1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html
><head><!--latexexa.html from latexexa.tex (TeX4ht, 1999-03-31 09:15:00)-->
<title>Simulation of Energy Loss Straggling</title><link
rel="stylesheet" type="text/css" href="latexexa.css"></head><body
> <div align="center" class="maketitle">
<h2 class="titleHead">Simulation of Energy Loss Straggling</h2>
<div class="author" align="center"><span
class="emr-12">Maria Physicist</span></div>
<br>
<div class="date" align="center"><span
class="emr-12">March 31, 1999</span></div>
<span class="thanks"></span></div>
<h2 class="sectionHead">1 <a
name="1-10001"></a><a
name="QQ1-1-1"></a>Introduction</h2>
<!--16--><p class="noindent">Due to the statistical nature of ionisation energy loss, large fluctuations can occur in
the amount of energy deposited by a particle traversing an absorber element.
Continuous processes such as multiple scattering and energy loss play a
relevant role in the longitudinal and lateral development of electromagnetic and
hadronic showers, and in the case of sampling calorimeters the measured
resolution can be significantly affected by such fluctuations in their active
layers. The description of ionisation fluctuations is characterised by the
significance parameter <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"></span>, which is proportional to the ratio of mean energy loss to
the maximum allowed energy transfer in a single collision with an atomic
electron
<center>
<img
src="latexexa0x.gif"alt=" q
k = E----
max"class="mathdisplay"></center> <span
class="emmi-10">E</span><span
class="emr-7">max</span>
is the maximum transferable energy in a single collision with an atomic
electron.
<center>
<img
src="latexexa1x.gif"alt=" 2m b2g2
Emax = ----------e----------2-,
1 +2gme/mx + (me/mx)"class="mathdisplay"></center> where
<span
class="emmi-10"><img
src="emmi10-d.gif"alt="g"class="10--d"> </span>= <span
class="emmi-10">E/m</span><sub ><span
class="emmi-7">x</span></sub> , <span
class="emmi-10">E </span>is energy and <span
class="emmi-10">m</span><sub ><span
class="emmi-7">x</span></sub> the mass of the incident particle, <span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup> = 1 <span
class="cmsy-10">- </span>1<span
class="emmi-10">/<img
src="emmi10-d.gif"alt="g"class="10--d"></span><sup ><span
class="emr-7">2</span></sup> and
<span
class="emmi-10">m</span><sub ><span
class="emmi-7">e</span></sub> is the electron mass. <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"> </span>comes from the Rutherford scattering cross section and is
defined as: <div align="center" class="eqnarray"><a
name="1-1001r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"> </span>= 2<span
class="emmi-10"><img
src="emmi10-19.gif"alt="p"class="10--19">z</span><sup ><span
class="emr-7">2</span></sup><span
class="emmi-10">e</span><sup ><span
class="emr-7">4</span></sup><span
class="emmi-10">N</span><sub ><span
class="emmi-7">Av</span></sub><span
class="emmi-10">Z<img
src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"><img
src="emmi10-e.gif"alt="d"class="10--e">x</span>
<span
class="emmi-10">m</span><sub ><span
class="emmi-7">e</span></sub><span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup><span
class="emmi-10">c</span><sup ><span
class="emr-7">2</span></sup><span
class="emmi-10">A</span> = 153<span
class="emmi-10">.</span>4 <span
class="emmi-10">z</span><sup ><span
class="emr-7">2</span></sup>
<span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup> <span
class="emmi-10">Z</span>
<span
class="emmi-10">A</span><span
class="emmi-10"><img
src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"><img
src="emmi10-e.gif"alt="d"class="10--e">x</span> keV<span
class="emmi-10">,</span></td><td
align="center"nowrap
class="eqnarray2"></td><td
align="left"nowrap
class="eqnarray3"></td></tr></table>
</div>where
<div align="center"><table class="tabular"
cellspacing="0pt" cellpadding="0"
frame="void" ><colgroup><col
id="TBL-2-1"><col
id="TBL-2-2"></colgroup><tr
valign="baseline" id="TBL-2-1-"><td align="left"nowrap id="TBL-2-1-1"
><div class="td11"><span
class="emmi-10">z </span></div></td><td align="left"nowrap id="TBL-2-1-2"
><div class="td11">charge of the incident particle </div></td>
</tr><tr
valign="baseline" id="TBL-2-2-"><td align="left"nowrap id="TBL-2-2-1"
><div class="td11"><span
class="emmi-10">N</span><sub ><span
class="emmi-7">Av</span></sub></div></td><td align="left"nowrap id="TBL-2-2-2"
><div class="td11">Avogadro's number </div></td>
</tr><tr
valign="baseline" id="TBL-2-3-"><td align="left"nowrap id="TBL-2-3-1"
><div class="td11"><span
class="emmi-10">Z </span></div></td><td align="left"nowrap id="TBL-2-3-2"
><div class="td11">atomic number of the material</div></td>
</tr><tr
valign="baseline" id="TBL-2-4-"><td align="left"nowrap id="TBL-2-4-1"
><div class="td11"><span
class="emmi-10">A </span></div></td><td align="left"nowrap id="TBL-2-4-2"
><div class="td11">atomic weight of the material </div></td>
</tr><tr
valign="baseline" id="TBL-2-5-"><td align="left"nowrap id="TBL-2-5-1"
><div class="td11"><span
class="emmi-10"><img
src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"> </span></div></td><td align="left"nowrap id="TBL-2-5-2"
><div class="td11">density </div></td>
</tr><tr
valign="baseline" id="TBL-2-6-"><td align="left"nowrap id="TBL-2-6-1"
><div class="td11"><span
class="emmi-10"><img
src="emmi10-e.gif"alt="d"class="10--e">x </span></div></td><td align="left"nowrap id="TBL-2-6-2"
><div class="td11">thickness of the material </div></td>
</tr><tr
valign="baseline" id="TBL-2-7-"><td align="left"nowrap id="TBL-2-7-1"
><div class="td11"> </div></td> </tr></table>
</div>
<!--57--><p class="indent"> <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span>measures the contribution of the collisions with energy transfer close to <span
class="emmi-10">E</span><span
class="emr-7">max</span>.
For a given absorber, <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span>tends towards large values if <span
class="emmi-10"><img
src="emmi10-e.gif"alt="d"class="10--e">x </span>is large and/or if <span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"> </span>is
small. Likewise, <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span>tends towards zero if <span
class="emmi-10"><img
src="emmi10-e.gif"alt="d"class="10--e">x </span>is small and/or if <span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"> </span>approaches
1.
<!--63--><p class="indent"> The value of <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span>distinguishes two regimes which occur in the description of
ionisation fluctuations :
<ol type="1"class="enumerate1"
>
<li class="enumerate"><a
name="1-1003x1"></a>A large number of collisions involving the loss of all or most of the incident
particle energy during the traversal of an absorber.
<!--70--><p class="noindent">As the total energy transfer is composed of a multitude of small energy
losses, we can apply the central limit theorem and describe the fluctuations
by a Gaussian distribution. This case is applicable to non-relativistic
particles and is described by the inequality <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> > </span>10 (i.e. when the mean
energy loss in the absorber is greater than the maximum energy transfer
in a single collision).
</li>
<li class="enumerate"><a
name="1-1005x2"></a>Particles traversing thin counters and incident electrons under any
conditions.
<!--81--><p class="noindent">The relevant inequalities and distributions are 0<span
class="emmi-10">.</span>01 <span
class="emmi-10">< <img
src="emmi10-14.gif"alt="k"class="10--14"> < </span>10, Vavilov
distribution, and <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> < </span>0<span
class="emmi-10">.</span>01, Landau distribution.</li></ol>
<!--83--><p class="noindent">
<!--85--><p class="indent"> An additional regime is defined by the contribution of the collisions with low
energy transfer which can be estimated with the relation <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span
class="emr-7">0</span></sub>, where <span
class="emmi-10">I</span><sub ><span
class="emr-7">0</span></sub> is the mean
ionisation potential of the atom. Landau theory assumes that the number of these
collisions is high, and consequently, it has a restriction <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span
class="emr-7">0</span></sub> <span
class="cmsy-10"> </span>1. In <span
class="emtt-10">GEANT </span>(see URL
<span
class="emtt-10">http://wwwinfo.cern.ch/asdoc/geant/geantall.html</span>), the limit of Landau
theory has been set at <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span
class="emr-7">0</span></sub> = 50. Below this limit special models taking into account
the atomic structure of the material are used. This is important in thin layers and
gaseous materials. Figure <a
href="#1-10061">1</a> shows the behaviour of <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span
class="emr-7">0</span></sub> as a function of the layer
thickness for an electron of 100 keV and 1 GeV of kinetic energy in Argon, Silicon
and Uranium.
<a
name="1-10061"></a>
<hr class="float"><div align="center" class="float"
><table class="float"><tr class="float"><td class="float"
>
<img
src="latexexa2x.gif"alt="PIC">
<br><div align="center"class="caption"><table class="caption"
><tr valign="baseline" class="caption"><td class="id">Figure1</td><td
class="content">The variable <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span
class="emr-7">0</span></sub> can be used to measure the validity range of the
Landau theory. It depends on the type and energy of the particle, <span
class="emmi-10">Z </span>, <span
class="emmi-10">A </span>and the
ionisation potential of the material and the layer thickness. </td></tr></table></div>
</td></tr></table></div><hr class="endfloat">
<!--110--><p class="indent"> In the following sections, the different theories and models for the energy loss
fluctuation are described. First, the Landau theory and its limitations are discussed,
and then, the Vavilov and Gaussian straggling functions and the methods in the thin
layers and gaseous materials are presented.
<h2 class="sectionHead">2 <a
name="1-20002"></a><a
name="QQ1-1-3"></a>Landau theory</h2>
<!--119--><p class="noindent">For a particle of mass <span
class="emmi-10">m</span><sub ><span
class="emmi-7">x</span></sub> traversing a thickness of material <span
class="emmi-10"><img
src="emmi10-e.gif"alt="d"class="10--e">x</span>, the Landau
probability distribution may be written in terms of the universal Landau function
<span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span>) as[<a
href="#Xbib-LAND">1</a>]: <div align="center" class="eqnarray"><a
name="1-2001r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">f</span>(<span
class="emmi-10"><img
src="emmi10-f.gif"alt="e"class="10--f">, <img
src="emmi10-e.gif"alt="d"class="10--e">x</span>)</td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">1
<span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span>)</td></tr></table>
</div>where <div align="center" class="eqnarray"><a
name="1-2002r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span>)</td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"> 1_
2<span
class="emmi-10"><img
src="emmi10-19.gif"alt="p"class="10--19">i</span> <span
class="cmex-10"><img
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
<sub> <span
class="emmi-10">c </span><span
class="cmsy-10">- </span><span
class="emmi-10">i</span><span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sub><sup><span
class="emmi-10">c </span>+ <span
class="emmi-10">i</span><span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup> exp <img
src="latexexa3x.gif"alt="(u ln u+ cu)"class="left" align="middle"> <span
class="emmi-10">du</span><span
class="emmi-10"></span><span
class="emmi-10"></span><span
class="emmi-10"></span><span
class="emmi-10"></span><span
class="emmi-10"></span> <span
class="emmi-10">c </span><span
class="cmsy-10"><span
class="underline">></span> </span>0</td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10"><img
src="emmi10-f.gif"alt="e"class="10--f"> </span><span
class="cmsy-10">-</span> <img
src="latexexa4x.gif"alt="e"class="bar" >
<span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span
class="cmsy-10">- </span><span
class="emmi-10"><img
src="emmi10-d.gif"alt="g"class="10--d"></span><span
class="cmsy-7">'</span> <span
class="cmsy-10">- </span><span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup> <span
class="cmsy-10">-</span> ln <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> ___
<span
class="emmi-10">E</span><span
class="emr-7">max</span> </td> </tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-d.gif"alt="g"class="10--d"></span><span
class="cmsy-7">'</span></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">0<span
class="emmi-10">.</span>422784 <span
class="emmi-10">. . .</span> = 1 <span
class="cmsy-10">- </span><span
class="emmi-10"><img
src="emmi10-d.gif"alt="g"class="10--d"></span></td> </tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-d.gif"alt="g"class="10--d"></span></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">0<span
class="emmi-10">.</span>577215 <span
class="emmi-10">. . .</span> (Euler's constant)</td> </tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><img
src="latexexa5x.gif"alt="e"class="bar" ></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">average energy loss</td> </tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-f.gif"alt="e"class="10--f"></span></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">actual energy loss</td> </tr></table>
</div>
<h3 class="subsectionHead">2.1 <a
name="1-30002.1"></a><a
name="QQ1-1-4"></a>Restrictions</h3>
<!--140--><p class="noindent">The Landau formalism makes two restrictive assumptions :
<ol type="1"class="enumerate1"
>
<li class="enumerate"><a
name="1-3002x1"></a>The typical energy loss is small compared to the maximum energy loss in
a single collision. This restriction is removed in the Vavilov theory (see
section <a
href="#1-40003">3</a>).
</li>
<li class="enumerate"><a
name="1-3004x2"></a>The typical energy loss in the absorber should be large compared to the
binding energy of the most tightly bound electron. For gaseous detectors,
typical energy losses are a few keV which is comparable to the binding
energies of the inner electrons. In such cases a more sophisticated approach
which accounts for atomic energy levels[<a
href="#Xbib-TALM">4</a>] is necessary to accurately
simulate data distributions. In <span
class="emtt-10">GEANT</span>, a parameterised model by L. Urbán
is used (see section <a
href="#1-60005">5</a>).</li></ol>
<!--153--><p class="noindent">
<!--155--><p class="indent"> In addition, the average value of the Landau distribution is infinite. Summing the
Landau fluctuation obtained to the average energy from the <span
class="emmi-10">dE/dx </span>tables, we
obtain a value which is larger than the one coming from the table. The
probability to sample a large value is small, so it takes a large number of steps
(extractions) for the average fluctuation to be significantly larger than zero. This
introduces a dependence of the energy loss on the step size which can affect
calculations.
<!--164--><p class="indent"> A solution to this has been to introduce a limit on the value of the variable
sampled by the Landau distribution in order to keep the average fluctuation to 0.
The value obtained from the <span
class="emtt-10">GLANDO </span>routine is:
<center>
<img
src="latexexa6x.gif"alt="ddE/dx = e- e = q(c -g'+ b2 + ln--q-)
Emax"class="mathdisplay"></center> In
order for this to have average 0, we must impose that:
<center>
<img
src="latexexa7x.gif"alt="c = -g'- b2 -ln -q---
Emax"class="mathdisplay"></center>
<!--177--><p class="indent"> This is realised introducing a <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emr-7">max</span></sub>(<img
src="latexexa8x.gif"alt="c"class="bar" >) such that if only values of <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"> </span><span
class="cmsy-10"><span
class="underline"><</span> </span><span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emr-7">max</span></sub> are
accepted, the average value of the distribution is <img
src="latexexa9x.gif"alt="c"class="bar" >.
<!--181--><p class="indent"> A parametric fit to the universal Landau distribution has been performed, with
following result:
<center>
<img
src="latexexa10x.gif"alt="cmax = 0.60715+ 1.1934c + (0.67794+ 0.052382c)exp(0.94753 +0.74442c)"class="mathdisplay"></center>
only values smaller than <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emr-7">max</span></sub> are accepted, otherwise the distribution is
resampled.
<h2 class="sectionHead">3 <a
name="1-40003"></a><a
name="QQ1-1-5"></a>Vavilov theory</h2>
<!--197--><p class="noindent">Vavilov[<a
href="#Xbib-VAVI">5</a>] derived a more accurate straggling distribution by introducing the
kinematic limit on the maximum transferable energy in a single collision, rather than
using <span
class="emmi-10">E</span><span
class="emr-7">max</span> = <span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span>. Now we can write[<a
href="#Xbib-SCH1">2</a>]: <div align="center" class="eqnarray"><a
name="1-4001r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">f</span><img
src="latexexa11x.gif"alt="(e,ds)"class="left" align="middle"></td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">1
<span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span><sub ><span
class="emmi-7">v</span></sub><img
src="latexexa12x.gif"alt="( )
cv,k,b2"class="left" align="middle"></td></tr></table>
</div>where <div align="center" class="eqnarray"><a
name="1-4002r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span><sub ><span
class="emmi-7">v</span></sub><img
src="latexexa13x.gif"alt="(cv,k,b2)"class="left" align="middle"></td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"> 1_
2<span
class="emmi-10"><img
src="emmi10-19.gif"alt="p"class="10--19">i</span> <span
class="cmex-10"><img
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
<sub> <span
class="emmi-10">c </span><span
class="cmsy-10">- </span><span
class="emmi-10">i</span><span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sub><sup><span
class="emmi-10">c </span>+ <span
class="emmi-10">i</span><span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup><span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span><img
src="latexexa14x.gif"alt="(s)"class="left" align="middle"> <span
class="emmi-10">e</span><sup ><span
class="emmi-7"><img
src="emmi7-15.gif"alt="c"class="7--15">s</span></sup><span
class="emmi-10">ds</span><span
class="emmi-10"></span><span
class="emmi-10"></span><span
class="emmi-10"></span><span
class="emmi-10"></span><span
class="emmi-10"></span> <span
class="emmi-10">c </span><span
class="cmsy-10"><span
class="underline">></span> </span>0</td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-1e.gif"alt="f"class="10--1e"></span><img
src="latexexa15x.gif"alt="(s)"class="left" align="middle"></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">exp <img
src="latexexa16x.gif"alt="[ 2 ]
k(1+ b g)"class="left" align="middle"> <span
class="emmi-10"></span> exp <img
src="latexexa17x.gif"alt="[y(s)]"class="left" align="middle"> <span
class="emmi-10">,</span> </td> </tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-20.gif"alt="y"class="10--20"></span><img
src="latexexa18x.gif"alt="(s)"class="left" align="middle"></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10">s</span> ln <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span>+ (<span
class="emmi-10">s </span>+ <span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup><span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"></span>)<img
src="latexexa19x.gif"alt="[ln(s/k)+ E1(s/k)]"class="left" align="middle"> <span
class="cmsy-10">- </span><span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14">e</span><sup ><span
class="cmsy-7">-</span><span
class="emmi-7">s/<img
src="emmi7-14.gif"alt="k"class="7--14"></span></sup><span
class="emmi-10">,</span></td> </tr></table>
</div>and <div align="center" class="eqnarray"><a
name="1-4003r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">E</span><sub ><span
class="emr-7">1</span></sub>(<span
class="emmi-10">z</span>)</td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="cmex-10"><img
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
<sub> <span
class="emmi-10">z</span></sub><sup><span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup><span
class="emmi-10">t</span><sup ><span
class="cmsy-7">-</span><span
class="emr-7">1</span></sup><span
class="emmi-10">e</span><sup ><span
class="cmsy-7">-</span><span
class="emmi-7">t</span></sup><span
class="emmi-10">dt</span> (the exponential integral)</td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">v</span></sub></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"></span><img
src="latexexa20x.gif"alt="[ ]
e--e - g'- b2
q"class="left" align="middle"></td> </tr></table>
</div>
<!--224--><p class="indent"> The Vavilov parameters are simply related to the Landau parameter by
<span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">L</span></sub> = <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">v</span></sub><span
class="emmi-10">/<img
src="emmi10-14.gif"alt="k"class="10--14"> </span><span
class="cmsy-10">-</span> ln <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"></span>. It can be shown that as <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span><span
class="cmsy-10"><img
src="cmsy10-21.gif"alt="-->"class="10--21"> </span>0, the distribution of the variable <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">L</span></sub>
approaches that of Landau. For <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span><span
class="cmsy-10"><span
class="underline"><</span> </span>0<span
class="emmi-10">.</span>01 the two distributions are already practically
identical. Contrary to what many textbooks report, the Vavilov distribution <span
class="emti-10">does not</span>
approximate the Landau distribution for small <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"></span>, but rather the distribution of <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">L</span></sub>
defined above tends to the distribution of the true <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"> </span>from the Landau density
function. Thus the routine <span
class="emtt-10">GVAVIV </span>samples the variable <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">L</span></sub> rather than <span
class="emmi-10"><img
src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span
class="emmi-7">v</span></sub>. For
<span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span><span
class="cmsy-10"><span
class="underline">></span> </span>10 the Vavilov distribution tends to a Gaussian distribution (see next
section).
<h2 class="sectionHead">4 <a
name="1-50004"></a><a
name="QQ1-1-6"></a>Gaussian Theory</h2>
<!--239--><p class="noindent">Various conflicting forms have been proposed for Gaussian straggling functions, but
most of these appear to have little theoretical or experimental basis. However, it has
been shown[<a
href="#Xbib-SELT">3</a>] that for <span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"> </span><span
class="cmsy-10"><span
class="underline">></span> </span>10 the Vavilov distribution can be replaced by a Gaussian
of the form : <div align="center" class="eqnarray"><a
name="1-5001r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">f</span>(<span
class="emmi-10"><img
src="emmi10-f.gif"alt="e"class="10--f">, <img
src="emmi10-e.gif"alt="d"class="10--e">s</span>) <span
class="cmsy-10"><img
src="cmsy10-19.gif"alt=" ~~ "class="10--19"></span> 1 __________
<span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span><img
src="latexexa21x.gif"alt=" V~ ------------
2pk (1- b2/2)"class="sqrtsign" > exp <img
src="latexexa22x.gif"alt="[(e- e)2 k ]
--------2-----2---
2 q (1- b /2)"class="left" align="middle"></td><td
align="center"nowrap
class="eqnarray2"></td><td
align="left"nowrap
class="eqnarray3"></td></tr></table>
</div>thus implying <div align="center" class="eqnarray"><a
name="1-5002r1"></a>
<table
class="eqnarray-star"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1">mean</td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><img
src="latexexa23x.gif"alt="e"class="bar" ></td> </tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sup ><span
class="emr-7">2</span></sup></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span><sup ><span
class="emr-7">2</span></sup>
<span
class="emmi-10"><img
src="emmi10-14.gif"alt="k"class="10--14"></span> (1 <span
class="cmsy-10">- </span><span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup><span
class="emmi-10">/</span>2) = <span
class="emmi-10"><img
src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">E</span>
<span
class="emr-7">max</span>(1 <span
class="cmsy-10">- </span><span
class="emmi-10"><img
src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span
class="emr-7">2</span></sup><span
class="emmi-10">/</span>2)</td></tr></table>
</div>
<h2 class="sectionHead">5 <a
name="1-60005"></a><a
name="QQ1-1-7"></a>Urbán model</h2>
<!--260--><p class="noindent">The method for computing restricted energy losses with <span
class="emmi-10"><img
src="emmi10-e.gif"alt="d"class="10--e"></span>-ray production
above given threshold energy in <span
class="emtt-10">GEANT </span>is a Monte Carlo method that can
be used for thin layers. It is fast and it can be used for any thickness of
a medium. Approaching the limit of the validity of Landau's theory, the
loss distribution approaches smoothly the Landau form as shown in Figure
<a
href="#1-60012">2</a>.
<a
name="1-60012"></a>
<hr class="float"><div align="center" class="float"
><table class="float"><tr class="float"><td class="float"
>
<img
src="latexexa24x.gif"alt="PIC">
<br><div align="center"class="caption"><table class="caption"
><tr valign="baseline" class="caption"><td class="id">Figure2</td><td
class="content">Energy loss distribution for a 3 GeV electron in Argon as given by
standard <span
class="emtt-10">GEANT</span>. The width of the layers is given in centimeters.</td></tr></table></div>
</td></tr></table></div><hr class="endfloat">
<!--275--><p class="indent"> It is assumed that the atoms have only two energy levels with binding energy <span
class="emmi-10">E</span><sub ><span
class="emr-7">1</span></sub>
and <span
class="emmi-10">E</span><sub ><span
class="emr-7">2</span></sub>. The particle--atom interaction will then be an excitation with energy loss <span
class="emmi-10">E</span><sub ><span
class="emr-7">1</span></sub>
or <span
class="emmi-10">E</span><sub ><span
class="emr-7">2</span></sub>, or an ionisation with an energy loss distributed according to a function
<span
class="emmi-10">g</span>(<span
class="emmi-10">E</span>) <span
class="cmsy-10">~ </span>1<span
class="emmi-10">/E</span><sup ><span
class="emr-7">2</span></sup>: <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa25x.gif"alt=" (Emax +-I)I-1
g(E) = Emax E2"class="mathdisplay"><a
name="1-6002r1"></a></center></td><td width="5%">(1)</td></tr></table>
<!--283--><p class="indent"> The macroscopic cross-section for excitations (<span
class="emmi-10">i </span>= 1<span
class="emmi-10">, </span>2) is <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa26x.gif"alt=" f ln(2mb2g2/E )- b2
i = C-i-------2-2-i----2 (1- r)
Ei ln(2mb g/I) - b"class="mathdisplay"><a
name="1-6003r2"></a></center></td><td width="5%">(2)</td></tr></table>
and the macroscopic cross-section for ionisation is <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa27x.gif"alt="3 = C-------Emax---------r
I(Emax + I)ln(EmaIx+I)"class="mathdisplay"><a
name="1-6004r3"></a></center></td><td width="5%">(3)</td></tr></table>
<span
class="emmi-10">E</span><span
class="emr-7">max</span> is the <span
class="emtt-10">GEANT </span>cut for <span
class="emmi-10"><img
src="emmi10-e.gif"alt="d"class="10--e"></span>-production, or the maximum energy transfer minus mean
ionisation energy, if it is smaller than this cut-off value. The following notation is
used:
<div align="center"><table class="tabular"
cellspacing="0pt" cellpadding="0"
frame="void" ><colgroup><col
id="TBL-3-1"><col
id="TBL-3-2"></colgroup><tr
valign="baseline" id="TBL-3-1-"><td align="left"nowrap id="TBL-3-1-1"
><div class="td11"><span
class="emmi-10">r, C</span></div></td><td align="left"nowrap id="TBL-3-1-2"
><div class="td11">parameters of the model</div></td>
</tr><tr
valign="baseline" id="TBL-3-2-"><td align="left"nowrap id="TBL-3-2-1"
><div class="td11"><span
class="emmi-10">E</span><sub ><span
class="emmi-7">i</span></sub> </div></td><td align="left"nowrap id="TBL-3-2-2"
><div class="td11">atomic energy levels </div></td>
</tr><tr
valign="baseline" id="TBL-3-3-"><td align="left"nowrap id="TBL-3-3-1"
><div class="td11"><span
class="emmi-10">I </span></div></td><td align="left"nowrap id="TBL-3-3-2"
><div class="td11">mean ionisation energy </div></td>
</tr><tr
valign="baseline" id="TBL-3-4-"><td align="left"nowrap id="TBL-3-4-1"
><div class="td11"><span
class="emmi-10">f</span><sub ><span
class="emmi-7">i</span></sub> </div></td><td align="left"nowrap id="TBL-3-4-2"
><div class="td11">oscillator strengths </div></td> </tr></table>
</div>
<!--306--><p class="indent"> The model has the parameters <span
class="emmi-10">f</span><sub ><span
class="emmi-7">i</span></sub> , <span
class="emmi-10">E</span><sub ><span
class="emmi-7">i</span></sub> , <span
class="emmi-10">C </span>and <span
class="emmi-10">r</span><span
class="emmi-10"></span>(0 <span
class="cmsy-10"><span
class="underline"><</span> </span><span
class="emmi-10">r </span><span
class="cmsy-10"><span
class="underline"><</span> </span>1). The oscillator
strengths <span
class="emmi-10">f</span><sub ><span
class="emmi-7">i</span></sub> and the atomic level energies <span
class="emmi-10">E</span><sub ><span
class="emmi-7">i</span></sub> should satisfy the constraints
<div align="center" class="eqnarray"><a
name="1-6005r4"></a>
<table
class="eqnarray"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">f</span><sub ><span
class="emr-7">1</span></sub> + <span
class="emmi-10">f</span><sub ><span
class="emr-7">2</span></sub></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">1</td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(4)<a
name="1-6005r5"></a></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">f</span><sub ><span
class="emr-7">1</span></sub> ln <span
class="emmi-10">E</span><sub ><span
class="emr-7">1</span></sub> + <span
class="emmi-10">f</span><sub ><span
class="emr-7">2</span></sub> ln <span
class="emmi-10">E</span><sub ><span
class="emr-7">2</span></sub></td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3">ln <span
class="emmi-10">I</span></td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(5)<a
name="1-6005r6"></a></td></tr></table>
</div>The parameter <span
class="emmi-10">C </span>can be defined with the help of the mean energy loss <span
class="emmi-10">dE/dx </span>in the
following way: The numbers of collisions (<span
class="emmi-10">n</span><sub ><span
class="emmi-7">i</span></sub> , i = 1,2 for the excitation and 3 for the
ionisation) follow the Poisson distribution with a mean number <span
class="cmsy-10"><</span><span
class="emmi-10">n</span><sub ><span
class="emmi-7">i</span></sub><span
class="cmsy-10">></span>. In a step <span
class="emmi-10">x</span>
the mean number of collisions is <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa28x.gif"alt="<n> = x
i i"class="mathdisplay"><a
name="1-6006r6"></a></center></td><td width="5%">(6)</td></tr></table>
The mean energy loss <span
class="emmi-10">dE/dx </span>in a step is the sum of the excitation and ionisation
contributions <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa29x.gif"alt=" [ ]
dE integral Emax+I
dx- x = 1E1 + 2E2 + 3 E g(E) dE x
I"class="mathdisplay"><a
name="1-6007r7"></a></center></td><td width="5%">(7)</td></tr></table>
From this, using the equations (<a
href="#1-6003r2">2</a>), (<a
href="#1-6004r3">3</a>), (<a
href="#1-6005r4">4</a>) and (<a
href="#1-6005r5">5</a>), one can define the parameter <span
class="emmi-10">C</span>
<table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa30x.gif"alt="C = dE-
dx"class="mathdisplay"><a
name="1-6008r8"></a></center></td><td width="5%">(8)</td></tr></table>
<!--335--><p class="indent"> The following values have been chosen in <span
class="emtt-10">GEANT </span>for the other parameters:
<center>
<img
src="latexexa31x.gif"alt=" {
0 ifZ < 2
f2 = 2/Z ifZ > 2 ==> f1 = 1- f2
( )f11
E2 = 10Z2eV ==> E1 = EIf2
r = 0.4 2"class="mathdisplay"></center> With
these values the atomic level <span
class="emmi-10">E</span><sub ><span
class="emr-7">2</span></sub> corresponds approximately the K-shell energy of the
atoms and <span
class="emmi-10">Zf</span><sub ><span
class="emr-7">2</span></sub> the number of K-shell electrons. <span
class="emmi-10">r </span>is the only variable which can be
tuned freely. It determines the relative contribution of ionisation and excitation to
the energy loss.
<!--354--><p class="indent"> The energy loss is computed with the assumption that the step length (or the
relative energy loss) is small, and---in consequence---the cross-section can be
considered constant along the path length. The energy loss due to the excitation is
<table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa32x.gif"alt="Ee = n1E1 +n2E2"class="mathdisplay"><a
name="1-6009r9"></a></center></td><td width="5%">(9)</td></tr></table>
where <span
class="emmi-10">n</span><sub ><span
class="emr-7">1</span></sub> and <span
class="emmi-10">n</span><sub ><span
class="emr-7">2</span></sub> are sampled from Poisson distribution as discussed above. The loss
due to the ionisation can be generated from the distribution <span
class="emmi-10">g</span>(<span
class="emmi-10">E</span>) by the inverse
transformation method: <div align="center" class="eqnarray"><a
name="1-6010r10"></a>
<table
class="eqnarray"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">u </span>= <span
class="emmi-10">F</span>(<span
class="emmi-10">E</span>)</td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="cmex-10"><img
src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span>
<sub> <span
class="emmi-10">I</span></sub><sup><span
class="emmi-10">E</span></sup><span
class="emmi-10">g</span>(<span
class="emmi-10">x</span>)<span
class="emmi-10">dx</span></td> <td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4"></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10">E </span>= <span
class="emmi-10">F</span><sup ><span
class="cmsy-7">-</span><span
class="emr-7">1</span></sup>(<span
class="emmi-10">u</span>)</td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"> <span
class="emmi-10">I</span>_____
1 <span
class="cmsy-10">- </span><span
class="emmi-10">u</span> <span
class="emmi-7">E</span><span
class="emr-5">max</span>__
<span
class="emmi-7">E</span><span
class="emr-5">max</span><span
class="emr-7">+</span><span
class="emmi-7">I</span> </td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(10)<a
name="1-6010r11"></a></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"></td> <td
align="center"nowrap
class="eqnarray2"></td> <td
align="left"nowrap
class="eqnarray3"></td> <td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(11)<a
name="1-6010r12"></a></td></tr></table>
</div>where <span
class="emmi-10">u </span>is a uniform random number between <span
class="emmi-10">F</span>(<span
class="emmi-10">I</span>) = 0 and <span
class="emmi-10">F</span>(<span
class="emmi-10">E</span><span
class="emr-7">max</span> + <span
class="emmi-10">I</span>) = 1. The
contribution from the ionisations will be <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa33x.gif"alt=" n sum 3 -----I------
Ei = 1 -uj -Emax--
j=1 Emax+I"class="mathdisplay"><a
name="1-6011r12"></a></center></td><td width="5%">(12)</td></tr></table>
where <span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub> is the number of ionisation (sampled from Poisson distribution). The
energy loss in a step will then be <span
class="emmi-10">E </span>= <span
class="emmi-10">E</span><sub ><span
class="emmi-7">e</span></sub> + <span
class="emmi-10">E</span><sub ><span
class="emmi-7">i</span></sub>.
<h3 class="subsectionHead">5.1 <a
name="1-70005.1"></a><a
name="QQ1-1-9"></a>Fast simulation for <span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub> <span
class="cmsy-10"><span
class="underline">></span> </span>16</h3>
<!--380--><p class="noindent">If the number of ionisation <span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub> is bigger than 16, a faster sampling method can be
used. The possible energy loss interval is divided in two parts: one in which the
number of collisions is large and the sampling can be done from a Gaussian
distribution and the other in which the energy loss is sampled for each collision. Let
us call the former interval [<span
class="emmi-10">I, <img
src="emmi10-b.gif"alt="a"class="10--b">I</span>] the interval A, and the latter [<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b">I, E</span><span
class="emr-7">max</span>] the interval
B. <span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"> </span>lies between 1 and <span
class="emmi-10">E</span><span
class="emr-7">max</span><span
class="emmi-10">/I</span>. A collision with a loss in the interval A happens
with the probability <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa34x.gif"alt=" integral aI
P(a) = g(E)dE = (Emax-+-I)(a---1)
I Emaxa"class="mathdisplay"><a
name="1-7001r13"></a></center></td><td width="5%">(13)</td></tr></table>
The mean energy loss and the standard deviation for this type of collision are
<table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa35x.gif"alt=" --1-- integral aI Ia-lna-
< E(a)> = P (a) I E g(E) dE = a- 1"class="mathdisplay"><a
name="1-7002r14"></a></center></td><td width="5%">(14)</td></tr></table>
and <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa36x.gif"alt=" integral aI ( 2 )
s2(a) =--1-- E2 g(E) dE = I2a 1 - -aln-a2
P (a) I (a- 1)"class="mathdisplay"><a
name="1-7003r15"></a></center></td><td width="5%">(15)</td></tr></table>
If the collision number is high , we assume that the number of the type A collisions
can be calculated from a Gaussian distribution with the following mean value and
standard deviation: <div align="center" class="eqnarray"><a
name="1-7004r16"></a>
<table
class="eqnarray"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="cmsy-10"><</span><span
class="emmi-10">n</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10">></span></td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub><span
class="emmi-10">P</span>(<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"></span>)</td> <td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(16)<a
name="1-7004r17"></a></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub><span
class="emmi-10">A</span></sub><sup>2</sup></td> <td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub><span
class="emmi-10">P</span>(<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"></span>)(1 <span
class="cmsy-10">- </span><span
class="emmi-10">P</span>(<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"></span>))</td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(17)<a
name="1-7004r18"></a></td></tr></table>
</div>It is further assumed that the energy loss in these collisions has a Gaussian
distribution with <div align="center" class="eqnarray"><a
name="1-7005r18"></a>
<table
class="eqnarray"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="cmsy-10"><</span><span
class="emmi-10">E</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10">></span></td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10">n</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10"><</span><span
class="emmi-10">E</span>(<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"></span>)<span
class="cmsy-10">></span></td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(18)<a
name="1-7005r19"></a></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="emmi-10"><img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub><span
class="emmi-10">E, A</span></sub><sup>2</sup></td><td
align="center"nowrap
class="eqnarray2">=</td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10">n</span><sub ><span
class="emmi-7">A</span></sub><span
class="emmi-10"><img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sup ><span
class="emr-7">2</span></sup>(<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"></span>)</td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(19)<a
name="1-7005r20"></a></td></tr></table>
</div>The energy loss of these collision can then be sampled from the Gaussian
distribution.
<!--427--><p class="indent"> The collisions where the energy loss is in the interval B are sampled directly from
<table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa37x.gif"alt=" n3- sum nA aI
EB = 1--u-Emax+I-aI
i=1 i Emax+I"class="mathdisplay"><a
name="1-7006r20"></a></center></td><td width="5%">(20)</td></tr></table>
The total energy loss is the sum of these two types of collisions: <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa38x.gif"alt="E = EA + EB"class="mathdisplay"><a
name="1-7007r21"></a></center></td><td width="5%">(21)</td></tr></table>
<!--438--><p class="indent"> The approximation of equations ((<a
href="#1-7004r16">16</a>), (<a
href="#1-7004r17">17</a>), (<a
href="#1-7005r18">18</a>) and (<a
href="#1-7005r19">19</a>) can be used under the
following conditions: <div align="center" class="eqnarray"><a
name="1-7008r22"></a>
<table
class="eqnarray"><tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="cmsy-10"><</span><span
class="emmi-10">n</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10">> - </span><span
class="emmi-10">c <img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span
class="emmi-7">A</span></sub></td> <td
align="center"nowrap
class="eqnarray2"><span
class="cmsy-10"><span
class="underline">></span></span></td><td
align="left"nowrap
class="eqnarray3">0</td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(22)<a
name="1-7008r23"></a></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="cmsy-10"><</span><span
class="emmi-10">n</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10">> </span>+ <span
class="emmi-10">c <img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span
class="emmi-7">A</span></sub></td> <td
align="center"nowrap
class="eqnarray2"><span
class="cmsy-10"><span
class="underline"><</span></span></td><td
align="left"nowrap
class="eqnarray3"><span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub></td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(23)<a
name="1-7008r24"></a></td></tr>
<tr valign="middle" class="eqnarray"><td
align="right"nowrap
class="eqnarray1"><span
class="cmsy-10"><</span><span
class="emmi-10">E</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10">> - </span><span
class="emmi-10">c <img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span
class="emmi-7">E,A</span></sub></td><td
align="center"nowrap
class="eqnarray2"><span
class="cmsy-10"><span
class="underline">></span></span></td><td
align="left"nowrap
class="eqnarray3">0</td><td
width="10" class="eqnarray4"></td><td
align="right"nowrap
class="eqnarray4">(24)<a
name="1-7008r25"></a></td></tr></table>
</div>where <span
class="emmi-10">c </span><span
class="cmsy-10"><span
class="underline">></span> </span>4. From the equations (<a
href="#1-7001r13">13</a>), (<a
href="#1-7004r16">16</a>) and (<a
href="#1-7005r18">18</a>) and from the conditions (<a
href="#1-7008r22">22</a>)
and (<a
href="#1-7008r23">23</a>) the following limits can be derived: <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa39x.gif"alt=" (n3 + c2)(Emax + I) (n3 + c2)(Emax +I)
amin =---------------2- < a < amax = -2---------------
n3(Emax + I)+ c I c(Emax + I)+ n3I"class="mathdisplay"><a
name="1-7009r25"></a></center></td><td width="5%">(25)</td></tr></table>
This conditions gives a lower limit to number of the ionisations <span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub> for which the fast
sampling can be done: <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa40x.gif"alt="n3 > c2"class="mathdisplay"><a
name="1-7010r26"></a></center></td><td width="5%">(26)</td></tr></table>
As in the conditions (<a
href="#1-7008r22">22</a>), (<a
href="#1-7008r23">23</a>) and (<a
href="#1-7008r24">24</a>) the value of <span
class="emmi-10">c </span>is as minimum 4, one gets
<span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub> <span
class="cmsy-10"><span
class="underline">></span> </span>16. In order to speed the simulation, the maximum value is used for
<span
class="emmi-10"><img
src="emmi10-b.gif"alt="a"class="10--b"></span>.
<!--469--><p class="indent"> The number of collisions with energy loss in the interval B (the number of
interactions which has to be simulated directly) increases slowly with the total
number of collisions <span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub>. The maximum number of these collisions can be estimated
as <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa41x.gif"alt="nB,max = n3 -nA,min ~~ n3(<nA> - sA)"class="mathdisplay"><a
name="1-7011r27"></a></center></td><td width="5%">(27)</td></tr></table>
From the previous expressions for <span
class="cmsy-10"><</span><span
class="emmi-10">n</span><sub ><span
class="emmi-7">A</span></sub><span
class="cmsy-10">> </span>and <span
class="emmi-10"><img
src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span
class="emmi-7">A</span></sub> one can derive the condition
<table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa42x.gif"alt=" -2n3c2-
nB < nB,max = n3 + c2"class="mathdisplay"><a
name="1-7012r28"></a></center></td><td width="5%">(28)</td></tr></table>
The following values are obtained with <span
class="emmi-10">c </span>= 4:
<div align="center"><table class="tabular"
cellspacing="0pt" cellpadding="0"
frame="void" ><colgroup><col
id="TBL-6-1"><col
id="TBL-6-2"><col
id="TBL-6-3"><col
id="TBL-6-4"><col
id="TBL-6-5"></colgroup><tr
valign="baseline" id="TBL-6-1-"><td align="left"nowrap id="TBL-6-1-1"
><div class="td11"><span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub> </div></td><td align="left"nowrap id="TBL-6-1-2"
><div class="td11"><span
class="emmi-10">n</span><sub ><span
class="emmi-7">B,max</span></sub></div></td><td align="center"nowrap id="TBL-6-1-3"
><div class="td11"></div></td><td align="right"nowrap id="TBL-6-1-4"
><div class="td11"> <span
class="emmi-10">n</span><sub ><span
class="emr-7">3</span></sub></div></td><td align="right"nowrap id="TBL-6-1-5"
><div class="td11"><span
class="emmi-10">n</span><sub ><span
class="emmi-7">B,max</span></sub></div></td>
</tr><tr
class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr
valign="baseline" id="TBL-6-2-"><td align="left"nowrap id="TBL-6-2-1"
><div class="td11">16 </div></td><td align="left"nowrap id="TBL-6-2-2"
><div class="td11">16 </div></td><td align="center"nowrap id="TBL-6-2-3"
><div class="td11"></div></td><td align="right"nowrap id="TBL-6-2-4"
><div class="td11"> 200</div></td><td align="right"nowrap id="TBL-6-2-5"
><div class="td11"> 29.63</div></td>
</tr><tr
valign="baseline" id="TBL-6-3-"><td align="left"nowrap id="TBL-6-3-1"
><div class="td11">20 </div></td><td align="left"nowrap id="TBL-6-3-2"
><div class="td11">17.78 </div></td><td align="center"nowrap id="TBL-6-3-3"
><div class="td11"></div></td><td align="right"nowrap id="TBL-6-3-4"
><div class="td11"> 500</div></td><td align="right"nowrap id="TBL-6-3-5"
><div class="td11"> 31.01</div></td>
</tr><tr
valign="baseline" id="TBL-6-4-"><td align="left"nowrap id="TBL-6-4-1"
><div class="td11">50 </div></td><td align="left"nowrap id="TBL-6-4-2"
><div class="td11">24.24 </div></td><td align="center"nowrap id="TBL-6-4-3"
><div class="td11"></div></td><td align="right"nowrap id="TBL-6-4-4"
><div class="td11">1000</div></td><td align="right"nowrap id="TBL-6-4-5"
><div class="td11"> 31.50</div></td>
</tr><tr
valign="baseline" id="TBL-6-5-"><td align="left"nowrap id="TBL-6-5-1"
><div class="td11">100</div></td><td align="left"nowrap id="TBL-6-5-2"
><div class="td11">27.59 </div></td><td align="center"nowrap id="TBL-6-5-3"
><div class="td11"></div></td><td align="right"nowrap id="TBL-6-5-4"
><div class="td11"> <span
class="cmsy-10"><img
src="cmsy10-31.gif"alt=" oo "class="10--31"></span></div></td><td align="right"nowrap id="TBL-6-5-5"
><div class="td11"> 32.00</div></td> </tr></table>
</div>
<h3 class="subsectionHead">5.2 <a
name="1-80005.2"></a><a
name="QQ1-1-10"></a>Special sampling for lower part of the spectrum</h3>
<!--494--><p class="noindent">If the step length is very small (<span
class="cmsy-10"><span
class="underline"><</span> </span>5 mm in gases, <span
class="cmsy-10"><span
class="underline"><</span> </span>2-3 <span
class="emmi-10"><img
src="emmi10-16.gif"alt="m"class="emmi-10--16"align="middle"></span>m in solids) the model gives
0 energy loss for some events. To avoid this, the probability of 0 energy loss is
computed <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa43x.gif"alt=" -(<n >+<n >+<n >)
P( E = 0) = e 1 2 3"class="mathdisplay"><a
name="1-8001r29"></a></center></td><td width="5%">(29)</td></tr></table>
If the probability is bigger than 0.01 a special sampling is done, taking into
account the fact that in these cases the projectile interacts only with the outer
electrons of the atom. An energy level <span
class="emmi-10">E</span><sub ><span
class="emr-7">0</span></sub> = 10 eV is chosen to correspond to
the outer electrons. The mean number of collisions can be calculated from
<table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa44x.gif"alt=" 1 dE
<n> = ----- x
E0 dx"class="mathdisplay"><a
name="1-8002r30"></a></center></td><td width="5%">(30)</td></tr></table>
The number of collisions <span
class="emmi-10">n </span>is sampled from Poisson distribution. In the case of the
thin layers, all the collisions are considered as ionisations and the energy loss is
computed as <table width="100%"
class="equation"><tr><td>
<center>
<img
src="latexexa45x.gif"alt=" n
sum -----E0------
E = 1 - EEmax+E-ui
i=1 max 0"class="mathdisplay"><a
name="1-8003r31"></a></center></td><td width="5%">(31)</td></tr></table>
<h2 class="likesectionHead"><a
name="1-9000"></a><a
name="QQ1-1-11"></a>References</h2>
<div class="thebibliography"><p class="bibitem">
[1]<a
name="Xbib-LAND"></a>L.Landau. On the Energy Loss of Fast Particles by Ionisation. Originally
published in <span
class="emti-10">J. Phys.</span>, 8:201, 1944. Reprinted in D.ter Haar, Editor,
<span
class="emti-10">L.D.Landau, Collected papers </span>, page 417. Pergamon Press, Oxford, 1965.
</p><p class="bibitem">
[2]<a
name="Xbib-SCH1"></a>B.Schorr. Programs for the Landau and the Vavilov distributions and
the corresponding random numbers. <span
class="emti-10">Comp. Phys. Comm.</span>, 7:216, 1974.
</p><p class="bibitem">
[3]<a
name="Xbib-SELT"></a>S.M.Seltzer and M.J.Berger. Energy loss straggling of protons and
mesons. In <span
class="emti-10">Studies in Penetration of Charged Particles in Matter </span>, Nuclear
Science Series39, Nat. Academy of Sciences, Washington DC, 1964.
</p><p class="bibitem">
[4]<a
name="Xbib-TALM"></a>R.Talman. On the statistics of particle identification using ionization.
<span
class="emti-10">Nucl. Inst. Meth.</span>, 159:189, 1979.
</p><p class="bibitem">
[5]<a
name="Xbib-VAVI"></a>P.V.Vavilov. Ionisation losses of high energy heavy particles. <span
class="emti-10">Soviet</span>
<span
class="emti-10">Physics JETP </span>, 5:749, 1957.</p></div>
</body>
</html>
|