1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* -*- C++ -*-
* Copyright (C) 1998 <developer@mozilla.org>
*
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "nsHebrewProber.h"
#include <stdio.h>
// windows-1255 / ISO-8859-8 code points of interest
#define FINAL_KAF ('\xea')
#define NORMAL_KAF ('\xeb')
#define FINAL_MEM ('\xed')
#define NORMAL_MEM ('\xee')
#define FINAL_NUN ('\xef')
#define NORMAL_NUN ('\xf0')
#define FINAL_PE ('\xf3')
#define NORMAL_PE ('\xf4')
#define FINAL_TSADI ('\xf5')
#define NORMAL_TSADI ('\xf6')
// Minimum Visual vs Logical final letter score difference.
// If the difference is below this, don't rely solely on the final letter score distance.
#define MIN_FINAL_CHAR_DISTANCE (5)
// Minimum Visual vs Logical model score difference.
// If the difference is below this, don't rely at all on the model score distance.
#define MIN_MODEL_DISTANCE (0.01)
#define VISUAL_HEBREW_NAME ("ISO-8859-8")
#define LOGICAL_HEBREW_NAME ("windows-1255")
namespace qencodingprober {
bool nsHebrewProber::isFinal(char c)
{
return ((c == FINAL_KAF) || (c == FINAL_MEM) || (c == FINAL_NUN) || (c == FINAL_PE) || (c == FINAL_TSADI));
}
bool nsHebrewProber::isNonFinal(char c)
{
return ((c == NORMAL_KAF) || (c == NORMAL_MEM) || (c == NORMAL_NUN) || (c == NORMAL_PE));
// The normal Tsadi is not a good Non-Final letter due to words like
// 'lechotet' (to chat) containing an apostrophe after the tsadi. This
// apostrophe is converted to a space in FilterWithoutEnglishLetters causing
// the Non-Final tsadi to appear at an end of a word even though this is not
// the case in the original text.
// The letters Pe and Kaf rarely display a related behavior of not being a
// good Non-Final letter. Words like 'Pop', 'Winamp' and 'Mubarak' for
// example legally end with a Non-Final Pe or Kaf. However, the benefit of
// these letters as Non-Final letters outweighs the damage since these words
// are quite rare.
}
/** HandleData
* Final letter analysis for logical-visual decision.
* Look for evidence that the received buffer is either logical Hebrew or
* visual Hebrew.
* The following cases are checked:
* 1) A word longer than 1 letter, ending with a final letter. This is an
* indication that the text is laid out "naturally" since the final letter
* really appears at the end. +1 for logical score.
* 2) A word longer than 1 letter, ending with a Non-Final letter. In normal
* Hebrew, words ending with Kaf, Mem, Nun, Pe or Tsadi, should not end with
* the Non-Final form of that letter. Exceptions to this rule are mentioned
* above in isNonFinal(). This is an indication that the text is laid out
* backwards. +1 for visual score
* 3) A word longer than 1 letter, starting with a final letter. Final letters
* should not appear at the beginning of a word. This is an indication that
* the text is laid out backwards. +1 for visual score.
*
* The visual score and logical score are accumulated throughout the text and
* are finally checked against each other in GetCharSetName().
* No checking for final letters in the middle of words is done since that case
* is not an indication for either Logical or Visual text.
*
* The input buffer should not contain any white spaces that are not (' ')
* or any low-ascii punctuation marks.
*/
nsProbingState nsHebrewProber::HandleData(const char* aBuf, unsigned int aLen)
{
// Both model probers say it's not them. No reason to continue.
if (GetState() == eNotMe)
return eNotMe;
const char *curPtr, *endPtr = aBuf+aLen;
char cur;
for (curPtr = (char*)aBuf; curPtr < endPtr; ++curPtr)
{
cur = *curPtr;
if (cur == ' ') // We stand on a space - a word just ended
{
if (mBeforePrev != ' ') // *(curPtr-2) was not a space so prev is not a 1 letter word
{
if (isFinal(mPrev)) // case (1) [-2:not space][-1:final letter][cur:space]
++mFinalCharLogicalScore;
else if (isNonFinal(mPrev)) // case (2) [-2:not space][-1:Non-Final letter][cur:space]
++mFinalCharVisualScore;
}
}
else // Not standing on a space
{
if ((mBeforePrev == ' ') && (isFinal(mPrev)) && (cur != ' ')) // case (3) [-2:space][-1:final letter][cur:not space]
++mFinalCharVisualScore;
}
mBeforePrev = mPrev;
mPrev = cur;
}
// Forever detecting, till the end or until both model probers return eNotMe (handled above).
return eDetecting;
}
// Make the decision: is it Logical or Visual?
const char* nsHebrewProber::GetCharSetName()
{
// If the final letter score distance is dominant enough, rely on it.
int finalsub = mFinalCharLogicalScore - mFinalCharVisualScore;
if (finalsub >= MIN_FINAL_CHAR_DISTANCE)
return LOGICAL_HEBREW_NAME;
if (finalsub <= -(MIN_FINAL_CHAR_DISTANCE))
return VISUAL_HEBREW_NAME;
// It's not dominant enough, try to rely on the model scores instead.
float modelsub = mLogicalProb->GetConfidence() - mVisualProb->GetConfidence();
if (modelsub > MIN_MODEL_DISTANCE)
return LOGICAL_HEBREW_NAME;
if (modelsub < -(MIN_MODEL_DISTANCE))
return VISUAL_HEBREW_NAME;
// Still no good, back to final letter distance, maybe it'll save the day.
if (finalsub < 0)
return VISUAL_HEBREW_NAME;
// (finalsub > 0 - Logical) or (don't know what to do) default to Logical.
return LOGICAL_HEBREW_NAME;
}
void nsHebrewProber::Reset(void)
{
mFinalCharLogicalScore = 0;
mFinalCharVisualScore = 0;
// mPrev and mBeforePrev are initialized to space in order to simulate a word
// delimiter at the beginning of the data
mPrev = ' ';
mBeforePrev = ' ';
}
nsProbingState nsHebrewProber::GetState(void)
{
// Remain active as long as any of the model probers are active.
if ((mLogicalProb->GetState() == eNotMe) && (mVisualProb->GetState() == eNotMe))
return eNotMe;
return eDetecting;
}
#ifdef DEBUG_PROBE
void nsHebrewProber::DumpStatus()
{
printf(" HEB: %d - %d [Logical-Visual score]\r\n", mFinalCharLogicalScore, mFinalCharVisualScore);
}
#endif
}
|