain
These commands produce various amounts of ^{extra space} in formulas. They
are defined in terms of \minref{mathematical unit}s, so \TeX\ adjusts
the amount of space according to the current \minref{style}.
\ulist
\li |\!!| produces a negative thin space, i.e., it reduces the space
between its neighboring subformulas by the amount of a thin space.
\li |\,| produces a thin space.
\li |\>| produces a medium space.
\li |\;| produces a thick space.
\endulist
\example
$$00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0}$$
|
\dproduces
$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$
\endexample
\enddesc
\begindesc
\cts thinmuskip {\param{muglue}}
\cts medmuskip {\param{muglue}}
\cts thickmuskip {\param{muglue}}
\explain
These parameters define thin, medium, and thick spaces in
math mode.
\example
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
\quad0\mskip\thickmuskip0$
|
\produces
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
\quad0\mskip\thickmuskip0$
\endexample
\enddesc
\begindesc
\cts jot {\param{dimen}}
\explain
This parameter defines a distance that is equal to three points (unless
you change it).
The |\jot| is a convenient unit of measure for opening up \hbox{math displays}.
\enddesc
%==========================================================================
\subsection {Variable-width math spaces}
\begindesc
\cts mkern {\<mudimen>}
\explain
^^{kerns//in math formulas}
This command
produces a \minref{kern}, i.e., blank space, of width \<mudimen>.
The kern is measured
in \minref{mathematical unit}s, which vary according to the style.
Aside from its unit of measurement, this command behaves just like
|\kern| (\xref \kern) does in horizontal mode.
\example
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
|
\produces
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
\endexample
\enddesc
\begindesc
\cts mskip {\<mudimen$_1$> {\bt plus} \<mudimen$_2$> {\bt minus}
\<mudimen$_3$>}
\explain
^^{glue}
This command produces horizontal \minref{glue}
that has natural width \<mu\-dimen$_1$>, stretch \<mudimen$_2$>,
and shrink \<mudimen$_3$>.
The glue is measured in \minref{mathematical unit}s, which vary according
to the style. Aside from its units of measurement, this command behaves
just like |\hskip| (\xref \hskip).
\example
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
|
\produces
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
\endexample
\enddesc
\begindesc
\cts nonscript {}
\explain
When \TeX\ is currently typesetting in script or scriptscript
\minref{style} and encounters this command
immediately in front of glue or a kern,
it cancels the glue or kern.
|\nonscript| has no effect in the other styles.
This command provides a way of ``tightening up'' the spacing in
script and scriptscript styles, which generally are set in smaller type.
It is of little use outside of macro definitions.
\example
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
|
\produces
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
\endexample
\enddesc
\see |\kern| (\xref\kern), |\hskip| (\xref\hskip).
\eix^^{space//in math formulas}
%==========================================================================
\subsection {Spacing parameters for displays}
\begindesc
\bix^^{displays//spacing parameters for}
\cts displaywidth {\param{dimen}}
\explain
This parameter specifies the maximum width that
\TeX\ allows for a math display. If \TeX\ cannot fit the display
into a space of this width, it sets an overfull \minref{hbox}
and complains.
\TeX\ sets the value of |\displaywidth| when it encounters the `|$$|'
that starts the display. This initial value is
|\hsize| (\xref \hsize) unless it's overridden by changes to the
paragraph shape.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc
\begindesc
\cts displayindent {\param{dimen}}
\explain
This parameter specifies the space by which \TeX\ indents a
math display.
\TeX\ sets the value of |\displayindent| when it encounters the `|$$|'
that starts the display. Usually this initial value is zero,
but if the paragraph shape indicates that the display should
be shifted by an amount $s$,
\TeX\ will set |\displayindent| to $s$.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc
\begindesc
\cts predisplaysize {\param{dimen}}
\explain
\TeX\ sets this parameter to the width of the line preceding
a math display.
\TeX\ uses |\predisplaysize| to determine whether or not
the display starts to
the left of where the previous line ends, i.e., whether or not it visually
overlaps the previous line.
If there is overlap, it uses the |\abovedisplayskip| and
|\belowdisplayskip| glue in setting the display;
otherwise it uses the |\abovedisplay!-shortskip| and
|\belowdisplay!-shortskip| glue.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc
\begindesc
\cts abovedisplayskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts before a display when the display starts to
the left of where the previous line ends, i.e., when it visually
overlaps the previous line.
\PlainTeX\ sets |\abovedisplayskip| to |12pt plus3pt minus9pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc
\begindesc
\cts belowdisplayskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts after a display when the display starts to
the left of where the previous line ends, i.e., when it visually
overlaps the previous line.
\PlainTeX\ sets |\belowdisplay!-skip| to |12pt plus3pt minus9pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc
\begindesc
\cts abovedisplayshortskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts before a math display
when the display starts to
the right of where the previous line ends, i.e., when it does not visually
overlap the previous line.
\PlainTeX\ sets |\abovedisplay!-shortskip| to |0pt plus3pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc
\begindesc
\cts belowdisplayshortskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts after a display
when the display starts to
the right of where the previous line ends, i.e., when it does not visually
overlap the previous line.
\PlainTeX\ sets |\belowdisplay!-shortskip| to |7pt plus3pt minus4pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\eix^^{displays//spacing parameters for}
\enddesc
%==========================================================================
\subsection {Other spacing parameters for math}
\begindesc
\cts mathsurround {\param{dimen}}
\explain
This parameter specifies the amount of space that \TeX\
inserts before and after a math formula in text mode (i.e., a formula
surrounded by single |$|'s). See \knuth{page~162} for further details about
its behavior.
\PlainTeX\ leaves |\mathsurround| at |0pt|.
\enddesc
\begindesc
\cts nulldelimiterspace {\param{dimen}}
\explain
^^{delimiters//null, space for}
This parameter specifies the width of the
space produced by a null \minref{delimiter}.
\PlainTeX\ sets |\nulldelimiterspace| to |1.2pt|.
\enddesc
\begindesc
\cts scriptspace {\param{dimen}}
\explain
This parameter specifies the amount of space that \TeX\
inserts before and after a subscript or superscript.
The |\nonscript| command (\xref\nonscript) ^^|\nonscript|
after a subscript or superscript cancels this space.
\PlainTeX\ sets |\script!-space| to |0.5pt|.
\enddesc
%==========================================================================
\section {Categorizing math constructs}
\begindesc
\makecolumns 7/2:
\cts mathord {}
\cts mathop {}
\cts mathbin {}
\cts mathrel {}
\cts mathopen {}
\cts mathclose {}
\cts mathpunct {}
\explain
These commands tell \TeX\ to treat the construct that follows as belonging
to a particular ^{class} (see \knuth{page~154} for the definition
of the classes). They are listed here in the order of the class numbers,
from $0$ to $6$. Their primary
effect is to adjust the spacing around the construct
to be whatever it is for the specified class.
\example
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
% By treating minmax as a math operator, we can get TeX to
% put something underneath it.
|
\produces
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
\endexample
\enddesc
\begindesc
\cts mathinner {}
\explain
This command tells \TeX\ to treat the construct that follows
as an ``inner formula'', e.g., a fraction, for spacing purposes.
It resembles the class commands given just above.
\enddesc
%==========================================================================
\section {Special actions for math formulas}
\begindesc
\cts everymath {\param{token list}}
\cts everydisplay {\param{token list}}
\explain
^^{displays//actions for every display}
These parameters specify \minref{token} lists that \TeX\ inserts
at the start of every text math or display math formula, respectively.
You can
take special actions at the start of each math formula by
assigning those actions to |\everymath| or
|\everydisplay|. Don't forget that if you want both kinds of formulas to
be affected, you need to set \emph{both} parameters.
\example
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
|
\produces
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
\endexample
\enddesc
\enddescriptions
\eix^^{math}
\endchapter
\byebye
|