File: exer7-8.tex

package info (click to toggle)
texlive-lang 2020.20210202-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,685,476 kB
  • sloc: perl: 60,076; xml: 44,961; makefile: 4,358; sh: 4,251; ansic: 2,846; python: 2,685; ruby: 1,031; lisp: 714; awk: 649; java: 159; sed: 142; csh: 25
file content (10 lines) | stat: -rw-r--r-- 402 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
\documentclass{article}
\setlength{\textwidth}{135mm}
\begin{document}
\noindent
The gamma function $\Gamma(x)$ is defined as
\[ \Gamma(x)\equiv\lim_{n\to\infty}\prod_{\nu=0}^{n-1}\frac{n!n^{x-1}}{x+\nu}
	    = \lim_{n\to\infty}\frac{n!n^{x-1}}{x(x+1)(x+2)\cdots(x+n-1)}
	    \equiv\int_0^\infty e^{-t}t^{x-1}\,dt \]
The integral definition is valid only for $x>0$ (2nd Euler integral).
\end{document}