1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
|
% -*- coding: utf-8 -*-
% This is part of the book TeX for the Impatient.
% Copyright (C) 2003 Paul W. Abrahams, Kathryn A. Hargreaves, Karl Berry.
% See file fdl.tex for copying conditions.
\input macros
%\chapter {Commands \linebreak for composing \linebreak math formulas}
\chapter {数学公式命令}
%\bix^^{math}
%\chapterdef{math}
\bix^^{数学}
\chapterdef{math}
%This section covers commands for constructing math formulas.
%For an explanation of the conventions used in this section,
%see \headcit{Descriptions of the commands}{cmddesc}.
这一章包括了排印数学公式所需要的命令。
在\headcit{命令描述}{cmddesc}这一节中给出了这章的惯例。
\begindescriptions
%==========================================================================
%\section {Simple parts of formulas}
\section {简单公式排版}
%==========================================================================
%\subsection {Greek letters}
\subsection {希腊字母}
%\begindesc
%\bix^^{Greek letters}
%\dothreecolumns 40
%\easy\ctsdisplay alpha {}
%\ctsdisplay beta {}
%\ctsdisplay chi {}
%\ctsdisplay delta {}
%\ctsdisplay Delta {}
%\ctsdisplay epsilon {}
%\ctsdisplay varepsilon {}
%\ctsdisplay eta {}
%\ctsdisplay gamma {}
%\ctsdisplay Gamma {}
%\ctsdisplay iota {}
%\ctsdisplay kappa {}
%\ctsdisplay lambda {}
%\ctsdisplay Lambda {}
%\ctsdisplay mu {}
%\ctsdisplay nu {}
%\ctsdisplay omega {}
%\ctsdisplay Omega {}
%\ctsdisplay phi {}
%\ctsdisplay varphi {}
%\ctsdisplay Phi {}
%\ctsdisplay pi {}
%\ctsdisplay varpi {}
%\ctsdisplay Pi {}
%\ctsdisplay psi {}
%\ctsdisplay Psi {}
%\ctsdisplay rho {}
%\ctsdisplay varrho {}
%\ctsdisplay sigma {}
%\ctsdisplay varsigma {}
%\ctsdisplay Sigma {}
%\ctsdisplay tau {}
%\ctsdisplay theta {}
%\ctsdisplay vartheta {}
%\ctsdisplay Theta {}
%\ctsdisplay upsilon {}
%\ctsdisplay Upsilon {}
%\ctsdisplay xi {}
%\ctsdisplay Xi {}
%\ctsdisplay zeta {}
%\egroup
\begindesc
\bix^^{希腊字母}
\dothreecolumns 40
\easy\ctsdisplay alpha {}
\ctsdisplay beta {}
\ctsdisplay chi {}
\ctsdisplay delta {}
\ctsdisplay Delta {}
\ctsdisplay epsilon {}
\ctsdisplay varepsilon {}
\ctsdisplay eta {}
\ctsdisplay gamma {}
\ctsdisplay Gamma {}
\ctsdisplay iota {}
\ctsdisplay kappa {}
\ctsdisplay lambda {}
\ctsdisplay Lambda {}
\ctsdisplay mu {}
\ctsdisplay nu {}
\ctsdisplay omega {}
\ctsdisplay Omega {}
\ctsdisplay phi {}
\ctsdisplay varphi {}
\ctsdisplay Phi {}
\ctsdisplay pi {}
\ctsdisplay varpi {}
\ctsdisplay Pi {}
\ctsdisplay psi {}
\ctsdisplay Psi {}
\ctsdisplay rho {}
\ctsdisplay varrho {}
\ctsdisplay sigma {}
\ctsdisplay varsigma {}
\ctsdisplay Sigma {}
\ctsdisplay tau {}
\ctsdisplay theta {}
\ctsdisplay vartheta {}
\ctsdisplay Theta {}
\ctsdisplay upsilon {}
\ctsdisplay Upsilon {}
\ctsdisplay xi {}
\ctsdisplay Xi {}
\ctsdisplay zeta {}
\egroup
%\explain
%These commands produce Greek letters suitable for mathematics.
%You can only use them
%within a math formula, so if you need a Greek letter within ordinary
%text you must enclose it in dollar signs (|$|). \TeX\ does not have
%commands for Greek letters that look like their roman
%counterparts, since you can get them by using those roman
%counterparts. For example, you can get a lowercase
%^{omicron} in a formula by writing the letter `o', i.e.,
%`|{\rm o}|' or an uppercase ^{beta} (`B') by writing
%`|{\rm B}|'.
\explain
输入这些命令可以排印出数学公式中的相应的希腊字母符号.
你只能在数学模式中使用它们, 所以如在普通的文本中使用它们时,
你必须把它们括在美元符号 (|$|) 内.
\TeX\ 并不包含这些数学中使用的希腊字母所对应的正体字符的命令,
不过你可以很方便地得到这些字符.
比如说, 你可以在公式中使用 `|{\rm o}|' 来得到一个小写的 ^{omicron} `o',
又比如, 你可以使用 `|{\rm B}|' 得到大写的 ^{beta} (`B').
%Don't confuse the following letters:
%\ulist \compact
%\li |\upsilon| (`$\upsilon$'), |{\rm v}| (`v'), and |\nu| (`$\nu$').
%\li |\varsigma| (`$\varsigma$') and |\zeta| (`$\zeta$').
%\endulist
注意不要混淆下面的符号:
\ulist \compact
\li |\upsilon| (`$\upsilon$'), |{\rm v}| (`v'), 和 |\nu| (`$\nu$').
\li |\varsigma| (`$\varsigma$') 和 |\zeta| (`$\zeta$').
\endulist
%You can get slanted capital Greek letters by using the math italic
%(|\mit|) \minref{font}.
使用数学的意大利\minref{字体} (|\mit|) 可以得到斜体的大写希腊字母.
%\TeX\ treats Greek letters as ordinary symbols when it's figuring how
%much space to put around them.
在计算在希腊字母周围插入多少的空白时,\TeX\ 把它们当作正常的符号。
%\example
%If $\rho$ and $\theta$ are both positive, then $f(\theta)
%-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
%|
%\produces
%If $\rho$ and $\theta$ are both positive, then
%$f(\theta)-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
%\endexample
%\eix^^{Greek letters}
%\enddesc
\example
如果 $\rho$ 和 $\theta$ 都是正数, 那么 $f(\theta)
-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
|
\produces
如果 $\rho$ 和 $\theta$ 都是正数, 那么
$f(\theta)-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
\endexample
\eix^^{希腊字母}
\enddesc
%==========================================================================
%\subsection {Miscellaneous ordinary math symbols}
\subsection {各种普通数学符号}
\begindesc
\xrdef{specsyms}
\dothreecolumns 34
\easy\ctsdisplay infty {}
\ctsdisplay Re {}
\ctsdisplay Im {}
\ctsdisplay angle {}
\ctsdisplay triangle {}
\ctsdisplay backslash {}
\ctsdisplay vert {}
\writeidxfalse\ctsydisplay | @bar {}\writeidxtrue
\ctsdisplay Vert {}
\ctsdisplay emptyset {}
\ctsdisplay bot {}
\ctsdisplay top {}
\ctsdisplay exists {}
\ctsdisplay forall {}
\ctsdisplay hbar {}
\ctsdisplay ell {}
\ctsdisplay aleph {}
\ctsdisplay imath {}
\ctsdisplay jmath {}
\ctsdisplay nabla {}
\ctsdisplay neg {}
\ctsdisplay lnot {}
\actdisplay ' @prime \ (上标点)
\ctsdisplay prime {}
\ctsdisplay partial {}
\ctsdisplay surd {}
\ctsdisplay wp {}
\ctsdisplay flat {}
\ctsdisplay sharp {}
\ctsdisplay natural {}
\ctsdisplay clubsuit {}
\ctsdisplay diamondsuit {}
\ctsdisplay heartsuit {}
\ctsdisplay spadesuit {}
\egroup
\explain
^^{音符} ^^{花色}
这些命令可以排印各种符号.
为了把它们和其它的符号, 比如关系符号等, 区分开来, 它们被称为普通数学符号.
你只能在数学模式中使用这些符号, 所以如果在普通的文本中使用, 你必须使用美元符号 (|$|) 把它们括起来.
当你想在 `$i$' 或 `$j$' 上加上重音符号, 则需要使用 |\imath| 和 |\jmath| 命令来表示它们本身.
上标点符号 (|'|) 是一个 |\prime| 的上标的简写.
(|\prime| 本身可以排印一个很大的丑陋的撇号.)
|\!|| 和 ^|\Vert| 命令是等价的, 就像 ^|\neg| 和 ^|\lnot| 命令一样.
\margin{增加了 {\tt\\vert} 的解释}
|\vert| 符号可以排印出和 `|!||' 相同的效果.
\indexchar |
由 |\backslash|, |\vert|, 和 |\Vert| 排印的命令叫做 \minref{分界符}.
使用 ^|\bigm| 等 (\xref \bigm) 命令可以排印大号的这些字符.
\example
The Knave of $\heartsuit$s, he stole some tarts.
|
\produces
The Knave of $\heartsuit$s, he stole some tarts.
\nextexample
如 $\hat\imath < \hat\jmath$ 则 $i' \leq j^\prime$.
|
\produces
如 $\hat\imath < \hat\jmath$ 则 $i' \leq j^\prime$.
\nextexample
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
|
\dproduces
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
\endexample
\enddesc
%==========================================================================
\subsection {二元运算符}
\begindesc
\bix^^{运算符}
\xrdef{binops}
\dothreecolumns 34
\easy\ctsdisplay vee {}
\ctsdisplay wedge {}
\ctsdisplay amalg {}
\ctsdisplay cap {}
\ctsdisplay cup {}
\ctsdisplay uplus {}
\ctsdisplay sqcap {}
\ctsdisplay sqcup {}
\ctsdisplay dagger {}
\ctsdisplay ddagger {}
\ctsdisplay land {}
\ctsdisplay lor {}
\ctsdisplay cdot {}
\ctsdisplay diamond {}
\ctsdisplay bullet {}
\ctsdisplay circ {}
\ctsdisplay bigcirc {}
\ctsdisplay odot {}
\ctsdisplay ominus {}
\ctsdisplay oplus {}
\ctsdisplay oslash {}
\ctsdisplay otimes {}
\ctsdisplay pm {}
\ctsdisplay mp {}
\ctsdisplay triangleleft {}
\ctsdisplay triangleright {}
\ctsdisplay bigtriangledown {}
\ctsdisplay bigtriangleup {}
\ctsdisplay ast {}
\ctsdisplay star {}
\ctsdisplay times {}
\ctsdisplay div {}
\ctsdisplay setminus {}
\ctsdisplay wr {}
\egroup
\explain
这些命令可以排印各种二元运算符.
二元运算符是 \TeX\ 的一种符号\minref{集}.
\TeX\ 在不同的符号集周围会插入不同的空白.
当 \TeX\ 需要在一个数学公式中间断行时,
它会考虑在二元运算符后面进行断行---不过仅在它出现在公式的最外层时, 而不是在一个组中.
除了这些命令以外, \TeX\ 也把 `|+|' and `|-|' 作为二元运算符.
它把 `|/|' 当作一个普通符号,
因为虽然事实上在数学中它是一个二元运算,
但是它在周围加入的空白更少时看上去更漂亮.
\example
$$z = x \div y \quad \hbox{当且仅当} \quad
z \times y = x \;\hbox{且}\; y \neq 0$$
|
\dproduces
$$z = x \div y \quad \hbox{当且仅当} \quad
z \times y = x \;\hbox{且}\; y \neq 0$$
\endexample
\enddesc
\begindesc
\ctspecial * \ctsxrdef{@star}
\explain
命令 |\*| 表示乘法符号 ($\times$), 也是一个二元符号.
乘法符号在文本中的数学公式中出现时表现得和一个分词符类似.
这就是说, \TeX\ \emph{仅}会在公式该点需要断行时排版 |\times| 符号.
因为 \TeX\ 永远不会在陈列公式中断行, 所以 |\*| 在陈列公式 \minrefs{陈列公式} 中是没有任何作用的.
\example
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
|
\produces
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
\eix^^{运算符}
\endexample
\enddesc
%==========================================================================
\subsection {关系符号}
\begindesc
\xrdef {relations}
\bix^^{关系符}
\dothreecolumns 39
\easy\ctsdisplay asymp {}
\ctsdisplay cong {}
\ctsdisplay dashv {}
\ctsdisplay vdash {}
\ctsdisplay perp {}
\ctsdisplay mid {}
\ctsdisplay parallel {}
\ctsdisplay doteq {}
\ctsdisplay equiv {}
\ctsdisplay ge {}
\ctsdisplay geq {}
\ctsdisplay le {}
\ctsdisplay leq {}
\ctsdisplay gg {}
\ctsdisplay ll {}
\ctsdisplay models {}
\ctsdisplay ne {}
\ctsdisplay neq {}
\ctsdisplay notin {}
\ctsdisplay in {}
\ctsdisplay ni {}
\ctsdisplay owns {}
\ctsdisplay prec {}
\ctsdisplay preceq {}
\ctsdisplay succ {}
\ctsdisplay succeq {}
\ctsdisplay bowtie {}
\ctsdisplay propto {}
\ctsdisplay approx {}
\ctsdisplay sim {}
\ctsdisplay simeq {}
\ctsdisplay frown {}
\ctsdisplay smile {}
\ctsdisplay subset {}
\ctsdisplay subseteq {}
\ctsdisplay supset {}
\ctsdisplay supseteq {}
\ctsdisplay sqsubseteq {}
\ctsdisplay sqsupseteq {}
\egroup
\explain
这些命令可以排印各种关系符号.
关系符号是 \TeX\ 的数学符号中的\minref{类}之一.
\TeX\ 在不同的\minref{类}之间插入不同的空白长度.
当 \TeX\ 需要在一个数学公式处断行, \minrefs{断行}
它会考虑在一个关系符后进行断行---不过仅在它出现在公式的最外层时, 而不是在一个组中.
除了这里列出的命令以外, \TeX\ 也把 `^|=|' 和``arrow'' 命令 (\xref{arrows}) 作为关系运算符.
一些关系符有多种命令表达方式, 你可以使用任何一个来排印它们:
\ulist \compact
\li `$\ge$' (|\ge| 和 |\geq|).
\li `$\le$' (|\le| 和 |\leq|).
\li `$\ne$' (|\ne|, |\neq|, 和 |\not=|).
\li `$\ni$' (|\ni| 和 |\owns|).
\endulist
\xrdef{\not}
在这些符号前加上 |\not|, 可以排印它们的非运算:
\nobreak
\threecolumns 21
\basicdisplay {$\not\asymp$}{\\not\\asymp}\ctsidxref{asymp}
\basicdisplay {$\not\cong$}{\\not\\cong}\ctsidxref{cong}
\basicdisplay {$\not\equiv$}{\\not\\equiv}\ctsidxref{equiv}
\basicdisplay {$\not=$}{\\not=}\ttidxref{=}
\basicdisplay {$\not\ge$}{\\not\\ge}\ctsidxref{ge}
\basicdisplay {$\not\geq$}{\\not\\geq}\ctsidxref{geq}
\basicdisplay {$\not\le$}{\\not\\le}\ctsidxref{le}
\basicdisplay {$\not\leq$}{\\not\\leq}\ctsidxref{leq}
\basicdisplay {$\not\prec$}{\\not\\prec}\ctsidxref{prec}
\basicdisplay {$\not\preceq$}{\\not\\preceq}\ctsidxref{preceq}
\basicdisplay {$\not\succ$}{\\not\\succ}\ctsidxref{succ}
\basicdisplay {$\not\succeq$}{\\not\\succeq}\ctsidxref{succeq}
\basicdisplay {$\not\approx$}{\\not\\approx}\ctsidxref{approx}
\basicdisplay {$\not\sim$}{\\not\\sim}\ctsidxref{sim}
\basicdisplay {$\not\simeq$}{\\not\\simeq}\ctsidxref{simeq}
\basicdisplay {$\not\subset$}{\\not\\subset}\ctsidxref{subset}
\basicdisplay {$\not\subseteq$}{\\not\\subseteq}\ctsidxref{subseteq}
\basicdisplay {$\not\supset$}{\\not\\supset}\ctsidxref{supset}
\basicdisplay {$\not\supseteq$}{\\not\\supseteq}\ctsidxref{supseteq}
\basicdisplay {$\not\sqsubseteq$}{\\not\\sqsubseteq}%
\ctsidxref{sqsubseteq}
\basicdisplay {$\not\sqsupseteq$}{\\not\\sqsupseteq}%
\ctsidxref{sqsupseteq}
\egroup
\example
我们可以得到 $AB \perp AC$,且
$\triangle ABF \not\sim \triangle ACF$.
|
\produces
我们可以得到 $AB \perp AC$,且
$\triangle ABF \not\sim \triangle ACF$.
\eix^^{关系符}
\endexample
\enddesc
%==========================================================================
%\subsection {Left and right delimiters}
\subsection {左右定界符}
%\begindesc
%\bix^^{delimiters}
%%
%\dothreecolumns 12
%\easy\ctsdisplay lbrace {}
%\ctsydisplay { @lbrace {}
%\ctsdisplay rbrace {}
%\ctsydisplay } @rbrace {}
%\ctsdisplay lbrack {}
%\ctsdisplay rbrack {}
%\ctsdisplay langle {}
%\ctsdisplay rangle {}
%\ctsdisplay lceil {}
%\ctsdisplay rceil {}
%\ctsdisplay lfloor {}
%\ctsdisplay rfloor {}
%\egroup
%\explain
%These commands produce left and right \minref{delimiter}s.
%Mathematicians use delimiters to indicate the boundaries between parts
%of a formula. Left delimiters are also called ``^{opening}s'', and
%right delimiters are also called ``^{closing}s''. Openings and closings
%are two of \TeX's \minref{class}es of math symbols. \TeX\ puts
%different amounts of space around different \minref{class}es of math
%symbols. You might expect the space that \TeX\ puts around openings and
%closings to be symmetrical, but in fact it isn't.
\begindesc
\bix^^{定界符}
%
\dothreecolumns 12
\easy\ctsdisplay lbrace {}
\writeidxfalse\ctsydisplay { @lbrace {}\writeidxtrue
\ctsdisplay rbrace {}
\writeidxfalse\ctsydisplay } @rbrace {}\writeidxtrue
\ctsdisplay lbrack {}
\ctsdisplay rbrack {}
\ctsdisplay langle {}
\ctsdisplay rangle {}
\ctsdisplay lceil {}
\ctsdisplay rceil {}
\ctsdisplay lfloor {}
\ctsdisplay rfloor {}
\egroup
\explain
这些命令排印各种左右\minref{定界符}。
数学家用定界符指明公式各部分的边界。
左定界符又称为``^{开符号}'',右定界符又称为``^{闭符号}''。
开符号和闭符号是 \TeX\ 数学公式中的两种字符类。
\TeX\ 在不同\minref{类}的数学符号之间留下不同大小的间隔。
你也许认为在开符号和闭符号旁边的间隔是对称的,但实际上并非如此。
%Some left and right delimiters have more than one command that you can
%use to produce them:
有些左定界符和右定界符可以用不止一个命令排印:
%\ulist\compact
%\li `$\{$' (|\lbrace| and |\{|)
%\li `$\}$' (|\rbrace| and |\}|)
%\li `$[$' (|\lbrack| and `|[|')
%\li `$]$' (|\rbrack| and `|]|')
%\endulist
%\noindent You can also use the left and right bracket characters
%(in either form) outside of math mode.
\ulist\compact
\li `$\{$' (|\lbrace| 和 |\{|)
\li `$\}$' (|\rbrace| 和 |\}|)
\li `$[$' (|\lbrack| 和 `|[|')
\li `$]$' (|\rbrack| 和 `|]|')
\endulist
\noindent 左右方括号(两种形式皆可)在数学模式之外也可以使用。
%In addition to these commands, \TeX\ treats `|(|' as a left
%delimiter and `|)|' as a right delimiter.
除这些命令之外,\TeX\ 还将 `|(|' 视为左定界符,将 `|)|' 视为右定界符。
%You can have \TeX\
%choose the size for a delimiter by using |\left| and |\right| (\xref\left).
%Alternatively,
%you can get a delimiter of a specific size by using one of the |\big|$x$
%commands (see |\big| et al., \xref{\big}).
利用 |\left| 和 |\right|(\xref\left )命令,
你可以让 \TeX\ 选择定界符的尺寸。
或者利用某个 |\big|$x$ 命令(见 |\big| 等,\xref{\big}),
你可以选择特定尺寸的定界符。
%\example
%The set $\{\,x \mid x>0\,\}$ is empty.
%|
%\produces
%The set $\{\,x \mid x>0\,\}$ is empty.
\example
集合 $\{\,x \mid x>0\,\}$ 是空集.
|
\produces
集合 $\{\,x \mid x>0\,\}$ 是空集.
%\eix^^{delimiters}
%\endexample
%\enddesc
\eix^^{定界符}
\endexample
\enddesc
%==========================================================================
%\subsection {Arrows}
\subsection {箭头}
%\begindesc
%\bix^^{arrows}
%\xrdef{arrows}
%%
%{\symbolspace=24pt \makecolumns 34/2:
%\easy%
%\ctsdisplay leftarrow {}
%\ctsdisplay gets {}
%\ctsdisplay Leftarrow {}
%\ctsdisplay rightarrow {}
%\ctsdisplay to {}
%\ctsdisplay Rightarrow {}
%\ctsdisplay leftrightarrow {}
%\ctsdisplay Leftrightarrow {}
%\ctsdisplay longleftarrow {}
%\ctsdisplay Longleftarrow {}
%\ctsdisplay longrightarrow {}
%\ctsdisplay Longrightarrow {}
%\ctsdisplay longleftrightarrow {}
%\ctsdisplay Longleftrightarrow {}
%\basicdisplay {$\Longleftrightarrow$}{\\iff}\pix\ctsidxref{iff}\xrdef{\iff}
%\ctsdisplay hookleftarrow {}
%\ctsdisplay hookrightarrow {}
%\ctsdisplay leftharpoondown {}
%\ctsdisplay rightharpoondown {}
%\ctsdisplay leftharpoonup {}
%\ctsdisplay rightharpoonup {}
%\ctsdisplay rightleftharpoons {}
%\ctsdisplay mapsto {}
%\ctsdisplay longmapsto {}
%\ctsdisplay downarrow {}
%\ctsdisplay Downarrow {}
%\ctsdisplay uparrow {}
%\ctsdisplay Uparrow {}
%\ctsdisplay updownarrow {}
%\ctsdisplay Updownarrow {}
%\ctsdisplay nearrow {}
%\ctsdisplay searrow {}
%\ctsdisplay nwarrow {}
%\ctsdisplay swarrow {}
%}
%\explain
%These commands provide arrows of different kinds. They
%are classified as relations (\xref{relations}).
%The vertical arrows in the list are also \minref{delimiter}s, so you can make
%them larger by using |\big| et al.\ (\xref \big).
\begindesc
\bix^^{箭头}
\xrdef{arrows}
%
{\symbolspace=24pt \makecolumns 34/2:
\easy%
\ctsdisplay leftarrow {}
\ctsdisplay gets {}
\ctsdisplay Leftarrow {}
\ctsdisplay rightarrow {}
\ctsdisplay to {}
\ctsdisplay Rightarrow {}
\ctsdisplay leftrightarrow {}
\ctsdisplay Leftrightarrow {}
\ctsdisplay longleftarrow {}
\ctsdisplay Longleftarrow {}
\ctsdisplay longrightarrow {}
\ctsdisplay Longrightarrow {}
\ctsdisplay longleftrightarrow {}
\ctsdisplay Longleftrightarrow {}
\basicdisplay {$\Longleftrightarrow$}{\\iff}\pix\ctsidxref{iff}\xrdef{\iff}
\ctsdisplay hookleftarrow {}
\ctsdisplay hookrightarrow {}
\ctsdisplay leftharpoondown {}
\ctsdisplay rightharpoondown {}
\ctsdisplay leftharpoonup {}
\ctsdisplay rightharpoonup {}
\ctsdisplay rightleftharpoons {}
\ctsdisplay mapsto {}
\ctsdisplay longmapsto {}
\ctsdisplay downarrow {}
\ctsdisplay Downarrow {}
\ctsdisplay uparrow {}
\ctsdisplay Uparrow {}
\ctsdisplay updownarrow {}
\ctsdisplay Updownarrow {}
\ctsdisplay nearrow {}
\ctsdisplay searrow {}
\ctsdisplay nwarrow {}
\ctsdisplay swarrow {}
}
\explain
这些命令提供各种箭头。它们被划分为关系符号(\xref{relations})。
上面的竖直箭头同时也是\minref{定界符},
因此你可以用 |\big| 等命令让它们变大(\xref \big )。
%The command |\iff| differs from |\Longleftrightarrow| in that
%it produces extra space to the left and right of the arrow.
命令 |\iff| 和 |\Longleftrightarrow| 的差别之处在于,
它在箭头两边生成额外间隔。
%You can place symbols or other legends on top of a left or right arrow
%with |\buildrel| (\xref \buildrel).
你可以用 |\buildrel|(\xref \buildrel )命令将符号或者其他文字放在箭头上边。
%\example
%$$f(x)\mapsto f(y) \iff x \mapsto y$$
%|
%\dproduces
%$$f(x)\mapsto f(y) \iff x \mapsto y$$
\example
$$f(x)\mapsto f(y) \iff x \mapsto y$$
|
\dproduces
$$f(x)\mapsto f(y) \iff x \mapsto y$$
%\eix^^{arrows}
%\endexample
%\enddesc
\eix^^{箭头}
\endexample
\enddesc
%==========================================================================
%\subsection {Named mathematical functions}
\subsection {已命名的数学函数}
%\begindesc
%\xrdef{namedfns}
%\bix^^{functions, names of}
%{\symbolspace = 36pt
%\threecolumns 32
%\easy\ctsdisplay cos {}
%\ctsdisplay sin {}
%\ctsdisplay tan {}
%\ctsdisplay cot {}
%\ctsdisplay csc {}
%\ctsdisplay sec {}
%\ctsdisplay arccos {}
%\ctsdisplay arcsin {}
%\ctsdisplay arctan {}
%\ctsdisplay cosh {}
%\ctsdisplay coth {}
%\ctsdisplay sinh {}
%\ctsdisplay tanh {}
%\ctsdisplay det {}
%\ctsdisplay dim {}
%\ctsdisplay exp {}
%\ctsdisplay ln {}
%\ctsdisplay log {}
%\ctsdisplay lg {}
%\ctsdisplay arg {}
%\ctsdisplay deg {}
%\ctsdisplay gcd {}
%\ctsdisplay hom {}
%\ctsdisplay ker {}
%\ctsdisplay inf {}
%\ctsdisplay sup {}
%\ctsdisplay lim {}
%\ctsdisplay liminf {}
%\ctsdisplay limsup {}
%\ctsdisplay max {}
%\ctsdisplay min {}
%\ctsdisplay Pr {}
%\egroup}
%\explain
%These commands set the names of various mathematical functions
%in roman type, as is customary.
%If you apply a superscript or subscript to one of these commands,
%\TeX\ will in most cases typeset it in the usual place.
%In display style, \TeX\ typesets superscripts and subscripts
%on |\det|, |\gcd|, |\inf|, |\lim|, |\liminf|,
%|\limsup|, |\max|, |\min|, |\Pr|, and |\sup|
%as though they were limits,
%i.e., directly above or directly below the function name.
\begindesc
\xrdef{namedfns}
\bix^^{函数名称}
{\symbolspace = 36pt
\threecolumns 32
\easy\ctsdisplay cos {}
\ctsdisplay sin {}
\ctsdisplay tan {}
\ctsdisplay cot {}
\ctsdisplay csc {}
\ctsdisplay sec {}
\ctsdisplay arccos {}
\ctsdisplay arcsin {}
\ctsdisplay arctan {}
\ctsdisplay cosh {}
\ctsdisplay coth {}
\ctsdisplay sinh {}
\ctsdisplay tanh {}
\ctsdisplay det {}
\ctsdisplay dim {}
\ctsdisplay exp {}
\ctsdisplay ln {}
\ctsdisplay log {}
\ctsdisplay lg {}
\ctsdisplay arg {}
\ctsdisplay deg {}
\ctsdisplay gcd {}
\ctsdisplay hom {}
\ctsdisplay ker {}
\ctsdisplay inf {}
\ctsdisplay sup {}
\ctsdisplay lim {}
\ctsdisplay liminf {}
\ctsdisplay limsup {}
\ctsdisplay max {}
\ctsdisplay min {}
\ctsdisplay Pr {}
\egroup}
\explain
这些命令以惯用的罗马字体排印各种数学函数的名称。
如果你给这些命令中的任何一个加上上标或下标,
\TeX\ 将在通常的位置排版它。
在陈列样式中,对于 |\det|、|\gcd|、|\inf|、|\lim|、|\liminf|、
|\limsup|、|\max|、|\min|、|\Pr| 和 |\sup|,
\TeX\ 将上标和下标当成极限那样排版,
即将它们直接放在函数名的上边或下边。
%\example
%$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
%|
%\produces
%$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
%\endexample\enddesc
\example
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
|
\produces
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
\endexample\enddesc
%\begindesc
%\cts bmod {}
%\explain
%This command produces a binary operation for indicating a ^{modulus}
%within a formula.
%\example
%$$x = (y+1) \bmod 2$$
%|
%\dproduces
%$$x = (y+1) \bmod 2$$
%\endexample
%\enddesc
\begindesc
\cts bmod {}
\explain
此命令排印一个标明公式内的^{模运算}的二元运算符。
\example
$$x = (y+1) \bmod 2$$
|
\dproduces
$$x = (y+1) \bmod 2$$
\endexample
\enddesc
%\begindesc
%\cts pmod {}
%\explain
%This command provides a notation for indicating a ^{modulus} in parentheses
%at the end of a formula.
%\example
%$$x \equiv y+1 \pmod 2$$
%|
%\dproduces
%$$x \equiv y+1 \pmod 2$$
\begindesc
\cts pmod {}
\explain
此命令在公式末尾排印放在圆括号中的^{模运算}。
\example
$$x \equiv y+1 \pmod 2$$
|
\dproduces
$$x \equiv y+1 \pmod 2$$
%\eix^^{functions, names of}
%\endexample
%\enddesc
\eix^^{函数名称}
\endexample
\enddesc
%==========================================================================
%\subsection {Large operators}
\subsection {巨算符}
%\begindesc
%\bix^^{operators//large}
%\threecolumns 15
%\easy\ctsdoubledisplay bigcap {}
%\ctsdoubledisplay bigcup {}
%\ctsdoubledisplay bigodot {}
%\ctsdoubledisplay bigoplus {}
%\ctsdoubledisplay bigotimes {}
%\ctsdoubledisplay bigsqcup {}
%\ctsdoubledisplay biguplus {}
%\ctsdoubledisplay bigvee {}
%\ctsdoubledisplay bigwedge {}
%\ctsdoubledisplay coprod {}
%{\symbolspace = 42pt\basicdisplay {\hskip 26pt$\smallint$}%
% {\\smallint}\ddstrut}%
% \xrdef{\smallint} \pix\ctsidxref{smallint}
%\ctsdoubledisplay int {}
%\ctsdoubledisplay oint {}
%\ctsdoubledisplay prod {}
%\ctsdoubledisplay sum {}
%}
%\explain
%These commands produce various large operator symbols.
%\TeX\ produces the smaller size when it's in ^{text style}
%\minrefs{math mode} and the larger size when it's in ^{display style}.
%Operators are one of \TeX's \minref{class}es of math symbols.
%\TeX\ puts different amounts of space
%around different classes of math symbols.
\begindesc
\bix^^{运算符//巨算符}
\threecolumns 15
\easy\ctsdoubledisplay bigcap {}
\ctsdoubledisplay bigcup {}
\ctsdoubledisplay bigodot {}
\ctsdoubledisplay bigoplus {}
\ctsdoubledisplay bigotimes {}
\ctsdoubledisplay bigsqcup {}
\ctsdoubledisplay biguplus {}
\ctsdoubledisplay bigvee {}
\ctsdoubledisplay bigwedge {}
\ctsdoubledisplay coprod {}
{\symbolspace = 42pt\basicdisplay {\hskip 26pt$\smallint$}%
{\\smallint}\ddstrut}%
\xrdef{\smallint} \pix\ctsidxref{smallint}
\ctsdoubledisplay int {}
\ctsdoubledisplay oint {}
\ctsdoubledisplay prod {}
\ctsdoubledisplay sum {}
}
\explain
这些命令排印各种巨算符。
\TeX\ 在^{文内样式}中排印小号字符,
\minrefs{math mode}而在^{陈列样式}中排印大号字符.
巨算符是 \TeX\ 数学符号的其中一\minref{类}。
\TeX\ 在不同类数学符号间留下不同大小的间隔。
%The large operator symbols with `|big|' in their names are different
%from the corresponding binary operations (see \xref{binops}) such as
%|\cap| ($\cap$) since they usually appear at the beginning
%of a formula. \TeX\ uses different spacing for a large operator
%than it does for a binary operation.
名称中带有 `|big|' 的巨算符和对应的二元运算符%
(比如 |\cap| ($\cap$),见\xref{binops})不同,
因为它们通常出现公式的开头。
\TeX\ 给巨算符留下的间隔与二元运算符的不同。
%Don't confuse `$\sum$' (|\sum|) with `$\Sigma$'^^|\Sigma| (|\Sigma|)
%or confuse `$\prod$' (|\prod|) with `$\Pi$' ^^|\Pi| (|\Pi|).
%|\Sigma| and |\Pi| produce capital Greek letters, which are smaller and
%have a different appearance.
不要混淆 `$\sum$' (|\sum|) 和 `$\Sigma$'^^|\Sigma| (|\Sigma|),
或者 `$\prod$' (|\prod|) 和 `$\Pi$' ^^|\Pi| (|\Pi|)。
|\Sigma| 和 |\Pi| 排印大写希腊字母,它们尺寸更小,外观也不同。
%A large operator can have ^{limits}. The lower limit is specified as a
%subscript and the upper limit as a superscript.
巨算符可以带有^{极限}。下极限用下标指定,而上极限用上标指定。
%\example
%$$\bigcap_{k=1}^r (a_k \cup b_k)$$
%|
%\dproduces
%$$\bigcap_{k=1}^r (a_k \cup b_k)$$
%\endexample
%\interexampleskip
%\example
%$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
%|
%\dproduces
%$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
%\endexample
%\enddesc
\example
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
|
\dproduces
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
\endexample
\interexampleskip
\example
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
|
\dproduces
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
\endexample
\enddesc
%\begindesc
%\cts limits {}
%\explain
%When it's in text style, \TeX\ normally places limits after a large operator.
%This command tells \TeX\ to place
%limits above and below a large operator rather than after it.
\begindesc
\cts limits {}
\explain
在文内样式中,\TeX\ 通常将极限放在巨算符后边。
此命令让 \TeX\ 将极限放在巨算符的上边和下边,而不是在后边。
%If you specify more than one of |\limits|, |\nolimits|,
%and |\display!-limits|, the last command rules.
如果你多次使用 |\limits|、|\nolimits| 或 |\display!-limits|,
仅最后一个命令生效。
%\example
%Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
%two elements.
%|
%\produces
%Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
%two elements.
%\endexample
%\enddesc
\example
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
two elements.
|
\produces
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least
two elements.
\endexample
\enddesc
%\begindesc
%\cts nolimits {}
%\explain
%When it's in display
%style, \TeX\ normally places limits above and below a large operator.
%(The |\int| operator is an exception---\TeX\
%places limits for |\int| after the operator in all cases.)
%^^|\int//limits after|
%This command tells \TeX\ to place
%limits after a large operator rather than above and below it.
\begindesc
\cts nolimits {}
\explain
在陈列样式中,\TeX\ 通常将极限放在巨算符的上边和下边。%
(|\int| 算符是一个例外—— \TeX\ 总是将极限放在算符的后边。)%
^^|\int//极限放在后面|
此命令让 \TeX\ 将极限放在巨算符后边,而不是上边和下边。
%If you specify more than one of |\limits|, |\nolimits|,
%and |\display!-limits|, the last command rules.
如果你多次使用 |\limits|、|\nolimits| 或 |\display!-limits|,
仅最后一个命令生效。
%\example
%$$\bigcap\nolimits_{i=1}^Nq_i$$
%|
%\dproduces
%$$\bigcap\nolimits_{i=1}^Nq_i$$
%\endexample
%\enddesc
\example
$$\bigcap\nolimits_{i=1}^Nq_i$$
|
\dproduces
$$\bigcap\nolimits_{i=1}^Nq_i$$
\endexample
\enddesc
%\begindesc
%\cts displaylimits {}
%\explain
%This command tells \TeX\ to
%follow its normal rules for placement of limits:
%\olist\compact
%\li Limits on ^|\int| are placed after the operator.
%\li Limits on other large operators are placed after the
%operator in text style.
%\li Limits on other large operators are placed above and below the operator
%in display style.
%\endolist
%It's usually simpler to use |\limits| or |\nolimits|
%to produce a specific effect, but |\display!-limits| is sometimes
%useful in \minref{macro} definitions.
\begindesc
\cts displaylimits {}
\explain
此命令让 \TeX\ 按照通常方式放置极限:
\olist\compact
\li ^|\int| 算符的极限总放在算符后边。%
\footnote{译注:此处似乎有误,在 |\displaylimits| 下 ^|\int| 和其他算符应该有相同的表现。}
\li 在文内样式中,其他巨算符的极限放在算符的后边。
\li 在陈列样式中,其他巨算符的极限放在算符的上边和下边。
\endolist
用 |\limits| 或 |\nolimits| 来排印特定效果更为简单,
但 |\display!-limits| 在\minref{宏}定义中有时会用到。
%Note that \plainTeX\ defines ^|\int| as a macro that sets |\nolimits|,
%so |\int\displaylimits| in text style restores the |\limits|
%convention.
注意 \plainTeX\ 在定义 ^|\int| 时就带有 |\nolimits|,
因此文内样式的 |\int\displaylimits| 将恢复 |\limits| 约定。%
\footnote{译注:此处似乎有误,在文内样式中,|\int\displaylimits| 的极限应该还是在后边。}
%If you specify more than one of |\limits|, |\nolimits|,
%and |\display!-limits|, the last command rules.
如果你多次使用 |\limits|、|\nolimits| 或 |\display!-limits|,
仅最后一个命令生效。
%\example
%$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
%_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
%|
%\dproduces
%$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
%_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
\example
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
|
\dproduces
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
%\eix^^{operators//large}
%\endexample
%\enddesc
\eix^^{运算符//巨算符}
\endexample
\enddesc
%==========================================================================
%\subsection {Punctuation}
\subsection {标点}
%\begindesc
%\bix^^{punctuation in math formulas}
%\cts cdotp {}
%\cts ldotp {}
%\explain
%These two commands respectively produce a centered dot and a dot
%positioned on the \minref{baseline}. They are valid only in math
%\minref{mode}. \TeX\ treats them as punctuation, putting no extra space in
%front of them but a little extra space after them.
%In contrast, \TeX\ puts an equal amount of space on both sides
%of a centered dot generated by the ^|\cdot| command (\xref \cdot).
%\example
%$x \cdotp y \quad x \ldotp y \quad x \cdot y$
%|
%\produces
%$x \cdotp y \quad x \ldotp y \quad x \cdot y$
%\endexample
%\enddesc
\begindesc
\bix^^{数学公式中的标点}
\cts cdotp {}
\cts ldotp {}
\explain
这两个命令分别排印居中的圆点和在\minref{基线}上的圆点。
它们仅可用于数学\minref{模式}中。
\TeX\ 将它们视为标点,在前面不留间隔而在后面留下一点间隔。
与此相反,对于用 ^|\cdot| 命令(\xref\cdot )生成的居中圆点,
\TeX\ 在其两侧留下相同大小的间隔。
\example
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
|
\produces
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
\endexample
\enddesc
%\begindesc
%\cts colon {}
%\explain
%This command produces a colon punctation symbol.
%It is valid only in math mode.
%The difference between |\colon| and the colon character (|:|) is that
%`|:|' is an operator, so \TeX\ puts extra space to the left of it whereas
%it doesn't put extra space to the left of |\colon|.
%\example
%$f \colon t \quad f : t$
%|
%\produces
%$f \colon t \quad f : t$
\begindesc
\cts colon {}
\explain
此命令排印一个冒号标点,它只能用在数学模式中。
冒号标点 |\colon| 和冒号字符(|:|)的区别在于,
`|:|' 是一个运算符,因此 \TeX\ 在其左侧留下额外间隔,
然而在 |\colon| 左侧却不留额外间隔。
\example
$f \colon t \quad f : t$
|
\produces
$f \colon t \quad f : t$
%\eix^^{punctuation in math formulas}
%\endexample
%\enddesc
\eix^^{数学公式中的标点}
\endexample
\enddesc
%==========================================================================
%\secondprinting{\vfill\eject\null\vglue-30pt\vskip0pt}
%\section {Superscripts and subscripts}
\section {上标和下标}
%\begindesc
%\margin{Two groups of commands have been combined here.}
%\bix^^{superscripts}
%\bix^^{subscripts}
%\secondprinting{\vglue-12pt}
%\makecolumns 4/2:
%\easy\ctsact _ \xrdef{@underscore} {\<argument>}
%\cts sb {\<argument>}
%\ctsact ^ \xrdef{@hat} {\<argument>}
%\cts sp {\<argument>}
%\secondprinting{\vglue-4pt}
%\explain
%The commands in each column are equivalent. The commands in the first
%column typeset \<argument> as a subscript, and those in the second
%column typeset \<argument> as a superscript. The |\sb| and |\sp|
%commands are mainly useful if you're working on a terminal that lacks an
%underscore or caret, or if you've redefined `|_|' or `|^|' and need
%access to the original definition. These commands are also used for
%setting lower and upper limits on summations and integrals. ^^{lower
%limits} ^^{upper limits}
\begindesc
\margin{Two groups of commands have been combined here.}
\bix^^{上标}
\bix^^{下标}
\secondprinting{\vglue-12pt}
\makecolumns 4/2:
\easy\ctsact _ \xrdef{@underscore} {\<argument>}
\cts sb {\<argument>}
\ctsact ^ \xrdef{@hat} {\<argument>}
\cts sp {\<argument>}
\secondprinting{\vglue-4pt}
\explain
各栏的两个命令都是等价的。第一栏的命令将 \<argument> 排版为下标,
而第二栏的命令将 \<argument> 排版为上标。
|\sb| 和 |\sp| 命令主要用于无法使用下划线和插入符的终端中,
或者用在重新定义了 `|_|' or `|^|' 但需要其原始定义的情况下。
这些命令也用于设定求和号和积分号的下极限和上极限。
^^{下极限} ^^{上极限}
%If a subscript or superscript is not a single \minref{token}, you need
%to enclose it in a \minref{group}. \TeX\ does not prioritize subscripts
%or superscripts, so it will reject formulas such as |a_i_j|, |a^i^j|, or
%|a^i_j|.
如果下标或上标不是单个\minref{记号},你需要将它放在\minref{编组}中。
\TeX\ 并不处理下标和上标的优先级,
因此它将拒绝类似 |a_i_j|、|a^i^j| 或 |a^i_j| 的公式。
%Subscripts and superscripts are normally typeset in ^{script style}, or
%in ^{scriptscript style} if they are second-order, e.g., a subscript on
%a subscript or a superscript on a a subscript. You can set \emph{any}
%text in a math formula in a script or scriptscript \minref{style} with
%the ^|\scriptstyle| and ^|\scriptscriptstyle| commands (\xref
%\scriptscriptstyle).
下标和上标排版时通常用^{标号样式},或者^{小标号样式},
如果它们是二阶标号,比如下标中的下标或下标中的上标。
利用 ^|\scriptstyle| 和 ^|\scriptscriptstyle| 命令(\xref\scriptscriptstyle ),
你可以将数学公式的\emph{任何}文本设为标号或小标号\minref{样式}。
%You can apply a subscript or superscript to any of the commands that
%produce named mathematical functions in roman type (see
%\xref{namedfns}). In certain cases (again, see \xref{namedfns}) the
%subscript or superscript appears directly above or under the function
%name as shown in the examples of ^|\lim| and ^|\det| below.
对任何以罗马字体排印命名数学函数(见\xref{namedfns})的命令,
你都可以给它添加下标和上标。
在某些情形中(同样见\xref{namedfns}),
下标和上标分别出现在函数名的下边和上边,
如下面例子中的 ^|\lim| 和 ^|\det| 所示。
%\example
%$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
% \quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
% \int_0^\infty{f(x)\,dx}$
%$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$
%|
%\produces
%\secondprinting{\divide\abovedisplayskip by 2}
%$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
% \quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
% \int_0^\infty{f(x)\,dx}$
%$$\lim_{x \leftarrow 0} f(x)\qquad
% \det^{z \in A}\qquad \sin^2 t$$
\example
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
\int_0^\infty{f(x)\,dx}$
$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$
|
\produces
%\secondprinting{\divide\abovedisplayskip by 2}
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
\quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad
\int_0^\infty{f(x)\,dx}$
$$\lim_{x \leftarrow 0} f(x)\qquad
\det^{z \in A}\qquad \sin^2 t$$
%\eix^^{superscripts}
%\eix^^{subscripts}
%\endexample
%\enddesc
\eix^^{上标}
\eix^^{下标}
\endexample
\enddesc
%\secondprinting{\vfill\eject}
%==========================================================================
%\subsection {Selecting and using styles}
\subsection {选用样式}
%\begindesc
%\bix^^{styles}
%\cts textstyle {}
%\cts scriptstyle {}
%\cts scriptscriptstyle {}
%\cts displaystyle {}
%\explain
%^^{text style} ^^{script style} ^^{scriptscript style} ^^{display style}
%These commands override the normal \minref{style} and hence the
%font that \TeX\ uses in setting a formula. Like
%font-setting commands such as |\it|, they are in
%effect until the end of the group containing them.
%They are useful when \TeX's choice of style is inappropriate for the formula
%you happen to be setting.
%\example
%$t+{\scriptstyle t + {\scriptscriptstyle t}}$
%|
%\produces
%$t+{\scriptstyle t + {\scriptscriptstyle t}}$
%\endexample
%\enddesc
\begindesc
\bix^^{样式}
\cts textstyle {}
\cts scriptstyle {}
\cts scriptscriptstyle {}
\cts displaystyle {}
\explain
^^{文本样式} ^^{标号样式} ^^{小标号样式} ^^{陈列样式}
这些命令覆盖 \TeX\ 排版公式时通常使用的\minref{样式}及其字体。
如同类似 |\it| 的字体设置命令,它们在其所在编组结束前一直有效。
当 \TeX\ 给你要排版的公式选用了不合适的样式时,你可以使用这些命令。
\example
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
|
\produces
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
\endexample
\enddesc
%\begindesc
%\cts mathchoice {%
% \rqbraces{\<math$_1$>}
% \rqbraces{\<math$_2$>}
% \rqbraces{\<math$_3$>}
% \rqbraces{\<math$_4$>}}
%\explain
%This command tells \TeX\ to typeset one of the subformulas
%\<math$_1$>, \<math$_2$>, \<math$_3$>, or \<math$_4$>, making its choice
%according to the current \minref{style}.
%That is, if \TeX\ is in
%display style it sets the |\mathchoice| as \<math$_1$>; in text style it sets
%it as \<math$_2$>; in script style it sets it as \<math$_3$>;
%and in scriptscript style it sets it as \<math$_4$>.
%\example
%\def\mc{{\mathchoice{D}{T}{S}{SS}}}
%The strange formula $\mc_{\mc_\mc}$ illustrates a
%mathchoice.
%|
%\produces
%\def\mc{{\mathchoice{D}{T}{S}{SS}}}
%The strange formula $\mc_{\mc_\mc}$ illustrates a
%mathchoice.
%\endexample
%\enddesc
\begindesc
\cts mathchoice {%
\rqbraces{\<math$_1$>}
\rqbraces{\<math$_2$>}
\rqbraces{\<math$_3$>}
\rqbraces{\<math$_4$>}}
\explain
此命令让 \TeX\ 根据当前\minref{样式}选择并排版其中一个子公式
\<math$_1$>、\<math$_2$>、\<math$_3$> 或 \<math$_4$>。
也就是说,如果在陈列样式中,\TeX\ 将 |\mathchoice| 排版为 \<math$_1$>;
在文本样式中排版为 \<math$_2$>,在标号样式中排版为 \<math$_3$>;
而在小标号样式中排版为 \<math$_4$>。
\example
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a
mathchoice.
|
\produces
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a
mathchoice.
\endexample
\enddesc
%\begindesc
%\cts mathpalette {\<argument$_1$> \<argument$_2$>}
%\explain
%^^{math symbols}
%This command provides a convenient way of
%producing a math construct that works in all four \minref{style}s.
%To use it, you'll normally need to define an additional macro,
%which we'll call |\build|.
%The call on |\math!-palette| should then have the form
%|\mathpalette|\allowbreak|\build|\<argument>.
\begindesc
\cts mathpalette {\<argument$_1$> \<argument$_2$>}
\explain
^^{数学符号}
此命令提供一种生成适用于四种\minref{样式}的数学结构的简便方法。%
\footnote{译注:该宏定义为
|\def\mathpalette#1#2{\mathchoice{#1\displaystyle{#2}}|\break
|{#1\textstyle{#2}}{#1\scriptstyle{#2}}{#1\scriptscriptstyle{#2}}}|。}
要使用它,通常你需要定义一个额外的宏,假设我们称它为 |\build|。
调用 |\math!-palette| 就应该用
|\mathpalette|\allowbreak|\build|\<argument> 这种形式。
%|\build| tests what style \TeX\ is in and typesets \<argu\-ment> accordingly.
%It should be defined to have two parameters.
%When you call |\math!-palette|, it will in turn call |\build|,
%with |#1| being a
%command that selects the current style and |#2| being \<argument>.
%Thus, within the definition of |\build| you can typeset something
%in the current style by preceding it with `|#1|'.
%See \knuth{page~360} for examples of using |\mathpalette|
%and \knuth{page~151} for a further explanation of how it works.
|\build| 测试 \TeX\ 位于何种样式,并相应地排版 \<argu\-ment>。
它应该定义为有两个参数。
当你调用 |\math!-palette| 时,它以 |#1| 为选择样式的命令,
|#2| 为 \<argument> 转而调用 |\build|。
因此,在 |\build| 的定义中,
通过将某些东西放在 `|#1|' 前面,就可以用当前样式排版它。
在\knuth{第~360~页}中有如何使用 |\mathpalette| 的例子,
而在\knuth{第~151~页}中有它如何运作的进一步解释。
%\eix^^{styles}
%\enddesc
\eix^^{样式}
\enddesc
%==========================================================================
%\section {Compound symbols}
\section {复合符号}
%==========================================================================
%\subsection {Math accents}
\subsection {数学重音}
%\begindesc
%\xrdef{mathaccent}
%^^{accents}
%^^{math//accents}
%%
%\easy\ctsx acute {^{acute accent} as in $\acute x$}
%\ctsx b {^{bar-under accent} as in $\b x$}
%\ctsx bar {^{bar accent} as in $\bar x$}
%\ctsx breve {^{breve accent} as in $\breve x$}
%\ctsx check {^{check accent} as in $\check x$}
%\ctsx ddot {^{double dot accent} as in $\ddot x$}
%\ctsx dot {^{dot accent} as in $\dot x$}
%\ctsx grave {^{grave accent} as in $\grave x$}
%\ctsx hat {^{hat accent} as in $\hat x$}
%\ctsx widehat {^{wide hat accent} as in $\widehat {x+y}$}
%\ctsx tilde {^{tilde accent} as in $\tilde x$}
%\ctsx widetilde {^{wide tilde accent} as in $\widetilde {z+a}$}
%\ctsx vec {^{vector accent} as in $\vec x$}
%\explain
%These commands produce accent marks in math formulas. You'll ordinarily
%need to leave a space after any one of them.
%A wide accent can be applied to a multicharacter subformula;
%\TeX\ will center the accent over the subformula.
%The other accents are usefully applied only to a single character.
\begindesc
\xrdef{mathaccent}
^^{重音}
^^{数学//数学重音}
%
\easy\ctsx acute {^{锐音符},如同 $\acute x$}
\ctsx b {^{下线符},如同 $\b x$}
\ctsx bar {^{上线符},如同 $\bar x$}
\ctsx breve {^{短音符},如同 $\breve x$}
\ctsx check {^{抑扬符},如同 $\check x$}
\ctsx ddot {^{双点符},如同 $\ddot x$}
\ctsx dot {^{上点符},如同 $\dot x$}
\ctsx grave {^{钝音符},如同 $\grave x$}
\ctsx hat {^{尖角符},如同 $\hat x$}
\ctsx widehat {^{宽尖角符},如同 $\widehat {x+y}$}
\ctsx tilde {^{波浪符},如同 $\tilde x$}
\ctsx widetilde {^{宽波浪符},如同 $\widetilde {z+a}$}
\ctsx vec {^{向量符},如同 $\vec x$}
\explain
这些命令在数学公式上排印重音标记。你通常需要在它们后面留下空格。
宽重音可以应用到多字符子公式中;\TeX\ 将把重音放在子公式的中间。
其他重音仅在应用到单个字符时才有用。
%\example
%$\dot t^n \qquad \widetilde{v_1 + v_2}$
%|
%\produces
%$\dot t^n \qquad \widetilde{v_1 + v_2}$
%\endexample
\example
$\dot t^n \qquad \widetilde{v_1 + v_2}$
|
\produces
$\dot t^n \qquad \widetilde{v_1 + v_2}$
\endexample
%\begindesc
%\cts mathaccent {\<mathcode>}
%\explain
%This command tells \TeX\ to typeset a math accent
%whose family and character code are given by \<mathcode>. (\TeX\ ignores
%the class of the \minref{mathcode}.)
%See \knuth{Appendix~G} for the details of how \TeX\ positions such an accent.
%The usual way to use |\mathaccent| is to put it in a macro definition
%that gives a name to a math accent.
%\example
%\def\acute{\mathaccent "7013}
%|
%\endexample
%\enddesc
\begindesc
\cts mathaccent {\<mathcode>}
\explain
此命令让 \TeX\ 排版字体族和字符编码由 \<mathcode> 给出的数学重音。%
(\TeX\ 忽略\minref{数学码}中的类。)
请参阅\knuth{附录~G}对 \TeX\ 如何放置该重音的详细介绍。
经常将 |\mathaccent| 放在宏定义中,以给数学重音一个名称。
\example
\def\acute{\mathaccent "7013}
|
\endexample
\enddesc
%\see ``Accents'' (\xref {accents}).
%\enddesc
\see ``Accents''(\xref {accents})。
\enddesc
%==========================================================================
%\subsection {Fractions and other stacking operations}
\subsection {分式和其他堆叠运算}
%\begindesc
%\bix^^{fractions}
%\bix^^{stacking subformulas}
%\easy\cts over {}
%\cts atop {}
%\cts above {\<dimen>}
%\cts choose {}
%\cts brace {}
%\cts brack {}
%\explain
%{\def\fri{\<formula$_1$>}%
%\def\frii{\<formula$_2$>}%
%These commands stack one subformula on top of another one. We will explain how
%|\over| works, and then relate the other commands to it.
\begindesc
\bix^^{分式}
\bix^^{堆叠子公式}
\easy\cts over {}
\cts atop {}
\cts above {\<dimen>}
\cts choose {}
\cts brace {}
\cts brack {}
\explain
{\def\fri{\<formula$_1$>}%
\def\frii{\<formula$_2$>}%
这些命令将一个子公式堆放在另一个子公式之上。
我们将解释 |\over| 如何作用,然后说明其他命令与它的关系。
%|\over| is the command that you'd normally use to produce a fraction.
%^^{fractions//produced by \b\tt\\over\e}
%If you write something in one of the following forms:
%\csdisplay
%$$!fri\over!frii$$
%$!fri\over!frii$
%\left!<delim>!fri\over!frii\right!<delim>
%{!fri\over!frii}
%|
%you'll get a fraction with numerator \fri\ and denominator \<for\-mu\-la$_2$>,
%i.e., \fri\ over \frii.
%In the first three of
%these forms the |\over| is not implicitly contained in a group;
%it absorbs
%everything to its left and to its right until it comes to a boundary,
%namely, the beginning or end of a group.
|\over| 命令通常用于排印分式。
^^{分式//用 \b\tt\\over\e 生成}
如果你按下面几种形式之一撰写:
\csdisplay
$$!fri\over!frii$$
$!fri\over!frii$
\left!<delim>!fri\over!frii\right!<delim>
{!fri\over!frii}
|
你将得到分子为 \fri\ 分母为 \<for\-mu\-la$_2$> 的分式,
即 \fri\ 除以 \frii 。
在前面三种形式中,|\over| 非显式地包含在一个编组中;
它吸收左边和右边的内容直到遇到边界,即编组的开头和结尾。
%You can't use |\over| or any of the other commands in this group
%more than once in a formula.
%Thus a formula such as:
%\csdisplay
%$$a \over n \choose k$$
%|
%isn't legal.
%This is not a severe restriction because
%you can always enclose one of the commands in braces.
%The reason for the restriction is that if you had two of these commands
%in a single formula, \TeX\ wouldn't know how to group them.
你不可以在一个公式中多次使用 |\over| 或这批命令的其他命令。
因此下面的公式:
\csdisplay
$$a \over n \choose k$$
|
是不合法的。这不是什么严重的限制,因为你总可以将其中一个命令放在花括号中。
作此限制的原因是,如果你把这些命令的其中两个放在同一个公式中,
\TeX\ 将不知道如何划分它们。
%The other commands are similar to |\over|, with the following exceptions:
%\ulist\compact
%\li |\atop| leaves out the fraction bar.
%\li |\above| provides a fraction bar of thickness \<dimen>.
%\li |\choose|
%leaves out the fraction bar and encloses the construct in parentheses.
%(It's called ``choose'' because $n \choose k$ is the notation for the
%number of ways of choosing $k$ things out of $n$ things.)
%\li |\brace| leaves out the fraction bar and encloses the construct in braces.
%\li |\brack|
%leaves out the fraction bar and encloses the construct in brackets.
%\endulist
%}%
%\example
%$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
% {n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
% {n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
%|
%\dproduces
%$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
% {n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
% {n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
%\endexample
%\enddesc
其他命令与 |\over| 类似,但有所不同:
\ulist\compact
\li |\atop| 去掉分式的横线。
\li |\above| 给出厚度为 \<dimen> 的分式横线。
\li |\choose| 去掉分式横线,并将结构放在圆括号中。%
(称它为``选择'',
是因为 $n \choose k$ 表示从 $n$ 个东西中任取 $k$ 个的所有选取方式的数目。)%
\li |\brace| 去掉分式横线,并将结构放在花括号中。
\li |\brack| 去掉分式横线,并将结构放在方括号中。
\endulist
}%
\example
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
|
\dproduces
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
\endexample
\enddesc
%\begindesc
%\cts overwithdelims {\<delim$_1$> \<delim$_2$>}
%\cts atopwithdelims {\<delim$_1$> \<delim$_2$>}
%\cts abovewithdelims {\<delim$_1$> \<delim$_2$> \<dimen>}
%\explain
%Each of these commands stacks one subformula on top of another one and
%surrounds the entire construct with \<delim$_1$> on the left and
%\<delim$_2$> on the right. These commands follow the same rules as
%|\over|, |\atop|, and |\above|. The \<dimen> in |\abovewithdelims|
%specifies the thickness of the fraction bar.
%\example
%$${m \overwithdelims () n}\qquad
% {m \atopwithdelims !|!| n}\qquad
% {m \abovewithdelims \{\} 2pt n}$$
%|
%\dproduces
%$${m \overwithdelims () n}\qquad
% {m \atopwithdelims || n}\qquad
% {m \abovewithdelims \{\} 2pt n}$$
%\endexample
%\enddesc
\begindesc
\cts overwithdelims {\<delim$_1$> \<delim$_2$>}
\cts atopwithdelims {\<delim$_1$> \<delim$_2$>}
\cts abovewithdelims {\<delim$_1$> \<delim$_2$> \<dimen>}
\explain
这里的每个命令都将一个子公式堆放在另一个子公式之上,
并将整个结构的左边用 \<delim$_1$>,右边用 \<delim$_2$> 包围。
这些命令遵循与 |\over|、|\atop| 和 |\above| 相同的规则。
|\abovewithdelims| 后面的 \<dimen> 指定分式横线的厚度。
\example
$${m \overwithdelims () n}\qquad
{m \atopwithdelims !|!| n}\qquad
{m \abovewithdelims \{\} 2pt n}$$
|
\dproduces
$${m \overwithdelims () n}\qquad
{m \atopwithdelims || n}\qquad
{m \abovewithdelims \{\} 2pt n}$$
\endexample
\enddesc
%\begindesc
%\cts cases {}
%\explain
%^^{combinations, notation for}
%This command produces the mathematical form that denotes a choice among
%several cases.
%Each case has two parts, separated by `|&|'.
%\TeX\ treats the first part as a math formula
%and the second part as ordinary text. Each
%case must be followed by |\cr|.
\begindesc
\cts cases {}
\explain
^^{组合数记法}
此命令排印一个表示从多个情形中选择的数学形式。
每种情形由两部分组成,两者以 `|&|' 分隔。
\TeX\ 将第一部分视为数学公式,第二部分视为普通文本。
每个情形之后必须加上 |\cr|。
%\example
%$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
% f(y,x),&if $x>y$\cr
% 0,&otherwise.\cr}$$
%|
%\dproduces
%$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
% f(y,x),&if $x>y$\cr
% 0,&otherwise.\cr}$$
%\endexample
%\enddesc
\example
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
f(y,x),&if $x>y$\cr
0,&otherwise.\cr}$$
|
\dproduces
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
f(y,x),&if $x>y$\cr
0,&otherwise.\cr}$$
\endexample
\enddesc
%\begindesc
%\cts underbrace {\<argument>}
%\cts overbrace {\<argument>}
%\cts underline {\<argument>}
%\cts overline {\<argument>}
%\cts overleftarrow {\<argument>}
%\cts overrightarrow {\<argument>}
%\explain
%These commands place extensible ^{braces}, lines, or ^{arrows}
%over or under the subformula given by \<argument>.
%\TeX\ will make these constructs as wide as they need to be for
%the context.
%When \TeX\ produces the extended braces, lines, or arrows, it considers
%only the dimensions of the \minref{box} containing \<argument>.
%If you use more than one of these commands in a single formula, the
%braces, lines, or arrows they produce
%may not line up properly with each other.
%You can use the |\mathstrut| command (\xref \mathstrut)
%to overcome this difficulty.
%\example
%$$\displaylines{
%\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
%\underline{x \circ y}\qquad \overline{x \circ y}\qquad
%\overleftarrow{x \circ y}\qquad
%\overrightarrow{x \circ y}\cr
%{\overline r + \overline t}\qquad
%{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
%}$$
%|
%\dproduces
%$$\displaylines{
%\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
%\underline{x \circ y}\qquad \overline{x \circ y}\qquad
%\overleftarrow{x \circ y}\qquad
%\overrightarrow{x \circ y}\cr
%{\overline r + \overline t}\qquad
%{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
%}$$
%\endexample
%\enddesc
\begindesc
\cts underbrace {\<argument>}
\cts overbrace {\<argument>}
\cts underline {\<argument>}
\cts overline {\<argument>}
\cts overleftarrow {\<argument>}
\cts overrightarrow {\<argument>}
\explain
这些命令将可伸长的^{花括号}、横线或^{箭头}%
放在由 \<argument> 给出的子公式的上边或下边。
\TeX\ 将让这些结构足够宽以适应内容。
当 \TeX\ 排印可伸长的花括号、横线或箭头时,
它只考虑包含 \<argument> 的 \minref{盒子}的尺寸。
如果你在一个公式中使用这些命令中的两个以上,
其中排印的花括号、横线或箭头之间可能无法恰当地对齐。
你可以使用 |\mathstrut| 命令(\xref\mathstrut )克服此困难。
\example
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
|
\dproduces
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
\endexample
\enddesc
%\begindesc\secondprinting{\vglue-.5\baselineskip\vskip0pt}
%\cts buildrel {\<formula> {\bt \\over} \<relation>}
%\explain
%^^{relations//putting formulas above}
%This command produces a \minref{box} in which \<formula>
%is placed on top of \<relation>. \TeX\ treats the result as a relation
%for spacing purposes \seeconcept{class}.
%\example
%$\buildrel \rm def \over \equiv$
%|
%\produces
%$\buildrel \rm def \over \equiv$
\begindesc%\secondprinting{\vglue-.5\baselineskip\vskip0pt}
\cts buildrel {\<formula> {\bt \\over} \<relation>}
\explain
^^{关系符//将公式放在其上}
此命令将 \<formula> 所在的\minref{盒子}放在 \<relation> 上边。
\TeX\ 处理间隔时将结果视为一个关系符\seeconcept{类}。
\example
$\buildrel \rm def \over \equiv$
|
\produces
$\buildrel \rm def \over \equiv$
%\eix^^{fractions}
%\eix^^{stacking subformulas}
%\endexample
%\enddesc
\eix^^{分式}
\eix^^{堆叠子公式}
\endexample
\enddesc
%\secondprinting{\vfill\eject}
%==========================================================================
%\subsection {Dots}
\subsection {圆点}
%\begindesc
%\bix^^{dots}
%\easy\cts ldots {}
%\cts cdots {}
%\explain
%These commands produce three ^{dots} in a row. For |\ldots|, the dots
%are on the baseline; for |\cdots|, the dots are centered with respect to
%the axis (see the explanation of |\vcenter|, \xref\vcenter).
\begindesc
\bix^^{圆点}
\easy\cts ldots {}
\cts cdots {}
\explain
这两个命令都排印三个一排的^{圆点}。对于 |\ldots|,
圆点放在基线上;对于 |\cdots|,圆点放在中轴线上%
(见 \xref\vcenter 对 |\vcenter| 的解释)。
%\example
%$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
%|
%\produces
%$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
%\endexample
%\enddesc
\example
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
|
\produces
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
\endexample
\enddesc
%\begindesc
%\easy\cts vdots {}
%\explain
%This command produces three vertical dots.
%\example
%$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
% \noalign{\kern -4pt}%
% &\phantom{a}\vdots\cr % moves the dots right a bit
% f(\alpha_k)& = f(\beta_k)\cr}$$
%|
%\dproduces
%$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
% \noalign{\kern -4pt}%
% &\phantom{a}\vdots\cr
% f(\alpha_k)& = f(\beta_k)\cr}$$
%\endexample
%\enddesc
\begindesc
\easy\cts vdots {}
\explain
此命令排印三个竖直的圆点。
\example
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
\noalign{\kern -4pt}%
&\phantom{a}\vdots\cr % moves the dots right a bit
f(\alpha_k)& = f(\beta_k)\cr}$$
|
\dproduces
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
\noalign{\kern -4pt}%
&\phantom{a}\vdots\cr
f(\alpha_k)& = f(\beta_k)\cr}$$
\endexample
\enddesc
%\begindesc
%\cts ddots {}
%\explain
%This command produces three dots on a diagonal.
%Its most common use is to indicate repetition along the diagonal of a matrix.
%\example
%$$\pmatrix{0&\ldots&0\cr
% \vdots&\ddots&\vdots\cr
% 0&\ldots&0\cr}$$
%|
%\dproduces
%$$\pmatrix{0&\ldots&0\cr
% \vdots&\ddots&\vdots\cr
% 0&\ldots&0\cr}$$
\begindesc
\cts ddots {}
\explain
此命令排印斜线上的三个圆点。它常用于表示沿矩阵对角线的重复。
\example
$$\pmatrix{0&\ldots&0\cr
\vdots&\ddots&\vdots\cr
0&\ldots&0\cr}$$
|
\dproduces
$$\pmatrix{0&\ldots&0\cr
\vdots&\ddots&\vdots\cr
0&\ldots&0\cr}$$
%\eix^^{dots}
%\endexample
%\enddesc
\eix^^{圆点}
\endexample
\enddesc
%\see |\dots| \ctsref\dots.
\see |\dots|\ctsref\dots 。
%==========================================================================
%\subsection {Delimiters}
\subsection {定界符}
%\begindesc
%\bix^^{delimiters}
%%
%\cts lgroup {}
%\cts rgroup {}
%\explain
%These commands produce large left and right ^{parentheses}
%that are defined as opening and closing \minref{delimiter}s.
%The smallest available size for these delimiters is |\Big|.
%If you use smaller sizes, you'll get weird characters.
%\example
%$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
%|
%\dproduces
%$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
%\endexample
%\enddesc
\begindesc
\bix^^{定界符}
%
\cts lgroup {}
\cts rgroup {}
\explain
这两个命令排印大号的左和右^{圆括号},
它们分别作为开定界符和闭\minref{定界符}。
这两个定界符的最小可用尺寸为 |\Big|。
如果使用更小的尺寸,你将得到奇怪的字符。
\example
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
|
\dproduces
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
\endexample
\enddesc
%\begindesc
%\margin{{\tt\\vert} and {\tt\\Vert} were explained elsewhere.}
%\easy\cts left {}
%\cts right {}
%\explain
%These commands must be used together in the pattern:
%\display
%{{\bt \\left} \<delim$_1$> \<subformula> {\bt \\right} \<delim$_2$>}
%This construct causes \TeX\ to produce \<subformula>,
%enclosed in the \minref{delimiter}s \<delim$_1$> and \<delim$_2$>.
%The vertical size of the delimiter is adjusted to fit the
%vertical size (height plus depth) of \<subformula>. \<delim$_1$> and
%\<delim$_2$> need not correspond.
%For instance, you could use `|]|' as a left delimiter
%and `|(|' as a right delimiter in a single use of |\left|
%and |\right|.
\begindesc
\margin{{\tt\\vert} and {\tt\\Vert} were explained elsewhere.}
\easy\cts left {}
\cts right {}
\explain
这两个命令必须按照下面模式一起使用:
\display
{{\bt \\left} \<delim$_1$> \<subformula> {\bt \\right} \<delim$_2$>}
这个构造将让 \TeX\ 排印 \<subformula>,
并用\minref{定界符} \<delim$_1$> 和 \<delim$_2$> 包围它。
\TeX\ 调整定界符的竖直尺寸以适应 \<subformula> 的竖直尺寸(高度加深度)。
\<delim$_1$> 和 \<delim$_2$> 不需要相对应。
举个例子,在使用 |\left| 和 |\right| 时,
你可以将 `|]|' 作为左定界符,而将 `|(|' 作为右定界符。
%|\left| and |\right| have the important property that they define a
%group, i.e., they act like left and right braces. This grouping
%property is particularly useful when you put ^|\over| (\xref{\over}) or
%a related command between |\left| and |\right|, since you don't need to
%put braces around the fraction constructed by |\over|.
|\left| 和 |\right| 有个重要性质是它们定义了一个编组,
即它们能够充当左和右花括号。
当你在|\left| 和 |\right| 之间放上 ^|\over|(\xref{\over})或其他相关命令时,
此编组性质就很有用,因为你无需在 |\over| 构造的分式两边加上花括号。
%If you want a left delimiter but not a right delimiter, you can use `|.|' in
%place of the delimiter you don't want and it will turn into empty space
%(of width ^|\nulldelimiterspace|).
%\example
%$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
% \qquad \left\uparrow q_1\atop q_2\right.$$
%|
%\dproduces
%$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
% \qquad \left\uparrow q_1\atop q_2\right.$$
%\endexample
%\enddesc
如果你需要左定界符但不需要右定界符,
你可以用 `|.|' 代替你不需要的定界符,
这样它就变成一个空白(宽度为 ^|\nulldelimiterspace|)。
\example
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
\qquad \left\uparrow q_1\atop q_2\right.$$
|
\dproduces
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
\qquad \left\uparrow q_1\atop q_2\right.$$
\endexample
\enddesc
%\begindesc
%\cts delimiter {\<number>}
%\explain
%This command produces a delimiter whose characteristics are given by
%\<number>. \<number> is normally written in hexadecimal notation.
%You can use the |\delimiter| command instead of a character in any context
%where \TeX\ expects a delimiter (although the command is rarely used
%outside of a macro definition).
%Suppose that \<number> is the hexadecimal number $cs_1s_2s_3
%l_1l_2l_3$. Then \TeX\ takes the delimiter to have
%\minref{class} $c$, small variant
%$s_1s_2s_3$, and large variant $l_1l_2l_3$. Here $s_1s_2s_3$ indicates
%the math character found in position $s_2s_3$ of family $s_1$, and
%similarly for $l_1l_2l_3$. This is the same convention as the one
%used for ^|\mathcode| (\xref\mathcode).
%\example
%\def\vert{\delimiter "026A30C} % As in plain TeX.
%|
%\endexample
%\enddesc
\begindesc
\cts delimiter {\<number>}
\explain
此命令排印用 \<number> 刻画其特性的定界符。\<number> 通常用十六进制表示。
在 \TeX\ 需要定界符的任何地方你都可以用 |\delimiter| 命令代替一个字符%
(尽管此命令很少在宏定义之外的地方使用)。
假设 \<number> 为十六进制数 $cs_1s_2s_3l_1l_2l_3$。
则 \TeX\ 知道该定界符属于第$c$\minref{类},
小号变体为 $s_1s_2s_3$, 而大号变体为 $l_1l_2l_3$。
这里 $s_1s_2s_3$ 表示第 $s_1$ 族位置 $s_2s_3$ 的数学字符,
$l_1l_2l_3$ 类似。这里使用与 ^|\mathcode|(\xref\mathcode )一样的约定。
\example
\def\vert{\delimiter "026A30C} % As in plain TeX.
|
\endexample
\enddesc
%\begindesc
%\margin{{\tt\\delcode} was explained in two places. The
%combined explanation is now in `General operations'.}
%\cts delimiterfactor {\param{number}}
%\cts delimitershortfall {\param{number}}
%\explain
%^^{delimiters//height of}
%These parameters together tell \TeX\ how the height of a \minref{delimiter}
%should be related to the vertical size of the subformula
%with which the delimiter is associated.
%|\delimiterfactor| gives the minimum
%ratio of the delimiter size to the vertical size of the subformula, and
%|\delimitershortfall| gives the maximum by which the height of the
%delimiter will be reduced from that of the vertical size of the subformula.
\begindesc
\margin{{\tt\\delcode} was explained in two places. The
combined explanation is now in `General operations'.}
\cts delimiterfactor {\param{number}}
\cts delimitershortfall {\param{number}}
\explain
^^{定界符//定界符高度}
这两个参数共同确定了\minref{定界符}高度与其中子公式的竖直尺寸的关系。
|\delimiterfactor| 给出定界符高度相对子公式竖直尺寸的最小比例,
而 |\delimitershortfall| 给出定界符高度相对子公式竖直尺寸的最大差距。
%Suppose that the \minref{box} containing the subformula
%has height $h$ and depth $d$, and let $y=2\,\max(h,d)$.
%Let the value of |\delimiterfactor| be $f$ and the value of
%|\delimitershortfall| be $\delta$.
%Then \TeX\ takes the minimum delimiter size to be at least $y \cdot
%f/1000$ and at least $y-\delta$. In particular, if |\delimiterfactor|
%is exactly $1000$ then \TeX\ will try to make a delimiter at least as tall
%as the formula to which it is attached.
%See \knuth{page~152 and page~446 (Rule 19)}
%for the exact details of how \TeX\ uses these parameters.
%\PlainTeX\ sets |\delimiter!-factor| to $901$ and
%|\delimiter!-shortfall| to |5pt|.
%\enddesc
假设包含子公式的\minref{盒子}的高度为 $h$ 深度为 $d$,
且令 $y=2\,\max(h,d)$。
设 |\delimiterfactor| 的值为 $f$,|\delimitershortfall| 的值为 $\delta$。
则 \TeX\ 选取的定界符高度至少为 $y \cdot f/1000$,且至少为 $y-\delta$。
特别地,如果 |\delimiterfactor| 恰好为 $1000$,
则 \TeX\ 将试着生成一个至少和其中的子公式一样高的定界符。
见\knuth{第~152~页和第~446~页(规则19)}中 \TeX\ 如何使用这些参数的细节。
\PlainTeX\ 设定 |\delimiter!-factor| 为 $901$,
|\delimiter!-shortfall| 为 |5pt|。
\enddesc
%\see |\delcode| (\xref\delcode), |\vert|, |\Vert|,
%and |\backslash| (\xref\vert).
%\eix^^{delimiters}
\see |\delcode|(\xref\delcode )、|\vert|、|\Vert| 和 |\backslash|(\xref\vert )。
\eix^^{定界符}
%==========================================================================
%\subsection {Matrices}
\subsection {矩阵}
%\begindesc
%\cts matrix
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts pmatrix
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts bordermatrix
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\explain
%Each of these three commands produces a ^{matrix}.
%The elements of each row of the input matrix
%are separated by `|&|' and each row in turn is ended
%by |\cr|.
%(This is the same form that is used for an
%\minref{alignment}.)
%The commands differ in the following ways:
%\ulist\compact
%\li |\matrix| produces a matrix without any surrounding or inserted
%\minref{delimiter}s.
%\li |\pmatrix| produces a matrix surrounded by parentheses.
%\li |\bordermatrix| produces a matrix in which the first row and the first
%column are treated as labels. (The first element of the first row is
%usually left blank.) The rest of the matrix is enclosed in
%parentheses.
%\endulist
%\TeX\ can make the parentheses for |\pmatrix| and |\bordermatrix| as large as
%they need to be by inserting vertical extensions. If you want a matrix
%to be surrounded by delimiters other than parentheses, you should use
%|\matrix| in conjunction with |\left| and |\right| (\xref \left).
\begindesc
\cts matrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts pmatrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts bordermatrix
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
这三个命令每个都排印一个^{矩阵},
输入矩阵时各行的元素之间用 `|&|' 分隔,而各行用 |\cr| 结尾。%
(这里使用与\minref{阵列}一样的形式。)%
这些命令之间的区别如下:
\ulist\compact
\li |\matrix| 排印一个四周空白不带\minref{定界符}的矩阵。
\li |\pmatrix| 排印一个两边带圆括号的矩阵。
\li |\bordermatrix| 排印一个将第一行和第一列视为标号的矩阵。%
(第一行的第一个元素通常为空白。)%
矩阵的其他元素被圆括号包含。
\endulist
通过增加竖直延伸,\TeX\ 能够为 |\pmatrix| 和 |\bordermatrix| 制作足够大的圆括号。
如果你需要用不同于圆括号的定界符包围矩阵,你应当将
|\matrix| 与 |\left| 和 |\right|(\xref\left )合起来使用。
%\example
%$$\displaylines{
% \matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\right\}\cr
%\pmatrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\bordermatrix{&c_1&c_2&c_3\cr
% r_1&t_{11}&t_{12}&t_{13}\cr
% r_2&t_{21}&t_{22}&t_{23}\cr
% r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
%|
%\dproduces
%$$\displaylines{
% \matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\right\}\cr
%\pmatrix{t_{11}&t_{12}&t_{13}\cr
% t_{21}&t_{22}&t_{23}\cr
% t_{31}&t_{32}&t_{33}\cr}\qquad
%\bordermatrix{&c_1&c_2&c_3\cr
% r_1&t_{11}&t_{12}&t_{13}\cr
% r_2&t_{21}&t_{22}&t_{23}\cr
% r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
%\endexample
%\enddesc
\example
$$\displaylines{
\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
r_1&t_{11}&t_{12}&t_{13}\cr
r_2&t_{21}&t_{22}&t_{23}\cr
r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
|
\dproduces
$$\displaylines{
\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
t_{21}&t_{22}&t_{23}\cr
t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
r_1&t_{11}&t_{12}&t_{13}\cr
r_2&t_{21}&t_{22}&t_{23}\cr
r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
\endexample
\enddesc
%==========================================================================
%\subsection {Roots and radicals}
\subsection {根号与根数}
%\begindesc
%\easy\cts sqrt {\<argument>}
%\explain
%This command produces the notation for the square root of \<argument>.
%\example
%$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
%|
%\dproduces
%$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
%\endexample
%\enddesc
\begindesc
\easy\cts sqrt {\<argument>}
\explain
此命令排印 \<argument> 的平方根。
\example
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
|
\dproduces
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
\endexample
\enddesc
%\begindesc
%\easy\cts root {\<argument$_1$> {\bt \\of} \<argument$_2$>}
%\explain
%This command produces the notation for a root of \<argument$_2$>, where the
%root is given by \<argument$_1$>.
%\example
%$\root \alpha \of {r \cos \theta}$
%|
%\produces
%$\root \alpha \of {r \cos \theta}$
%\endexample
%\enddesc
\begindesc
\easy\cts root {\<argument$_1$> {\bt \\of} \<argument$_2$>}
\explain
此命令排印 \<argument$_2$> 的 \<argument$_1$> 次根号。
\example
$\root \alpha \of {r \cos \theta}$
|
\produces
$\root \alpha \of {r \cos \theta}$
\endexample
\enddesc
%\begindesc
%\cts radical {\<number>}
%\explain
%This command produces a radical sign
%whose characteristics are given by
%\<number>. It uses the same representation as the delimiter code
%^^{delimiter codes}
%in the ^|\delcode| command (\xref \delcode).
\begindesc
\cts radical {\<number>}
\explain
此命令排印用 \<number> 刻画其特性的根数符号。
它使用的定界码表示法与 ^|\delcode| 命令(\xref\delcode )的相同。
^^{定界码}
%\example
%\def\sqrt{\radical "270370} % as in plain TeX
%|
%\endexample
%\enddesc
\example
\def\sqrt{\radical "270370} % as in plain TeX
|
\endexample
\enddesc
%==========================================================================
%\section {Equation numbers}
\section {方程编号}
%\begindesc
%\easy\cts eqno {}
%\cts leqno {}
%\explain
%These commands attach an equation number to a displayed formula.
%|\eqno| puts the equation number on the right and |\leqno| puts it on
%the left.
%The commands must be given at the end of the formula.
%If you have a multiline display and you want to number more than one
%of the lines, use the |\eq!-alignno| or |\leq!-alignno| command
%(\xref \eqalignno).
\begindesc
\easy\cts eqno {}
\cts leqno {}
\explain
这两个命令给陈列公式加上方程编号。
|\eqno| 将编号放在右侧,而|\leqno| 将编号放在左侧。
这两个命令必须放在公式末尾。
如果你有个多行陈列公式,而你希望给不止一行编号,
你可以用 |\eq!-alignno| 或 |\leq!-alignno| 命令(\xref\eqalignno )。
%These commands are valid only in display math mode.
这两个命令只能在陈列数学模式中使用。
%\example
%$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
%|
%\produces
%$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
%\endexample
%\example
%$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
%|
%\produces
%\abovedisplayskip = -\baselineskip
%$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
%\endexample
%\enddesc
\example
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
|
\produces
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
\endexample
\example
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
\endexample
\enddesc
%==========================================================================
%\section {Multiline displays}
\section {多行陈列公式}
%\begindesc
%\bix^^{displays//multiline}
%\cts displaylines
% {{\bt \rqbraces{\<line>\ths\\cr$\ldots$\<line>\ths\\cr}}}
%\explain
%This command produces a multiline math display in which each line is
%centered independently of the other lines.
%You can use the |\noalign| command (\xref \noalign) to change the amount
%of space between two lines of a multiline display.
\begindesc
\bix^^{陈列公式//多行陈列公式}
\cts displaylines
{{\bt \rqbraces{\<line>\ths\\cr$\ldots$\<line>\ths\\cr}}}
\explain
此命令排印一个多行陈列公式,其中的各行独立地居中放置。
你可以使用 |\noalign| 命令(\xref\noalign )改变多行陈列公式中两行的间隔。
%If you want to attach equation numbers to some or all of the equations
%in a multiline math display, you should use |\eqalignno| or
%|\leqalignno|.
%\example
%$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr
% (x+a)(x-a) = x^2-a^2\cr}$$
%|
%\dproduces\centereddisplays
%$$\displaylines{
%(x+a)^2 = x^2+2ax+a^2\cr
%(x+a)(x-a) = x^2-a^2\cr
%}$$
%\endexample
%\enddesc
如果你希望给多行陈列公式的某个或某些方程添加编号,
你应当使用|\eqalignno| 或 |\leqalignno|。
\example
$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr}$$
|
\dproduces\centereddisplays
$$\displaylines{
(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr
}$$
\endexample
\enddesc
%\begindesc
%\cts eqalign {}
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts eqalignno {}
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\cts leqalignno {}
% {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
%\explain
%^^{equation numbers}
%These commands produce a multiline math display
%in which certain corresponding parts of the lines are lined up vertically.
%The |\eqalignno| and |\leqalignno| commands also let you
%provide equation numbers for some or all of the lines.
%|\eqalignno| puts the equation numbers on the right and
%|\leqalignno| puts them on the left.
\begindesc
\cts eqalign {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts eqalignno {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts leqalignno {}
{{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
^^{公式编号}
这些命令排印一个多行陈列公式,其中某些行的对应部分竖直对齐。
|\eqalignno| 和 |\leqalignno| 命令还允许你给某个或某些行添加方程编号。
|\eqalignno| 将方程编号放在右侧,
而 |\leqalignno| 将编号放在左侧。
%Each line in the display is ended by |\cr|. Each of the parts to be aligned
%(most often an equals sign) is preceded by
%`|&|'. An `|&|' also precedes each equation number, which comes at the
%end of a line.
%You can put more than one of these commands in a single display in order
%to produce several groups of equations. In this case, only the rightmost
%or leftmost group can be produced by |\eqalignno| or |\leqalignno|.
陈列公式的每行用 |\cr| 结尾。
各行需要对齐的各部分(多半是等号)前面加上 `|&|'。
方程编号放在公式末尾,它的前面也要加上 `|&|'。
你可以在单个陈列公式中多次使用这些命令以排印多组方程。
在这种情形中,
只有最右边或最左边的那组方程可以用 |\eqalignno| 或 |\leqalignno| 编号。
%You can use the |\noalign| command (\xref \noalign) to change the amount
%of space between two lines of a multiline display.
%\example
%$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
% f_3(t) &= t^2-1\cr}\right\}
% \left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
%|
%\dproduces
%$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
% f_3(t) &= t^2-1\cr}\right\}
%\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
%\nextexample
%$$\eqalignno{
%\sigma^2&=E(x-\mu)^2&(12)\cr
% &={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
% &=E(x^2)-\mu^2\cr}$$
%|
%\produces
%\abovedisplayskip = -\baselineskip
%$$\eqalignno{
%\sigma^2&=E(x-\mu)^2&(12)\cr
% &={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
% &=E(x^2)-\mu^2\cr}$$
%\nextexample
%$$\leqalignno{
%\sigma^2&=E(x-\mu)^2&(6)\cr
% &=E(x^2)-\mu^2&(7)\cr}$$
%|
%\produces
%\abovedisplayskip = -\baselineskip
%$$\leqalignno{
%\sigma^2&=E(x-\mu)^2&(6)\cr
% &=E(x^2)-\mu^2&(7)\cr}$$
%\nextexample
%$$\eqalignno{
% &(x+a)^2 = x^2+2ax+a^2&(19)\cr
% &(x+a)(x-a) = x^2-a^2\cr}$$
%% same effect as \displaylines but with an equation number
%|
%\dproduces
%$$\eqalignno{
%&(x+a)^2 = x^2+2ax+a^2&(19)\cr
%&(x+a)(x-a) = x^2-a^2\cr
%}$$
%% same effect as \displaylines but with an equation number
你可以使用 |\noalign| 命令(\xref\noalign )改变多行陈列公式中两行的间隔。
\example
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
|
\dproduces
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
\nextexample
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
&=E(x^2)-\mu^2\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
&={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
&=E(x^2)-\mu^2\cr}$$
\nextexample
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
&=E(x^2)-\mu^2&(7)\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
&=E(x^2)-\mu^2&(7)\cr}$$
\nextexample
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr}$$
% same effect as \displaylines but with an equation number
|
\dproduces
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr
}$$
% same effect as \displaylines but with an equation number
%\eix^^{displays//multiline}
%\endexample
%\enddesc
\eix^^{陈列公式//多行陈列公式}
\endexample
\enddesc
%==========================================================================
%\section {Fonts in math formulas}
\section {数学公式字体}
%\begindesc
%^^{fonts}
%\xrdef{mathfonts}
%%
%\easy\ctsx cal {use calligraphic uppercase font}
%\ctsx mit {use math italic font}
%\ctsx oldstyle {use old style digit font}
%\explain
%These commands cause \TeX\ to typeset the following text in the
%specified font. You can only use them in \minref{math mode}.
%The |\mit| command is useful for producing slanted capital ^{Greek letters}.
%You can also use the commands given in
%\headcit{Selecting fonts}{selfont} to change fonts in math mode.
%\example
%${\cal XYZ} \quad
%{\mit AaBb\Gamma \Delta \Sigma} \quad
%{\oldstyle 0123456789}$
%|
%\produces
%${\cal XYZ} \quad
%{\mit AaBb\Gamma \Delta \Sigma} \quad
%{\oldstyle 0123456789}$
%\endexample
%\enddesc
\begindesc
^^{字体}
\xrdef{mathfonts}
%
\easy\ctsx cal {use calligraphic uppercase font}
\ctsx mit {use math italic font}
\ctsx oldstyle {use old style digit font}
\explain
这些命令让 \TeX\ 用指定的字体排版之后的文本。
你只能在\minref{数学模式}中使用它们。
|\mit| 命令可用于排印斜体大写^{希腊字母}。
你还可以用\headcit{选择字体}{selfont}中的那些命令改变数学模式中的字体。
\example
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad
{\oldstyle 0123456789}$
|
\produces
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad
{\oldstyle 0123456789}$
\endexample
\enddesc
%^^{type styles}
%\begindesc
%\ctsx itfam {family for italic type}
%\ctsx bffam {family for boldface type}
%\ctsx slfam {family for slanted type}
%\ctsx ttfam {family for typewriter type}
%\explain
%These commands define type families \minrefs{family} for use in
%\minref{math mode}. Their principal use is in defining the
%|\it|, |\bf|, |\sl|, and |\tt| commands so that they work in math mode.
%\enddesc
^^{字体风格}
\begindesc
\ctsx itfam {family for italic type}
\ctsx bffam {family for boldface type}
\ctsx slfam {family for slanted type}
\ctsx ttfam {family for typewriter type}
\explain
这些命令定义几种用于\minref{数学模式}的字体族\minrefs{族}。
它们主要用在 |\it|、|\bf|、|\sl| 和 |\tt| 命令的定义中,使这些命令能在数学模式中使用。
\enddesc
%\begindesc
%\cts fam {\param{number}}
%\explain
%When \TeX\ is in \minref{math mode}, it ordinarily typesets a character
%using the font family ^^{class} given in its \minref{mathcode}.
%^^{family//given by \b\tt\\fam\e}
%However, when \TeX\ is in math mode and encounters a character whose
%\minref{class} is $7$ (Variable), it typesets that character using
%the font \minref{family} given by the value of |\fam|, provided that the
%value of |\fam| is between $0$ and $15$.
%If the value of |\fam| isn't in that range, \TeX\ uses the family in
%the character's mathcode as in the ordinary case.
%\TeX\ sets |\fam| to $-1$ whenever it enters math mode.
%Outside of math mode, |\fam| has no effect.
\begindesc
\cts fam {\param{number}}
\explain
在\minref{数学模式}时,\TeX\ 通常用字符的\minref{数学码}指定的字体族排版该字符。
^^{类}^^{族//用 \b\tt\\fam\e 给出}
但是,如果 \TeX\ 在数学模式中遇到第 $7$ \minref{类}(变量)字符,
它将用由 |\fam| 的值给出的字体\minref{族}排版该字符,
只要 |\fam| 的值在 $0$ 和 $15$ 之间。
如果 |\fam| 的值不在该范围内,
\TeX\ 就像通常情形那样使用字符的数学码指定的字体族。
\TeX\ 在进入数学模式时设定 |\fam| 为 $-1$。
在数学模式之外,|\fam| 无任何效果。
%By assigning a value to
%|\fam| you can change the way that \TeX\ typesets ordinary
%characters such as variables.
%For instance, by setting |\fam| to |\ttfam|, you cause \TeX\ to typeset
%variables using a typewriter font.
%\PlainTeX\ defines |\tt| as a \minref{macro} that, among other things,
%sets |\fam| to |\ttfam|.
%\example
%\def\bf{\fam\bffam\tenbf} % As in plain TeX.
%|
%\endexample
%\enddesc
通过赋予 |\fam| 不同的值,你能让 \TeX\ 用不同方式排版普通字符,比如变量。
举个例子,设定了 |\fam| 为 |\ttfam| ,你可以让 \TeX\ 用打字机字体排版变量。
\PlainTeX\ 在定义 |\tt| \minref{宏}时,除了其他设定之外,
还设定 |\fam| 等于 |\ttfam|。
\example
\def\bf{\fam\bffam\tenbf} % As in plain TeX.
|
\endexample
\enddesc
%\begindesc
%\cts textfont {\<family>\param{fontname}}
%\cts scriptfont {\<family>\param{fontname}}
%\cts scriptscriptfont {\<family>\param{fontname}}
%\explain
%^^{text style}
%^^{script style}
%^^{scriptscript style}
%Each of these parameters specifies the font that \TeX\ is to use for
%typesetting the indicated \minref{style} in the indicated \minref{family}.
%These choices have no effect outside of \minref{math mode}.
%\example
%\scriptfont2 = \sevensy % As in plain TeX.
%|
%\endexample
%\enddesc
\begindesc
\cts textfont {\<family>\param{fontname}}
\cts scriptfont {\<family>\param{fontname}}
\cts scriptscriptfont {\<family>\param{fontname}}
\explain
^^{文本样式}
^^{标号样式}
^^{小标号样式}
这三个参数分别选择 \TeX\ 排版指定\minref{族}的指定\minref{样式}时所用的字体。
这些选择在\minref{数学模式}之外无任何效果。
\example
\scriptfont2 = \sevensy % As in plain TeX.
|
\endexample
\enddesc
%\see ``Type styles'' (\xref{seltype}).
\see ``字体风格''(\xref{seltype})。
%==========================================================================
%\section {Constructing math symbols}
\section {构造数学符号}
%==========================================================================
%\subsection {Making delimiters bigger}
\subsection {增大定界符}
%\begindesc
%\makecolumns 16/4:
%\easy\cts big {}
%\cts bigl {}
%\cts bigm {}
%\cts bigr {}
%\cts Big {}
%\cts Bigl {}
%\cts Bigm {}
%\cts Bigr {}
%\cts bigg {}
%\cts biggl {}
%\cts biggm {}
%\cts biggr {}
%\cts Bigg {}
%\cts Biggl {}
%\cts Biggm {}
%\cts Biggr {}
%\explain
%^^{delimiters//enlarging}
%These commands make \minref{delimiter}s bigger than their normal size.
%The commands in the four columns
%produce successively larger sizes. The difference between |\big|,
%|\bigl|, |\bigr|, and |bigm| has to do with the \minref{class} of the
%enlarged delimiter:
%\ulist\compact
%\li |\big| produces an ordinary symbol.
%\li |\bigl| produces an opening symbol.
%\li |\bigr| produces a closing symbol.
%\li |\bigm| produces a relation symbol.
%\endulist
%\noindent
%\TeX\ uses the class of a symbol in order to decide how much space to put
%around that symbol.
\begindesc
\makecolumns 16/4:
\easy\cts big {}
\cts bigl {}
\cts bigm {}
\cts bigr {}
\cts Big {}
\cts Bigl {}
\cts Bigm {}
\cts Bigr {}
\cts bigg {}
\cts biggl {}
\cts biggm {}
\cts biggr {}
\cts Bigg {}
\cts Biggl {}
\cts Biggm {}
\cts Biggr {}
\explain
^^{定界符//增大定界符}
这些命令让\minref{定界符}比它们的正常尺寸还大。
这四栏中的命令生成依次增大的尺寸。|\big|、|\bigl|、|\bigr|
和 |\bigm| 的区别在于增大的定界符所属的\minref{类}:
\ulist\compact
\li |\big| 生成一个普通符号。
\li |\bigl| 生成一个开符号。
\li |\bigr| 生成一个闭符号。
\li |\bigm| 生成一个关系符号。
\endulist
\noindent
\TeX\ 从字符所属的类确定要在该字符两边留下多大的空格。
%These commands, unlike |\left| and |\right|,
%do \emph{not} define a group.
%\example
%$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
% \biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
%[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
% \biggl[x\biggr] \quad \Biggl[x\Biggr]$$
%|
%\dproduces
%$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
%\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
%[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
%\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
%\endexample
%\enddesc
\example
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
|
\dproduces
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
\endexample
\enddesc
%==========================================================================
%\subsection {Parts of large symbols}
\subsection {大符号的一部分}
%\begindesc
%\cts downbracefill {}
%\cts upbracefill {}
%\explain
%These commands respectively produce upward-pointing
%and downward-pointing extensible ^{horizontal braces}. ^^{braces}
%\TeX\ will make the braces as wide as necessary.
%These commands
%are used in the definitions of ^|\overbrace| and ^|\underbrace|
%(\xref \overbrace).
%\example
%$$\hbox to 1in{\downbracefill} \quad
% \hbox to 1in{\upbracefill}$$
%|
%\dproduces
%$$\hbox to 1in{\downbracefill} \quad
% \hbox to 1in{\upbracefill}$$
%\endexample
%\enddesc
\begindesc
\cts downbracefill {}
\cts upbracefill {}
\explain
这两个命令分别排印朝上和朝下的可伸展^{水平花括号}。^^{花括号}
\TeX\ 将让花括号足够宽。
这两个命令用于定义 ^|\overbrace| 和 ^|\underbrace|(\xref\overbrace )。
\example
$$\hbox to 1in{\downbracefill} \quad
\hbox to 1in{\upbracefill}$$
|
\dproduces
$$\hbox to 1in{\downbracefill} \quad
\hbox to 1in{\upbracefill}$$
\endexample
\enddesc
%\begindesc
%\cts arrowvert {}
%\cts Arrowvert {}
%\cts lmoustache {}
%\cts rmoustache {}
%\cts bracevert {}
%\explain
%These commands produce portions of certain large
%delimiters
%^^{delimiters//parts of}
%and can themselves be used as delimiters.
%They refer to characters in the ^|cmex10| math font.
%\example
%$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
% \Big\lmoustache \cdots \Big\rmoustache \cdots
% \Big\bracevert \cdots$$
%|
%\dproduces
%$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
% \Big\lmoustache \cdots \Big\rmoustache \cdots
% \Big\bracevert \cdots$$
%\endexample
%\enddesc
\begindesc
\cts arrowvert {}
\cts Arrowvert {}
\cts lmoustache {}
\cts rmoustache {}
\cts bracevert {}
\explain
这些命令排印某些大定界符的一部分,
^^{定界符//定界符的一部分}
把它们也用作定界符。
它们取自 ^|cmex10| 数学字体中的字符。
\example
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
\Big\lmoustache \cdots \Big\rmoustache \cdots
\Big\bracevert \cdots$$
|
\dproduces
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
\Big\lmoustache \cdots \Big\rmoustache \cdots
\Big\bracevert \cdots$$
\endexample
\enddesc
%==========================================================================
%\section {Aligning parts of a formula}
\section {对齐部分公式}
%==========================================================================
%\subsection {Aligning accents}
\subsection {对齐数学重音}
%\begindesc
%\bix^^{accents//aligning}
%\cts skew {\<number> \<argument$_1$> \<argument$_2$>}
%\explain
%This command shifts the accent \<argument$_1$> by
%\<number> \minref{mathematical unit}s to the right of its normal position
%with respect to \<argu\-ment$_2$>.
%The most common use of this command is for
%modifying the position of an accent that's over
%another accent.
%\example
%$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
% \skew 4\tilde{\hat x}$$
%|
%\dproduces
%$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
% \skew 4\tilde{\hat x}$$
%\endexample
%\enddesc
\begindesc
\bix^^{重音//对齐重音}
\cts skew {\<number> \<argument$_1$> \<argument$_2$>}
\explain
此命令将重音 \<argument$_1$> 相对 \<argu\-ment$_2$>
从它的正常位置往右移动 \<number> 个\minref{数学单位}。
此命令常用于调整在其他重音之上的重音的位置。
\example
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
\skew 4\tilde{\hat x}$$
|
\dproduces
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
\skew 4\tilde{\hat x}$$
\endexample
\enddesc
%\begindesc
%\cts skewchar {\<font>\param{number}}
%\explain
%The |\skewchar| of a font
%is the character in the font whose kerns,
%as defined in the font's metrics file, determine the positions
%of math accents. That is, suppose that \TeX\ is applying a math accent
%to the character `|x|'. \TeX\ checks if the character pair
%`|x\skewchar|' has a kern; if so, it moves the accent by the amount of
%that kern. The complete algorithm that \TeX\ uses to position math
%accents (which involves many more things) is in \knuth{Appendix~G}.
\begindesc
\cts skewchar {\<font>\param{number}}
\explain
字体的 |\skewchar| 是字体中的某个字符,
它在字体度量文件中定义的紧排确定了数学重音的位置。
也就是说,假设 \TeX\ 要给字符 `|x|' 加上数学重音,
则 \TeX\ 检查字符对 `|x\skewchar|' 是否有个紧排;
如果有,它就以该紧排的值移动该重音。
\TeX\ 放置数学重音的完整算法(这涉及到很多事情)在\knuth{附录~G}中描述。
%If the value of |\skewchar| is not in the range $0$--$255$,
%\TeX\ takes the kern value to be zero.
如果 |\skewchar| 的值不在 $0$--$255$ 的范围内,\TeX\ 将紧排的值当作零。
%Note that \<font> is a control sequence
%that names a font, not a \<font\-name> that names font files.
%Beware:
%an assignment to |\skewchar| is \emph{not} undone at the end
%of a group.
%If you want to change |\skewchar| locally, you'll need to
%save and restore its original value explicitly.
%\enddesc
注意 \<font> 是一个控制序列,它是字体的名称,而不是字体文件的名称 \<font\-name>。
小心:对 |\skewchar| 的赋值在编组结束时\emph{并不会}还原。
如果你想局部改变|\skewchar|,你需要显式地保存和还原它的原始值。
\enddesc
%\begindesc
%\cts defaultskewchar {\param{number}}
%\explain
%When \TeX\ reads the metrics file
%^^{metrics file//default skew character in}
%for a font in response to a
%^|\font| command, it sets the font's ^|\skewchar| to
%|\default!-skewchar|.
%If the value of |\default!-skewchar| is
%not in the range $0$--$255$, \TeX\ does not assign any
%skew characters by default.
%\PlainTeX\ sets |\defaultskewchar| to $-1$, and it's usually best
%to leave it there.
%\margin{Misleading example deleted.}
%\eix^^{accents//aligning}
%\enddesc
\begindesc
\cts defaultskewchar {\param{number}}
\explain
在执行 ^|\font| 命令读取字体的度量文件时,
^^{度量文件//其中的默认斜字符}
\TeX\ 设定该字体的 ^|\skewchar| 等于 |\default!-skewchar|。
如果 |\default!-skewchar| 的值不在 $0$--$255$ 的范围内,
\TeX\ 默认就不设定 |\skewchar| 的值。
\PlainTeX\ 设定 |\defaultskewchar| 等于 $-1$,一般不需要改动它。
\margin{Misleading example deleted.}
\eix^^{重音//对齐重音}
\enddesc
%==========================================================================
%\subsection {Aligning material vertically}
\subsection {竖直对齐素材}
%\begindesc
%\cts vcenter {\rqbraces{\<vertical mode material>}}
%\ctsbasic {\\vcenter to \<dimen> \rqbraces{\<vertical mode material>}}{}
%\ctsbasic {\\vcenter spread \<dimen> \rqbraces{\<vertical mode material>}}{}
%\explain
%Every math formula has an invisible
%``^{axis}'' that \TeX\ treats as a kind of
%horizontal centering line for that formula.
%For instance, the axis of a formula consisting of a
%fraction is at the center of the fraction bar.
%The |\vcenter| command tells \TeX\ to place the \<vertical mode material>
%in a \minref{vbox} and to center the vbox
%with respect to the axis of the formula it is currently constructing.
\begindesc
\cts vcenter {\rqbraces{\<vertical mode material>}}
\ctsbasic {\\vcenter to \<dimen> \rqbraces{\<vertical mode material>}}{}
\ctsbasic {\\vcenter spread \<dimen> \rqbraces{\<vertical mode material>}}{}
\explain
每个数学公式都有一个不可见的``^{轴线}'',\TeX\ 将它作为该公式的水平中心线。
举个例子,由分式组成的公式的轴线就在分数线的中心。
|\vcenter| 命令让 \TeX\ 将 \<vertical mode material> 放入\minref{竖直盒子}中,
并将该竖直盒子与当前公式的轴线居中对齐。
%The first form of the command
%centers the material as given. The second and third
%forms expand or shrink the material vertically as in the |\vbox| command
%(\xref \vbox).
此命令的第一种形式如上所述居中放置素材。
后两种形式竖直扩展或收缩素材,如同 |\vbox| 命令(\xref\vbox )。
%\example
%$${n \choose k} \buildrel \rm def \over \equiv \>
%\vcenter{\hsize 1.5 in \noindent the number of
%combinations of $n$ things taken $k$ at a time}$$
%|
%\dproduces
%$${n \choose k} \buildrel \rm def \over \equiv \>
%\vcenter{\hsize 1.5 in \noindent the number of
%combinations of $n$ things taken $k$ at a time}$$
%\endexample
%\enddesc
\example
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of
combinations of $n$ things taken $k$ at a time}$$
|
\dproduces
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of
combinations of $n$ things taken $k$ at a time}$$
\endexample
\enddesc
%==========================================================================
%\section {Producing spaces}
\section {生成间隔}
%==========================================================================
%\subsection {Fixed-width math spaces}
\subsection {固定宽度数学间隔}
%\begindesc
%\bix^^{space//in math formulas}
%\ctspecial ! \ctsxrdef{@shriek}
%\ctspecial , \ctsxrdef{@comma}
%\ctspecial > \ctsxrdef{@greater}
%\ctspecial ; \ctsxrdef{@semi}
%\explain
%These commands produce various amounts of ^{extra space} in formulas. They
%are defined in terms of \minref{mathematical unit}s, so \TeX\ adjusts
%the amount of space according to the current \minref{style}.
%\ulist
%\li |\!!| produces a negative thin space, i.e., it reduces the space
%between its neighboring subformulas by the amount of a thin space.
%\li |\,| produces a thin space.
%\li |\>| produces a medium space.
%\li |\;| produces a thick space.
%\endulist
%\example
%$$00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0\quad
%{\scriptstyle 00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0}$$
%|
%\dproduces
%$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad
%{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$
%\endexample
%\enddesc
\begindesc
\bix^^{间隔//数学公式中的间隔}
\ctspecial ! \ctsxrdef{@shriek}
\ctspecial , \ctsxrdef{@comma}
\ctspecial > \ctsxrdef{@greater}
\ctspecial ; \ctsxrdef{@semi}
\explain
这些命令在公式中生成各种大小的^{额外间隔}。
它们使用\minref{数学单位}来定义,
因此 \TeX\ 会根据当前\minref{样式}调整间隔的大小。
\ulist
\li |\!!| 生成负的细小间隔,即它让相邻子公式的间隔减去该细小间隔的大小。
\li |\,| 生成细小间隔。
\li |\>| 生成中等间隔。
\li |\;| 生成较大间隔。
\endulist
\example
$$00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0}$$
|
\dproduces
$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$
\endexample
\enddesc
%\begindesc
%\cts thinmuskip {\param{muglue}}
%\cts medmuskip {\param{muglue}}
%\cts thickmuskip {\param{muglue}}
%\explain
%These parameters define thin, medium, and thick spaces in
%math mode.
%\example
%$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
% \quad0\mskip\thickmuskip0$
%|
%\produces
%$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
% \quad0\mskip\thickmuskip0$
%\endexample
%\enddesc
\begindesc
\cts thinmuskip {\param{muglue}}
\cts medmuskip {\param{muglue}}
\cts thickmuskip {\param{muglue}}
\explain
这些参数定义了数学模式中细小、中等和较大间隔的大小。
\example
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
\quad0\mskip\thickmuskip0$
|
\produces
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
\quad0\mskip\thickmuskip0$
\endexample
\enddesc
%\begindesc
%\cts jot {\param{dimen}}
%\explain
%This parameter defines a distance that is equal to three points (unless
%you change it).
%The |\jot| is a convenient unit of measure for opening up \hbox{math displays}.
%\enddesc
\begindesc
\cts jot {\param{dimen}}
\explain
此参数定义为三个点的距离(除非你改变了它)。
在用 |\openup| 命令分开陈列公式各行时,|\jot| 是一个实用的度量单位。
\footnote{译注:下面的例子为译者所加。请参阅 |\openup| 命令(\xref\openup )。}
\example
$$\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
$$\openup2\jot\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
|
\produces
$$\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
$$\openup2\jot\vbox{\halign{$\hfil#\hfil$\cr x\cr y\cr}}$$
\endexample
\enddesc
%==========================================================================
%\subsection {Variable-width math spaces}
\subsection {可变宽度数学间隔}
%\begindesc
%\cts mkern {\<mudimen>}
%\explain
%^^{kerns//in math formulas}
%This command
%produces a \minref{kern}, i.e., blank space, of width \<mudimen>.
%The kern is measured
%in \minref{mathematical unit}s, which vary according to the style.
%Aside from its unit of measurement, this command behaves just like
%|\kern| (\xref \kern) does in horizontal mode.
\begindesc
\cts mkern {\<mudimen>}
\explain
^^{紧排//数学公式中的紧排}
此命令生成一个宽度为 \<mudimen> 的\minref{紧排},即空白间隔。
该紧排用\minref{数学单位}表示,因此在不同样式中有不同的尺寸。
除了使用数学单位外,此命令与水平模式的|\kern|(\xref\kern )的表现类似。
%\example
%$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
%|
%\produces
%$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
%\endexample
%\enddesc
\example
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
|
\produces
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
\endexample
\enddesc
%\begindesc
%\cts mskip {\<mudimen$_1$> {\bt plus} \<mudimen$_2$> {\bt minus}
% \<mudimen$_3$>}
%\explain
%^^{glue}
%This command produces horizontal \minref{glue}
%that has natural width \<mu\-dimen$_1$>, stretch \<mudimen$_2$>,
%and shrink \<mudimen$_3$>.
%The glue is measured in \minref{mathematical unit}s, which vary according
%to the style. Aside from its units of measurement, this command behaves
%just like |\hskip| (\xref \hskip).
\begindesc
\cts mskip {\<mudimen$_1$> {\bt plus} \<mudimen$_2$> {\bt minus}
\<mudimen$_3$>}
\explain
^^{粘连}
此命令生成一个水平\minref{粘连},它的自然宽度为 \<mu\-dimen$_1$>,
伸长量为 \<mudimen$_2$>,收缩量为 \<mudimen$_3$>。
该粘连用\minref{数学单位}表示,因此将随着样式的变化而变化。
除了使用数学单位外,此命令与 |\hskip|(\xref\hskip )的表现类似。
%\example
%$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
%|
%\produces
%$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
%\endexample
%\enddesc
\example
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
|
\produces
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
\endexample
\enddesc
%\begindesc
%\cts nonscript {}
%\explain
%When \TeX\ is currently typesetting in script or scriptscript
%\minref{style} and encounters this command
%immediately in front of glue or a kern,
%it cancels the glue or kern.
%|\nonscript| has no effect in the other styles.
\begindesc
\cts nonscript {}
\explain
在排版标号或小标号\minref{样式}时,如果 \TeX\ 在粘连或紧排跟前遇到此命令,
它就丢弃该粘连或紧排。|\nonscript| 在其他样式中无任何效果。
%This command provides a way of ``tightening up'' the spacing in
%script and scriptscript styles, which generally are set in smaller type.
%It is of little use outside of macro definitions.
%\example
%\def\ab{a\nonscript\; b}
%$\ab^{\ab}$
%|
%\produces
%\def\ab{a\nonscript\; b}
%$\ab^{\ab}$
%\endexample
%\enddesc
此命令提供一种``收紧''标号和小标号样式中的间隔的方法;
通常用小号字体排版这两个样式。在宏定义之外的地方,此命令很少用到。
\example
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
|
\produces
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
\endexample
\enddesc
%\see |\kern| (\xref\kern), |\hskip| (\xref\hskip).
%\eix^^{space//in math formulas}
\see |\kern|(\xref\kern )和 |\hskip|(\xref\hskip )。
\eix^^{间隔//数学公式中的间隔}
%==========================================================================
%\subsection {Spacing parameters for displays}
\subsection {陈列公式的间隔参数}
%\begindesc
%\bix^^{displays//spacing parameters for}
%\cts displaywidth {\param{dimen}}
%\explain
%This parameter specifies the maximum width that
%\TeX\ allows for a math display. If \TeX\ cannot fit the display
%into a space of this width, it sets an overfull \minref{hbox}
%and complains.
%\TeX\ sets the value of |\displaywidth| when it encounters the `|$$|'
%that starts the display. This initial value is
%|\hsize| (\xref \hsize) unless it's overridden by changes to the
%paragraph shape.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\bix^^{陈列公式//陈列公式的间隔参数}
\cts displaywidth {\param{dimen}}
\explain
此参数指定 \TeX\ 对陈列公式所允许的最大宽度。
如果 \TeX\ 无法将陈列公式放入这样宽的空间中,
它将生成一个过满的\minref{水平盒子}并给出警告。
\TeX\ 在遇到 `|$$|' 开始陈列公式时就设定 |\displaywidth| 的值。
它的初始值为 |\hsize|(\xref\hsize ),除非段落形状改变了。
见\knuth{第~188--189~页}中对此参数的更仔细的说明。
\enddesc
%\begindesc
%\cts displayindent {\param{dimen}}
%\explain
%This parameter specifies the space by which \TeX\ indents a
%math display.
%\TeX\ sets the value of |\displayindent| when it encounters the `|$$|'
%that starts the display. Usually this initial value is zero,
%but if the paragraph shape indicates that the display should
%be shifted by an amount $s$,
%\TeX\ will set |\displayindent| to $s$.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts displayindent {\param{dimen}}
\explain
此参数指定 \TeX\ 对陈列公式的缩进量。
\TeX\ 在遇到 `|$$|' 开始陈列公式时就设定 |\displayindent| 的值。
通常它的初始值为零,但如果段落形状表明该陈列公式需要移动距离 $s$,
\TeX\ 就设定 |\displayindent| 等于 $s$。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts predisplaysize {\param{dimen}}
%\explain
%\TeX\ sets this parameter to the width of the line preceding
%a math display.
%\TeX\ uses |\predisplaysize| to determine whether or not
%the display starts to
%the left of where the previous line ends, i.e., whether or not it visually
%overlaps the previous line.
%If there is overlap, it uses the |\abovedisplayskip| and
%|\belowdisplayskip| glue in setting the display;
%otherwise it uses the |\abovedisplay!-shortskip| and
%|\belowdisplay!-shortskip| glue.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts predisplaysize {\param{dimen}}
\explain
\TeX\ 设定此参数等于陈列公式之前的文本行的宽度。
\TeX\ 利用 |\predisplaysize| 确定是否让陈列公式的起始点位于前一行结尾处的左边,
即它在外观上是否可能与前一行重叠。如果会有重叠,
\TeX\ 在排版陈列公式时使用|\abovedisplayskip| 和 |\belowdisplayskip| 粘连;
否则 \TeX\ 使用 |\abovedisplay!-shortskip| 和 |\belowdisplay!-shortskip| 粘连。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts abovedisplayskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts before a display when the display starts to
%the left of where the previous line ends, i.e., when it visually
%overlaps the previous line.
%\PlainTeX\ sets |\abovedisplayskip| to |12pt plus3pt minus9pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts abovedisplayskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的左边时,
即它在外观上可能与前一行有重叠时,
\TeX\ 在陈列公式之前插入的竖直粘连的大小。
\PlainTeX\ 设定 |\abovedisplayskip| 等于 |12pt plus3pt minus9pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts belowdisplayskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts after a display when the display starts to
%the left of where the previous line ends, i.e., when it visually
%overlaps the previous line.
%\PlainTeX\ sets |\belowdisplay!-skip| to |12pt plus3pt minus9pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts belowdisplayskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的左边时,
即它在外观上可能与前一行有重叠时,
\TeX\ 在陈列公式之后插入的竖直粘连的大小。
\PlainTeX\ 设定 |\belowdisplay!-skip| 等于 |12pt plus3pt minus9pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts abovedisplayshortskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts before a math display
%when the display starts to
%the right of where the previous line ends, i.e., when it does not visually
%overlap the previous line.
%\PlainTeX\ sets |\abovedisplay!-shortskip| to |0pt plus3pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
%\enddesc
\begindesc
\cts abovedisplayshortskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的右边时,
即它在外观上不会与前一行有重叠时,
\TeX\ 在陈列公式之前插入的竖直粘连的大小。
\PlainTeX\ 设定 |\abovedisplay!-shortskip| 等于 |0pt plus3pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
\enddesc
%\begindesc
%\cts belowdisplayshortskip {\param{glue}}
%\explain
%This parameter specifies the amount of vertical glue that
%\TeX\ inserts after a display
%when the display starts to
%the right of where the previous line ends, i.e., when it does not visually
%overlap the previous line.
%\PlainTeX\ sets |\belowdisplay!-shortskip| to |7pt plus3pt minus4pt|.
%See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\begindesc
\cts belowdisplayshortskip {\param{glue}}
\explain
此命令指定当陈列公式的起始点位于前一行结尾处的右边时,
即它在外观上不会与前一行有重叠时,
\TeX\ 在陈列公式之后插入的竖直粘连的大小。
\PlainTeX\ 设定 |\belowdisplay!-shortskip| 等于 |7pt plus3pt minus4pt|。
见\knuth{第~188--189~页}中对此参数的更仔细的介绍。
%\eix^^{displays//spacing parameters for}
%\enddesc
\eix^^{陈列公式//陈列公式的间隔参数}
\enddesc
%==========================================================================
\subsection {其他的数学间隔参数}
%\begindesc
%\cts mathsurround {\param{dimen}}
%\explain
%This parameter specifies the amount of space that \TeX\
%inserts before and after a math formula in text mode (i.e., a formula
%surrounded by single |$|'s). See \knuth{page~162} for further details about
%its behavior.
%\PlainTeX\ leaves |\mathsurround| at |0pt|.
%\enddesc
\begindesc
\cts mathsurround {\param{dimen}}
\explain
此参数指定 \TeX\ 在文内数学公式(即放在两个|$|之间的公式)两边插入的间隔的大小。
见\knuth{第~162~页}对此行为的进一步解释。
\PlainTeX\ 设定 |\mathsurround| 为 |0pt|。
\enddesc
%\begindesc
%\cts nulldelimiterspace {\param{dimen}}
%\explain
%^^{delimiters//null, space for}
%This parameter specifies the width of the
%space produced by a null \minref{delimiter}.
%\PlainTeX\ sets |\nulldelimiterspace| to |1.2pt|.
%\enddesc
\begindesc
\cts nulldelimiterspace {\param{dimen}}
\explain
^^{定界符//空定界符的间隔}
此参数指定空\minref{定界符}生成的间隔的大小。
\PlainTeX\ 设定 |\null!-delimiterspace| 等于 |1.2pt|。
\enddesc
%\begindesc
%\cts scriptspace {\param{dimen}}
%\explain
%This parameter specifies the amount of space that \TeX\
%inserts before and after a subscript or superscript.
%The |\nonscript| command (\xref\nonscript) ^^|\nonscript|
%after a subscript or superscript cancels this space.
%\PlainTeX\ sets |\script!-space| to |0.5pt|.
%\enddesc
\begindesc
\cts scriptspace {\param{dimen}}
\explain
此参数指定 \TeX\ 在上标或下标前后插入的间隔的大小。
上标或下标之后的 |\nonscript| 命令(\xref\nonscript )^^|\nonscript|
可以取消此间隔。
\PlainTeX\ 设定 |\script!-space| 等于 |0.5pt|。
\enddesc
%==========================================================================
%\section {Categorizing math constructs}
\section {分类数学结构}
%\begindesc
%\makecolumns 7/2:
%\cts mathord {}
%\cts mathop {}
%\cts mathbin {}
%\cts mathrel {}
%\cts mathopen {}
%\cts mathclose {}
%\cts mathpunct {}
%\explain
%These commands tell \TeX\ to treat the construct that follows as belonging
%to a particular ^{class} (see \knuth{page~154} for the definition
%of the classes). They are listed here in the order of the class numbers,
%from $0$ to $6$. Their primary
%effect is to adjust the spacing around the construct
%to be whatever it is for the specified class.
\begindesc
\makecolumns 7/2:
\cts mathord {}
\cts mathop {}
\cts mathbin {}
\cts mathrel {}
\cts mathopen {}
\cts mathclose {}
\cts mathpunct {}
\explain
这些命令让 \TeX\ 把随后的结构归入指定的^{类}(见\knuth{第~154~页}对类的定义)。
它们按照类编号的大小顺序排列,从 $0$ 到 $6$。
它们主要用于按照指定的类调整该结构两边的间隔大小。
%\example
%$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
%% By treating minmax as a math operator, we can get TeX to
%% put something underneath it.
%|
%\produces
%$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
%\endexample
%\enddesc
\example
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
% By treating minmax as a math operator, we can get TeX to
% put something underneath it.
|
\produces
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
\endexample
\enddesc
%\begindesc
%\cts mathinner {}
%\explain
%This command tells \TeX\ to treat the construct that follows
%as an ``inner formula'', e.g., a fraction, for spacing purposes.
%It resembles the class commands given just above.
%\enddesc
\begindesc
\cts mathinner {}
\explain
此命令让 \TeX\ 将随后的结构视为``内部公式'',比如分式,并据此调整间隔。
它与上面刚提到的类命令类似。
\enddesc
%==========================================================================
%\section {Special actions for math formulas}
\section {特殊处理数学公式}
%\begindesc
%\cts everymath {\param{token list}}
%\cts everydisplay {\param{token list}}
%\explain
%^^{displays//actions for every display}
%These parameters specify \minref{token} lists that \TeX\ inserts
%at the start of every text math or display math formula, respectively.
%You can
%take special actions at the start of each math formula by
%assigning those actions to |\everymath| or
%|\everydisplay|. Don't forget that if you want both kinds of formulas to
%be affected, you need to set \emph{both} parameters.
%\example
%\everydisplay={\heartsuit\quad}
%\everymath = {\clubsuit}
%$3$ is greater than $2$ for large values of $3$.
%$$4>3$$
%|
%\produces
%\everydisplay={\heartsuit\quad}
%\everymath = {\clubsuit}
%$3$ is greater than $2$ for large values of $3$.
%$$4>3$$
%\endexample
%\enddesc
\begindesc
\cts everymath {\param{token list}}
\cts everydisplay {\param{token list}}
\explain
^^{陈列公式//作用到每个陈列公式}
这两个命令分别指定 \TeX\ 在每个文内公式或陈列公式开头插入的\minref{记号}列。
你可以利用 |\everymath| 或 |\everydisplay| 在每个数学公式开头作特殊处理。
你务必清楚,若你需要同时处理两种公式,你必须\emph{同时}设定这两个参数。
\example
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
|
\produces
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
\endexample
\enddesc
%\enddescriptions
%\eix^^{math}
%\endchapter
%\byebye
\enddescriptions
\eix^^{数学}
\ifoldeplain\else\ifcompletebook\else
\vskip4em{\sectionfonts\leftline{本章索引}}
\readindexfile{i}
\fi\fi
\endchapter
\byebye
|