File: linalg.py

package info (click to toggle)
theano 1.0.3+dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 30,752 kB
  • sloc: python: 141,182; ansic: 9,505; makefile: 259; sh: 214; pascal: 81
file content (811 lines) | stat: -rw-r--r-- 26,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
from __future__ import absolute_import, division, print_function

import warnings

import pkg_resources
import numpy as np
from numpy.linalg.linalg import LinAlgError

import theano
from theano import Op, config, tensor
from theano.scalar import bool as bool_t
from theano.gof import COp, ParamsType
from theano.gpuarray import GpuArrayType

from .basic_ops import (CGpuKernelBase, as_gpuarray_variable, gpu_contiguous, gpuarray_helper_inc_dir,
                        infer_context_name)
from .type import gpu_context_type

try:
    import pygpu
    from pygpu.basic import triu, tril
    pygpu_available = True
except ImportError:
    pygpu_available = False

cusolver_available = False
try:
    import skcuda
    from skcuda import cusolver
    cusolver_available = True
except (ImportError, OSError, RuntimeError, pkg_resources.DistributionNotFound):
    pass

cublas_available = False
try:
    from skcuda import cublas
    cublas_available = True
except (ImportError, OSError, RuntimeError, pkg_resources.DistributionNotFound):
    pass

if cusolver_available:
    # Add cusolver call as it is missing in skcuda
    # SPOTRS
    cusolver._libcusolver.cusolverDnSpotrs.restype = int
    cusolver._libcusolver.cusolverDnSpotrs.argtypes = [cusolver.ctypes.c_void_p,
                                                       cusolver.ctypes.c_int,
                                                       cusolver.ctypes.c_int,
                                                       cusolver.ctypes.c_int,
                                                       cusolver.ctypes.c_void_p,
                                                       cusolver.ctypes.c_int,
                                                       cusolver.ctypes.c_void_p,
                                                       cusolver.ctypes.c_int,
                                                       cusolver.ctypes.c_void_p]

    def cusolverDnSpotrs(handle, uplo, n, nrhs, A, lda,
                         B, ldb, devInfo):
        """
        Solve real single precision linear system for hermitian matrices.
        References
        ----------
        `cusolverDn<t>potrs <http://docs.nvidia.com/cuda/cusolver/index.html#cuds-lt-t-gt-potrs>`_
        """

        status = cusolver._libcusolver.cusolverDnSpotrs(handle, uplo, n, nrhs,
                                                        int(A), lda, int(B),
                                                        ldb, int(devInfo))
        cusolver.cusolverCheckStatus(status)


def attach_cusolver_handle_to_context(ctx):
    handle = getattr(ctx, 'cusolver_handle', None)
    if handle is None:
        with ctx:
            ctx.cusolver_handle = cusolver.cusolverDnCreate()


def attach_cublas_handle_to_context(ctx):
    handle = getattr(ctx, 'cublas_handle', None)
    if handle is None:
        with ctx:
            ctx.cublas_handle = cublas.cublasCreate()


# it is a subset of all cases available in slinalg's MATRIX_STRUCTURE
MATRIX_STRUCTURES_SOLVE = (
    'general',
    'symmetric',
    'lower_triangular',
    'upper_triangular')


class GpuCusolverSolve(Op):
    """
    CUSOLVER GPU solver OP.

    Parameters
    ----------
    trans
        Whether to take the transpose of the input matrix or not.

    """

    __props__ = ('A_structure', 'trans', 'inplace')

    def __init__(self, A_structure='general', trans='N', inplace=False):
        self.trans = trans
        self.inplace = inplace
        self.A_structure = A_structure
        if self.inplace:
            self.destroy_map = {0: [0]}
        assert A_structure in MATRIX_STRUCTURES_SOLVE
        super(GpuCusolverSolve, self).__init__()

    def make_node(self, inp1, inp2):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuCusolverSolve Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn('The GpuSolve op requires scikit-cuda > 0.5.1 to work with CUDA 8')
        context_name = infer_context_name(inp1, inp2)

        inp1 = as_gpuarray_variable(inp1, context_name)
        inp2 = as_gpuarray_variable(inp2, context_name)

        inp1 = gpu_contiguous(inp1)
        inp2 = gpu_contiguous(inp2)

        # this op can only operate on float32 matrices
        assert inp1.ndim == 2
        assert inp2.ndim == 2
        assert inp1.dtype == 'float32'
        assert inp2.dtype == 'float32'

        return theano.Apply(
            self, [inp1, inp2],
            [GpuArrayType('float32',
                          broadcastable=inp1.broadcastable,
                          context_name=context_name)()])

    def prepare_node(self, node, storage_map, compute_map, impl):
        ctx = node.inputs[0].type.context
        attach_cusolver_handle_to_context(ctx)

    def check_dev_info(self, dev_info):
        val = np.asarray(dev_info)[0]
        if val > 0:
            raise LinAlgError('A is singular')

    def perform(self, node, inputs, outputs):
        context = inputs[0][0].context

        # Size of the matrices to invert.
        z = outputs[0]

        # Matrix.
        A = inputs[0]

        # Solution vectors.
        b = inputs[1]

        assert(len(A.shape) == 2)
        assert(len(b.shape) == 2)

        if self.trans in ['T', 'C']:
            trans = 1
            l, n = A.shape
            k, m = b.shape
        elif self.trans == 'N':
            trans = 0
            n, l = A.shape
            k, m = b.shape
        else:
            raise ValueError('Invalid value for trans')
        if l != n:
            raise ValueError('A must be a square matrix')
        if n != k:
            raise ValueError('A and b must be aligned.')

        lda = max(1, n)
        ldb = max(1, k)

        # We copy A and b as cusolver operates inplace
        b = pygpu.array(b, copy=True, order='F')
        if not self.inplace:
            A = pygpu.array(A, copy=True)
        A_ptr = A.gpudata
        b_ptr = b.gpudata

        # cusolver expects a F ordered matrix, but A is not explicitly
        # converted between C and F order, instead we switch the
        # "transpose" flag.
        if A.flags['C_CONTIGUOUS']:
            trans = 1 - trans

        if self.A_structure == 'symmetric':
            with context:
                workspace_size = cusolver.cusolverDnSpotrf_bufferSize(
                    context.cusolver_handle, 0, n, A_ptr, lda)

            workspace = pygpu.zeros(workspace_size, dtype='float32',
                                    context=context)

            dev_info = pygpu.zeros((1,), dtype='int32', context=context)

            workspace_ptr = workspace.gpudata
            dev_info_ptr = dev_info.gpudata

            with context:
                cusolver.cusolverDnSpotrf(
                    context.cusolver_handle, 0, n, A_ptr, lda, workspace_ptr,
                    workspace_size, dev_info_ptr)
                self.check_dev_info(dev_info)

                cusolverDnSpotrs(
                    context.cusolver_handle, 0, n, m, A_ptr, lda,
                    b_ptr, ldb, dev_info_ptr)

        else:
            # general case for A
            with context:
                workspace_size = cusolver.cusolverDnSgetrf_bufferSize(
                    context.cusolver_handle, n, n, A_ptr, lda)

            workspace = pygpu.zeros(workspace_size, dtype='float32',
                                    context=context)

            pivots = pygpu.zeros(n, dtype='int32', context=context)

            dev_info = pygpu.zeros((1,), dtype='int32', context=context)

            workspace_ptr = workspace.gpudata
            pivots_ptr = pivots.gpudata
            dev_info_ptr = dev_info.gpudata

            with context:
                cusolver.cusolverDnSgetrf(
                    context.cusolver_handle, n, n, A_ptr, lda, workspace_ptr,
                    pivots_ptr, dev_info_ptr)
                self.check_dev_info(dev_info)

                cusolver.cusolverDnSgetrs(
                    context.cusolver_handle, trans, n, m, A_ptr, lda,
                    pivots_ptr, b_ptr, ldb, dev_info_ptr)

        z[0] = b


class GpuCublasTriangularSolve(Op):
    """
    CUBLAS GPU Triangular Solve Op.

    Parameters
    ----------
    lower
        Whether system is lower-triangular (True) or upper-triangular (False).
    trans
        Whether to take the transpose of the input matrix or not.
    """
    __props__ = ('trans', 'lower')

    def __init__(self, lower=True, trans='N'):
        self.trans = trans
        self.lower = lower
        super(GpuCublasTriangularSolve, self).__init__()

    def make_node(self, inp1, inp2):
        if not cublas_available:
            raise RuntimeError('CUBLAS is not available and '
                               'GpuCublasTriangularSolve Op can not be constructed.')
        context_name = infer_context_name(inp1, inp2)

        inp1 = as_gpuarray_variable(inp1, context_name)
        inp2 = as_gpuarray_variable(inp2, context_name)

        inp1 = gpu_contiguous(inp1)
        inp2 = gpu_contiguous(inp2)

        # this op can only operate on float32 matrices
        assert inp1.ndim == 2
        assert inp2.ndim in [1, 2]
        assert inp1.dtype == 'float32'
        assert inp2.dtype == 'float32'

        return theano.Apply(self, [inp1, inp2],
                            [GpuArrayType('float32',
                                          broadcastable=inp2.broadcastable,
                                          context_name=context_name)()])

    def prepare_node(self, node, storage_map, compute_map, impl):
        ctx = node.inputs[0].type.context
        attach_cublas_handle_to_context(ctx)

    def perform(self, node, inputs, outputs):
        ctx = node.inputs[0].type.context

        # Solution set
        x = outputs[0]

        # Matrix.
        A = inputs[0]

        # right hand side
        b = inputs[1]

        assert(len(A.shape) == 2)
        assert(len(b.shape) in [1, 2])

        # implicitly deal with the difference between C order
        # and fortran order by flipping the trans and lower flags
        lower = not self.lower
        trans = self.trans
        if trans in ['T', 'C']:
            trans = 'N'
            l, n = A.shape
        elif trans == 'N':
            trans = 'T'
            n, l = A.shape
        else:
            raise ValueError('Invalid value for trans')

        if b.ndim == 2:
            k, m = b.shape
        else:
            k, = b.shape
            m = 1

        if l != n:
            raise ValueError('A must be a square matrix')
        if n != k:
            raise ValueError('A and b must be aligned.')

        lda = max(1, n)
        ldb = max(1, k)

        # solution overwrites right hand side on exit
        b = pygpu.array(b, copy=True, order='F')

        A_ptr = A.gpudata
        b_ptr = b.gpudata

        # unit scalar used for multiplication
        alpha = 1.0
        # indicates matrix A is on left of B
        side = 'l'
        # set whether upper or lower part of matrix A stored
        uplo = 'l' if lower else 'u'
        # indicates elements on diagonal of matrix A may not be unity
        diag = 'n'

        with ctx:
            if b.ndim == 1:
                # matrix vector solve
                cublas.cublasStrsv(ctx.cublas_handle, uplo, trans, diag, n,
                                   A_ptr, lda, b_ptr, 1)
            else:
                cublas.cublasStrsm(ctx.cublas_handle, side, uplo, trans, diag,
                                   n, m, alpha, A_ptr, lda, b_ptr, ldb)

        x[0] = b


def gpu_solve(A, b, A_structure='general', trans='N'):
    if A_structure == 'lower':
        return GpuCublasTriangularSolve(True, trans)(A, b)
    elif A_structure == 'upper':
        return GpuCublasTriangularSolve(False, trans)(A, b)

    return GpuCusolverSolve(A_structure, trans)(A, b)


class GpuCholesky(Op):
    """
    CUSOLVER GPU Cholesky Op.

    Given a real positive definite matrix `A` returns either a lower
    triangular matrix `L` such that `A == dot(L, L.T)` if `lower == True`
    else returns an upper triangular matrix `U` such that `A == dot(U.T, U)`
    if `lower == False`.

    Parameters
    ----------
    lower
        Whether to return a lower rather than upper triangular decomposition.

    """

    __props__ = ('lower', 'inplace')

    def __init__(self, lower=True, inplace=False):
        self.lower = lower
        self.inplace = inplace
        if self.inplace:
            self.destroy_map = {0: [0]}
        super(GpuCholesky, self).__init__()

    def clone_inplace(self):
        return self.__class__(lower=self.lower, inplace=True)

    def make_node(self, inp):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuCholesky Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn('The GpuCholesky op requires scikit-cuda > 0.5.1 to work with CUDA 8')
        if not pygpu_available:
            raise RuntimeError('Missing pygpu or triu/tril functions.'
                               'Install or update libgpuarray.')
        context_name = infer_context_name(inp)

        inp = as_gpuarray_variable(inp, context_name)

        inp = gpu_contiguous(inp)

        # this op can only operate on float32 matrices
        # because of current implementation of triu/tril.
        # TODO: support float64 for triu/tril in GpuArray and for GpuCholesky/GpuCusolverSolve in Theano.
        assert inp.ndim == 2
        assert inp.dtype == 'float32'

        return theano.Apply(self, [inp], [inp.type()])

    def prepare_node(self, node, storage_map, compute_map, impl):
        ctx = node.inputs[0].type.context
        attach_cusolver_handle_to_context(ctx)

    def perform(self, node, inputs, outputs):
        context = inputs[0][0].context

        # Input matrix.
        A = inputs[0]

        l, n = A.shape
        if l != n:
            raise ValueError('A must be a square matrix')

        lda = max(1, n)

        # cusolver operates on F ordered matrices, but A is expected
        # to be symmetric so it does not matter.
        # We copy A if needed
        if self.inplace:
            L = A
        else:
            L = pygpu.array(A, copy=True)

        # The output matrix will contain only the upper or lower
        # triangular factorization of A. If L is C ordered (it
        # probably is as it is the default in Theano) we just switch
        # the fill mode parameter of cusolver
        l_parameter = 0 if self.lower else 1
        if L.flags['C_CONTIGUOUS']:
            l_parameter = 1 - l_parameter

        L_ptr = L.gpudata

        with context:
            workspace_size = cusolver.cusolverDnSpotrf_bufferSize(
                context.cusolver_handle, l_parameter, n, L_ptr, lda)

            workspace = pygpu.zeros(workspace_size, dtype='float32',
                                    context=context)

            dev_info = pygpu.zeros((1,), dtype='int32', context=context)

            workspace_ptr = workspace.gpudata
            dev_info_ptr = dev_info.gpudata

            cusolver.cusolverDnSpotrf(
                context.cusolver_handle, l_parameter, n, L_ptr, lda, workspace_ptr,
                workspace_size, dev_info_ptr)

            val_dev_info = np.asarray(dev_info)[0]
            if val_dev_info > 0:
                raise LinAlgError('Cholesky decomposition failed (is A SPD?)')

        # cusolver leaves the elements in the matrix outside the considered
        # upper or lower triangle unchanged, so we need to put zeros outside
        # the triangle
        if self.lower:
            tril(L)
        else:
            triu(L)

        outputs[0][0] = L


def gpu_cholesky(A, lower=True):
    return GpuCholesky(lower)(A)


# TODO: add support for float64
class GpuMagmaBase(COp):
    """Base class for magma related operations. Add the necessary headers,
    libraries and optionally the location of headers and library.
    """
    def c_headers(self):
        return ['gpuarray/types.h', 'gpuarray/array.h', 'gpuarray/ext_cuda.h',
                'gpuarray_helper.h', 'magma.h']

    def c_header_dirs(self):
        dirs = [gpuarray_helper_inc_dir(), pygpu.get_include(), config.cuda.include_path]
        if config.magma.include_path:
            dirs.append(config.magma.include_path)
        return dirs

    def c_libraries(self):
        return ['magma']

    def c_lib_dirs(self):
        if config.magma.library_path:
            return [config.magma.library_path]
        return []

    def prepare_node(self, node, storage_map, compute_map, impl):
        from skcuda.magma import magma_init
        ctx = node.inputs[0].type.context
        if not getattr(ctx, 'is_magma_initialized', False):
            with ctx:
                magma_init()
                ctx.is_magma_initialized = True


class GpuMagmaSVD(GpuMagmaBase):
    """Computes the svd of a matrix :math:`A` using magma library.

    .. warning::

        Because of implementation constraints, this Op returns outputs
        in order ``S, U, VT``. Use :func:`theano.gpuarray.linalg.gpu_svd`
        to get them in expected order ``U, S, VT``.

    """
    __props__ = ('full_matrices', 'compute_uv')
    _cop_num_inputs = 1
    _cop_num_outputs = 3
    check_input = False
    params_type = ParamsType(full_matrices=bool_t, context=gpu_context_type)

    def __init__(self, full_matrices=True, compute_uv=True):
        self.full_matrices = full_matrices
        self.compute_uv = compute_uv
        COp.__init__(self, ['c_code/magma_svd.c'], 'APPLY_SPECIFIC(magma_svd)')

    def make_node(self, A):
        ctx_name = infer_context_name(A)
        A = as_gpuarray_variable(A, ctx_name)
        A = gpu_contiguous(A)
        if A.ndim != 2:
            raise LinAlgError("Matrix rank error")
        if A.dtype != 'float32':
            raise TypeError("only `float32` is supported for now")
        if self.compute_uv:
            return theano.Apply(self, [A],
                                # return S, U, VT
                                [GpuArrayType(A.dtype, broadcastable=[False],
                                              context_name=ctx_name)(),
                                 A.type(),
                                 A.type()])
        else:
            return theano.Apply(self, [A],
                                # return only S
                                [GpuArrayType(A.dtype, broadcastable=[False],
                                              context_name=ctx_name)()])

    def prepare_node(self, node, storage_map, compute_map, impl):
        super(GpuMagmaSVD, self).prepare_node(node, storage_map, compute_map, impl)
        # Check node to prevent eventual errors with old pickled nodes.
        if self.compute_uv:
            A, B, C = node.outputs
            # We expect order: S (vector), U (matrix), VT (matrix)
            assert A.type.ndim == 1 and B.type.ndim == C.type.ndim == 2, \
                "Due to implementation constraints, GpuMagmaSVD interface has changed and now returns (S, U, VT) " \
                "instead of (U, S, VT). Either update your code, or use gpu_svd() to get the expected (U, S, VT) order."

    def get_params(self, node):
        return self.params_type.get_params(self, context=node.inputs[0].type.context)

    def infer_shape(self, node, shapes):
        x_shape, = shapes
        M, N = x_shape
        K = tensor.minimum(M, N)
        s_shape = (K, )
        if self.compute_uv:
            u_shape = (M, M) if self.full_matrices else (M, K)
            vt_shape = (N, N) if self.full_matrices else (K, N)
            return [s_shape, u_shape, vt_shape]
        else:
            return [s_shape]


def gpu_svd(a, full_matrices=1, compute_uv=1):
    """
    This function performs the SVD on GPU.

    Parameters
    ----------
    full_matrices : bool, optional
        If True (default), u and v have the shapes (M, M) and (N, N),
        respectively.
        Otherwise, the shapes are (M, K) and (K, N), respectively,
        where K = min(M, N).
    compute_uv : bool, optional
        Whether or not to compute u and v in addition to s.
        True by default.

    Returns
    -------
    U, V,  D : matrices

    """
    out = GpuMagmaSVD(full_matrices, compute_uv)(a)
    if compute_uv:
        S, U, VT = out
        out = [U, S, VT]
    return out


class GpuMagmaMatrixInverse(GpuMagmaBase):
    """Computes the inverse of a matrix :math:`A` using magma library.
    """
    __props__ = ('inplace', )
    check_input = False
    params_type = ParamsType(inplace=bool_t, context=gpu_context_type)

    def __init__(self, inplace=False):
        COp.__init__(self, ['c_code/magma_inv.c'], 'APPLY_SPECIFIC(magma_inv)')
        self.inplace = inplace
        if self.inplace:
            self.destroy_map = {0: [0]}

    def clone_inplace(self):
        return self.__class__(inplace=True)

    def make_node(self, A):
        ctx_name = infer_context_name(A)
        A = as_gpuarray_variable(A, ctx_name)
        A = gpu_contiguous(A)
        if A.ndim != 2:
            raise LinAlgError("Matrix rank error")
        if A.dtype != 'float32':
            raise TypeError("only `float32` is supported for now")
        return theano.Apply(self, [A], [A.type()])

    def get_params(self, node):
        return self.params_type.get_params(self, context=node.inputs[0].type.context)

    def infer_shape(self, node, shapes):
        return shapes


def gpu_matrix_inverse(a):
    """
    This function performs the matrix inverse on GPU.

    Returns
    -------
    a_inv: matrix

    """
    return GpuMagmaMatrixInverse()(a)


class GpuMagmaCholesky(GpuMagmaBase, CGpuKernelBase):
    """Computes the cholesky decomposition of a matrix :math:`A` using magma
    library.

    """
    __props__ = ('lower', 'inplace')
    check_input = False
    params_type = ParamsType(lower=bool_t, inplace=bool_t, context=gpu_context_type)

    def __init__(self, lower=True, inplace=False):
        self.lower = lower
        COp.__init__(self, ['c_code/magma_cholesky.c'], 'APPLY_SPECIFIC(magma_cholesky)')
        self.inplace = inplace
        if self.inplace:
            self.destroy_map = {0: [0]}

    def clone_inplace(self):
        return self.__class__(lower=self.lower, inplace=True)

    def make_node(self, A):
        ctx_name = infer_context_name(A)
        A = as_gpuarray_variable(A, ctx_name)
        A = gpu_contiguous(A)
        if A.ndim != 2:
            raise LinAlgError("Matrix rank error")
        if A.dtype != 'float32':
            raise TypeError("only `float32` is supported for now")
        return theano.Apply(self, [A], [A.type()])

    def get_params(self, node):
        return self.params_type.get_params(self, context=node.inputs[0].type.context)

    def infer_shape(self, node, shapes):
        return [shapes[0]]


class GpuMagmaQR(GpuMagmaBase, CGpuKernelBase):
    """Computes the qr decomposition of a matrix :math:`A` using magma
    library.

    Parameters
    ----------

        complete : If False, returns only ``R``.

    .. warning::

        Because of implementation constraints, this Op returns outputs
        in order ``R, Q``. Use :func:`theano.gpuarray.linalg.gpu_qr`
        to get them in expected order ``Q, R``.
    """
    __props__ = ('complete', )
    _cop_num_inputs = 1
    _cop_num_outputs = 2
    check_input = False
    params_type = ParamsType(complete=bool_t, context=gpu_context_type)

    def __init__(self, complete=True):
        self.complete = complete
        COp.__init__(self, ['c_code/magma_qr.c'], 'APPLY_SPECIFIC(magma_qr)')

    def make_node(self, A):
        ctx_name = infer_context_name(A)
        A = as_gpuarray_variable(A, ctx_name)
        A = gpu_contiguous(A)
        if A.ndim != 2:
            raise LinAlgError("Matrix rank error")
        if A.dtype != 'float32':
            raise TypeError("only `float32` is supported for now")
        if self.complete:
            return theano.Apply(self, [A],
                                # return R, Q
                                [A.type(), A.type()])
        else:
            return theano.Apply(self, [A],
                                # return R
                                [A.type()])

    def get_params(self, node):
        return self.params_type.get_params(self, context=node.inputs[0].type.context)


def gpu_qr(a, complete=True):
    """
    This function performs the QR on GPU.

    Parameters
    ----------
    complete : bool, optional
        If `False`, returns only r.

    Returns
    -------
    Q, R : matrices

    """
    out = GpuMagmaQR(complete)(a)
    if complete:
        R, Q = out
        out = [Q, R]
    return out


class GpuMagmaEigh(GpuMagmaBase):
    """Computes the eigen decomposition of a symmetric matrix :math:`A` using magma
    library.

    Parameters
    ----------
    UPLO : Specifies whether the calculation is done with the lower triangular
           part of matrix (`L`, default) or the upper triangular part (`U`).
    compute_v : If `True`, computes eigenvalues and eigenvectors (`True`,
                default). If `False`, computes only eigenvalues of matrix.
    """
    __props__ = ('lower', 'compute_v')
    _cop_num_inputs = 1
    _cop_num_outputs = 2
    check_input = False
    params_type = ParamsType(lower=bool_t, compute_v=bool_t,
                             context=gpu_context_type)

    def __init__(self, UPLO='L', compute_v=True):
        assert UPLO in ['L', 'U']
        self.lower = UPLO == 'L'
        self.compute_v = compute_v
        COp.__init__(self, ['c_code/magma_eigh.c'], 'APPLY_SPECIFIC(magma_eigh)')

    def make_node(self, A):
        ctx_name = infer_context_name(A)
        A = as_gpuarray_variable(A, ctx_name)
        A = gpu_contiguous(A)
        if A.ndim != 2:
            raise LinAlgError("Matrix rank error")
        if A.dtype != 'float32':
            raise TypeError("only `float32` is supported for now")
        if self.compute_v:
            return theano.Apply(self, [A],
                                # return D, V
                                [GpuArrayType(A.dtype, broadcastable=[False],
                                              context_name=ctx_name)(),
                                 A.type()])
        else:
            return theano.Apply(self, [A],
                                # return D
                                [GpuArrayType(A.dtype, broadcastable=[False],
                                              context_name=ctx_name)()])

    def get_params(self, node):
        return self.params_type.get_params(self, context=node.inputs[0].type.context)