1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
% Sample file: sampart.tex
% The sample article for the amsart document class
% with BiBTeX
\documentclass{amsart}
\usepackage{amssymb,latexsym}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem*{main}{Main~Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\theoremstyle{remark}
\newtheorem*{notation}{Notation}
\numberwithin{equation}{section}
\begin{document}
\title[Complete-simple distributive lattices]
{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin}
\address{Computer Science Department\\
University of Winnebago\\
Winnebago, MN 53714}
\email{menuhin@ccw.uwinnebago.edu}
\urladdr{http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{Research supported by the NSF under grant number
23466.}
\keywords{Complete lattice, distributive lattice,
complete congruence, congruence lattice}
\subjclass[2000]{Primary: 06B10; Secondary: 06D05}
\date{March 15, 2006}
\begin{abstract}
In this note we prove that there exist \emph{complete-simple distributive
lattices,} that is, complete distributive lattices in which there are
only two complete congruences.
\end{abstract}
\maketitle
\section{Introduction}\label{S:intro}
In this note we prove the following result:
\begin{main}
There exists an infinite complete distributive lattice~$K$ with only
the two trivial complete congruence relations.
\end{main}
\section{The $D^{\langle 2 \rangle}$ construction}\label{S:Ds}
For the basic notation in lattice theory and universal algebra, see Ferenc~R.
Richardson~\cite{fR82} and George~A. Menuhin~\cite{gM68}. We start with some
definitions:
\begin{definition}\label{D:prime}
Let $V$ be a complete lattice, and let $\mathfrak{p} = [u, v]$ be
an interval of $V$. Then $\mathfrak{p}$ is called
\emph{complete-prime} if the following three conditions are satisfied:
\begin{enumerate}
\item $u$ is meet-irreducible but $u$ is \emph{not}
completely meet-irreducible;\label{m-i}
\item $v$ is join-irreducible but $v$ is \emph{not}
completely join-irreducible;\label{j-i}
\item $[u, v]$ is a complete-simple lattice.\label{c-s}
\end{enumerate}
\end{definition}
Now we prove the following result:
\begin{lemma}\label{L:ds}
Let $D$ be a complete distributive lattice satisfying
conditions \eqref{m-i} and~\eqref{j-i}. Then
$D^{\langle 2 \rangle}$ is a sublattice of $D^{2}$;
hence $D^{\langle 2 \rangle}$ is a lattice, and
$D^{\langle 2 \rangle}$ is a complete distributive
lattice satisfying conditions \eqref{m-i} and~\eqref{j-i}.
\end{lemma}
\begin{proof}
By conditions~\eqref{m-i} and \eqref{j-i},
$D^{\langle 2 \rangle}$ is a sublattice
of $D^{2}$. Hence, $D^{\langle 2 \rangle}$ is a lattice.
Since $D^{\langle 2 \rangle}$ is a sublattice of a distributive
lattice, $D^{\langle 2 \rangle}$ is a distributive lattice. Using
the characterization of standard ideals in Ernest~T. Moynahan~\cite{eM57},
$D^{\langle 2 \rangle}$ has a zero and a unit element,
namely, $\langle 0, 0 \rangle$ and $\langle 1, 1 \rangle$.
To show that $D^{\langle 2 \rangle}$ is complete, let
$\varnothing \ne A \subseteq D^{\langle 2 \rangle}$, and let
$a = \bigvee A$ in $D^{2}$. If
$a \in D^{\langle 2 \rangle}$, then
$a = \bigvee A$ in $D^{\langle 2 \rangle}$; otherwise, $a$
is of the form $\langle b, 1 \rangle$ for some
$b \in D$ with $b < 1$. Now $\bigvee A = \langle 1, 1\rangle$
in $D^{2}$ and the dual argument shows that $\bigwedge A$ also
exists in $D^{2}$. Hence $D$ is complete. Conditions \eqref{m-i}
and~\eqref{j-i} are obvious for $D^{\langle 2 \rangle}$.
\end{proof}
\begin{corollary}\label{C:prime}
If $D$ is complete-prime, then so is $D^{\langle 2 \rangle}$.
\end{corollary}
The motivation for the following result comes from Soo-Key Foo~\cite{sF90}.
\begin{lemma}\label{L:ccr}
Let $\Theta$ be a complete congruence relation of
$D^{\langle 2 \rangle}$ such that
\begin{equation}\label{E:rigid}
\langle 1, d \rangle \equiv \langle 1, 1 \rangle \pmod{\Theta},
\end{equation}
for some $d \in D$ with $d < 1$. Then $\Theta = \iota$.
\end{lemma}
\begin{proof}
Let $\Theta$ be a complete congruence relation of
$D^{\langle 2 \rangle}$ satisfying \eqref{E:rigid}. Then $\Theta =
\iota$.
\end{proof}
\section{The $\Pi^{*}$ construction}\label{S:P*}
The following construction is crucial to our proof of the Main Theorem:
\begin{definition}\label{D:P*}
Let $D_{i}$, for $i \in I$, be complete distributive lattices
satisfying condition~\eqref{j-i}. Their $\Pi^{*}$ product is defined
as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) = \Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is $\Pi ( D_{i}^{-} \mid
i \in I )$ with a new unit element.
\end{definition}
\begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose $i$-th
component is $d$ and all the other components are $0$.
\end{notation}
See also Ernest~T. Moynahan \cite{eM57a}. Next we verify:
\begin{theorem}\label{T:P*}
Let $D_{i}$, for $i \in I$, be complete distributive lattices
satisfying condition~\eqref{j-i}. Let $\Theta$ be a complete
congruence
relation on $\Pi^{*} ( D_{i} \mid i \in I )$. If there exist
$i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such that for
all $d \leq c < 1_{i}$,
\begin{equation}\label{E:cong1}
\langle \dots, 0, \dots,\overset{i}{d},
\dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
\begin{proof}
Since
\begin{equation}\label{E:cong2}
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows from
condition~\eqref{c-s} that
\begin{equation}\label{E:cong}
\begin{split}
&\langle \dots, \overset{i}{d}, \dots, 0,
\dots \rangle\\
&\equiv \bigvee ( \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
\equiv 1 \pmod{\Theta}.
\end{split}
\end{equation}
Let $j \in I$ for $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle$,
we obtain
\begin{equation}\label{E:comp}
\begin{split}
0 &= \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
\rangle \wedge \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle\\
&\equiv \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
\rangle \pmod{\Theta}.
\end{split}
\end{equation}
Using the completeness of $\Theta$ and \eqref{E:comp}, we get:
\[
0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.
\end{proof}
\begin{theorem}\label{T:P*a}
Let $D_{i}$ for $i \in I$ be complete distributive lattices
satisfying conditions \eqref{j-i} and~\eqref{c-s}. Then
$\Pi^{*} ( D_{i} \mid i \in I )$ also satisfies
conditions~\eqref{j-i} and \eqref{c-s}.
\end{theorem}
\begin{proof}
Let $\Theta$ be a complete congruence on
$\Pi^{*} ( D_{i} \mid i \in I )$. Let $i \in I$. Define
\[
\widehat{D}_{i} = \{ \langle \dots, 0, \dots, \overset{i}{d},
\dots, 0, \dots \rangle \mid d \in D_{i}^{-} \} \cup \{ 1 \}.
\]
Then $\widehat{D}_{i}$ is a complete sublattice of
$\Pi^{*} ( D_{i} \mid i \in I )$, and $\widehat{D}_{i}$ is
isomorphic to $D_{i}$. Let $\Theta_{i}$ be the restriction of
$\Theta$ to $\widehat{D}_{i}$.
Since $D_{i}\) is complete-simple, so is $\widehat{D}_{i}$, and
hence $\Theta_{i}$ is $\omega$ or $\iota$. If
$\Theta_{i} = \rho$ for all $i \in I$, then
$\Theta = \omega$. If there is an $i \in I$, such that
$\Theta_{i} = \iota$, then $0 \equiv 1 \pmod{\Theta}$, hence
$\Theta = \iota$.
\end{proof}
The Main Theorem follows easily from Theorems \ref{T:P*} and~\ref{T:P*a}.
\bibliographystyle{amsplain}
\bibliography{sampartb}
\end{document}
|