File: exer7-15.tex

package info (click to toggle)
texlive-lang 2020.20210202-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,685,476 kB
  • sloc: perl: 60,076; xml: 44,961; makefile: 4,358; sh: 4,251; ansic: 2,846; python: 2,685; ruby: 1,031; lisp: 714; awk: 649; java: 159; sed: 142; csh: 25
file content (12 lines) | stat: -rw-r--r-- 499 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
\documentclass{article}
\begin{document}
\noindent
Laurent expansion using $c_n = \frac{1}{2\pi i}
\oint (\zeta-a)^{-n-1}f(\zeta)\,d\zeta$, for every function $f(z)$ the
following representation is valid ($n=0$, $\pm1$, $\pm2$, \ldots)
\[ f(x) = \sum_{n=-\infty}^{+\infty} c_n(z-a)^n
	= \left\{\begin{array}{r}
	  c_0 + c_1(z-a) + c_2(z-a)^2 +\cdots+ c_n(z-a)^n+\cdots\\
	  \mbox{}+c_{-1}(z-a)^{-1} + c_{-2}(z-a)^{-2}+\cdots\\
	  \mbox{}+c_{-n}(z-a)^{-n}+\cdots \end{array}\right. \]
\end{document}