File: meta.yaml

package info (click to toggle)
theano 1.0.3+dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 30,752 kB
  • sloc: python: 141,182; ansic: 9,505; makefile: 259; sh: 214; pascal: 81
file content (66 lines) | stat: -rw-r--r-- 1,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
package:
  name: theano
  version: {{ environ.get('THEANO_VERSION') }}

source:
  path: ../

build:
  script: python setup.py install --single-version-externally-managed --record record.txt

requirements:
  build:
    - python
    - setuptools
    - six >=1.9.0
  run:
    - python
    - mkl-service
    - libpython >=2.0  [win]
    - m2w64-toolchain  [win]
    - six >=1.9.0
    - numpy >=1.9.1
    - scipy >=0.14.0
    - {{ pin_compatible('pygpu', '0.7', max_pin='0.8') }}   # [not osx]

test:
  requires:
    - nose >=1.3.0
    - nose-parameterized >=0.5.0

  imports:
    - theano
    - theano.compile
    - theano.compile.sandbox
    - theano.compile.tests
    - theano.gof
    - theano.gof.tests
    - theano.gpuarray
    - theano.gpuarray.tests
    - theano.misc
    - theano.sandbox
    - theano.scalar
    - theano.scalar.tests
    - theano.sparse
    - theano.sparse.tests
    - theano.tensor
    - theano.tensor.nnet
    - theano.tensor.nnet.tests
    - theano.tensor.signal
    - theano.tensor.signal.tests
    - theano.tensor.tests
    - theano.tests

about:
  home: http://deeplearning.net/software/theano/
  license: BSD 3-Clause
  license_family: BSD
  summary: Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs.
  description: |
    Theano is a Python library that allows you to define, optimize, and
    evaluate mathematical expressions involving multi-dimensional arrays
    efficiently, featuring tight integration with NumPy, transparent use
    of a GPU, efficient symbolic differentiation, speed and stability
    optimizations and dynamic C code generation.
  dev_url: https://github.com/Theano/Theano
  doc_url: http://deeplearning.net/software/theano/