1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
%Introductory beamer presentation: quickbeamer1.tex
\documentclass{beamer}
\usetheme{Berkeley}
\begin{document}
\title{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin}
\institute{Computer Science Department\\
University of Winnebago\\
Winnebago, MN 53714}
\date{March 15, 2006}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents[pausesections]
\end{frame}
\section{Introduction}
\begin{frame}
\frametitle{Introduction}
In this note, we prove the following result:
\begin{theorem}
There exists an infinite complete distributive
lattice~$K$ with only the two trivial complete
congruence relations.
\end{theorem}
\end{frame}
\section{The $\Pi^{*}$ construction}
\begin{frame}
\frametitle{The $\Pi^{*}$ construction}
The following construction is crucial in the proof
of our Theorem:
\begin{definition}
Let $D_{i}$, for $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}. Their
$\Pi^{*}$ product is defined as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) =
\Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new
unit element.
\end{definition}
\end{frame}
\begin{frame}
\frametitle{Illustrating the construction}
\centering\includegraphics{products}
\end{frame}
\begin{frame}
\frametitle{Notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \ldots, 0, \ldots, d, \ldots, 0, \ldots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose
$i$-th component is $d$ and all the other components
are $0$.
See also Ernest~T. Moynahan, 1957.
\end{frame}
\begin{frame}
\frametitle{The second result}
Next we verify the following result:
\begin{theorem}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.
Let $\Theta$ be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
\begin{equation*}
\langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
\langle \ldots, c, \ldots, 0, \ldots \rangle
\pmod{\Theta},
\end{equation*}
then $\Theta = \iota$.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Starting the proof}
Since
\begin{equation*}
\langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
\langle \ldots, c, \ldots, 0, \ldots \rangle
\pmod{\Theta},
\end{equation*}
and $\Theta$ is a complete congruence relation,
it follows from condition~(J) that
\begin{equation*}
\langle \ldots, d, \ldots, 0, \ldots \rangle \equiv
\bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle
\mid d \leq c < 1 ) \pmod{\Theta}.
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Completing the proof}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence
with $\langle \ldots, a, \ldots, 0, \ldots \rangle$,
we obtain that
\begin{equation*}
0 = \langle \ldots, a, \ldots, 0, \ldots \rangle
\pmod{\Theta},
\end{equation*}
Using the completeness of $\Theta$ and the penultimate equation,
we get:
\[
0 \equiv \bigvee ( \langle \ldots, a, \ldots, 0,
\ldots \rangle \mid a \in D_{j}^{-} ) = 1
\pmod{\Theta},
\]
hence $\Theta = \iota$.
\end{frame}
\begin{frame}
\frametitle{References}
\begin{thebibliography}{9}
\bibitem{sF90}
Soo-Key Foo,
\emph{Lattice Constructions},
Ph.D. thesis,
University of Winnebago, Winnebago, MN, December, 1990.
\bibitem{gM68}
George~A. Menuhin,
\emph{Universal Algebra},
D.~van Nostrand, Princeton, 1968.
\bibitem{eM57}
Ernest~T. Moynahan,
\emph{On a problem of M. Stone},
Acta Math. Acad. Sci. Hungar. \textbf{8} (1957),
455--460.
\bibitem{eM57a}
Ernest~T. Moynahan,
\emph{Ideals and congruence relations in lattices.} II,
Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9}
(1957), 417--434.
\end{thebibliography}
\end{frame}
\end{document}
|