File: printing.py

package info (click to toggle)
theano 1.0.3+dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 30,752 kB
  • sloc: python: 141,182; ansic: 9,505; makefile: 259; sh: 214; pascal: 81
file content (1276 lines) | stat: -rw-r--r-- 47,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
"""Pretty-printing (pprint()), the 'Print' Op, debugprint() and pydotprint().

They all allow different way to print a graph or the result of an Op
in a graph(Print Op)
"""
from __future__ import absolute_import, print_function, division
from copy import copy
import logging
import os
import sys
import hashlib

import numpy as np
from six import string_types, integer_types, iteritems
from six.moves import StringIO, reduce

import theano
from theano import gof
from theano import config
from theano.gof import Op, Apply
from theano.compile import Function, debugmode, SharedVariable

pydot_imported = False
pydot_imported_msg = ""
try:
    # pydot-ng is a fork of pydot that is better maintained
    import pydot_ng as pd
    if pd.find_graphviz():
        pydot_imported = True
    else:
        pydot_imported_msg = "pydot-ng can't find graphviz. Install graphviz."
except ImportError:
    try:
        # fall back on pydot if necessary
        import pydot as pd
        if hasattr(pd, 'find_graphviz'):
            if pd.find_graphviz():
                pydot_imported = True
            else:
                pydot_imported_msg = "pydot can't find graphviz"
        else:
            pd.Dot.create(pd.Dot())
            pydot_imported = True
    except ImportError:
        # tests should not fail on optional dependency
        pydot_imported_msg = ("Install the python package pydot or pydot-ng."
                              " Install graphviz.")
    except Exception as e:
        pydot_imported_msg = "An error happened while importing/trying pydot: "
        pydot_imported_msg += str(e.args)


_logger = logging.getLogger("theano.printing")
VALID_ASSOC = set(['left', 'right', 'either'])


def debugprint(obj, depth=-1, print_type=False,
               file=None, ids='CHAR', stop_on_name=False,
               done=None, print_storage=False, print_clients=False,
               used_ids=None):
    """Print a computation graph as text to stdout or a file.

    :type obj: :class:`~theano.gof.Variable`, Apply, or Function instance
    :param obj: symbolic thing to print
    :type depth: integer
    :param depth: print graph to this depth (-1 for unlimited)
    :type print_type: boolean
    :param print_type: whether to print the type of printed objects
    :type file: None, 'str', or file-like object
    :param file: print to this file ('str' means to return a string)
    :type ids: str
    :param ids: How do we print the identifier of the variable
                id - print the python id value
                int - print integer character
                CHAR - print capital character
                "" - don't print an identifier
    :param stop_on_name: When True, if a node in the graph has a name,
                         we don't print anything below it.
    :type done: None or dict
    :param done: A dict where we store the ids of printed node.
        Useful to have multiple call to debugprint share the same ids.
    :type print_storage: bool
    :param print_storage: If True, this will print the storage map
        for Theano functions. Combined with allow_gc=False, after the
        execution of a Theano function, we see the intermediate result.
    :type print_clients: bool
    :param print_clients: If True, this will print for Apply node that
         have more then 1 clients its clients. This help find who use
         an Apply node.
    :type used_ids: dict or None
    :param used_ids: the id to use for some object, but maybe we only
         referred to it yet.

    :returns: string if `file` == 'str', else file arg

    Each line printed represents a Variable in the graph.
    The indentation of lines corresponds to its depth in the symbolic graph.
    The first part of the text identifies whether it is an input
    (if a name or type is printed) or the output of some Apply (in which case
    the Op is printed).
    The second part of the text is an identifier of the Variable.
    If print_type is True, we add a part containing the type of the Variable

    If a Variable is encountered multiple times in the depth-first search,
    it is only printed recursively the first time. Later, just the Variable
    identifier is printed.

    If an Apply has multiple outputs, then a '.N' suffix will be appended
    to the Apply's identifier, to indicate which output a line corresponds to.

    """
    if not isinstance(depth, integer_types):
        raise Exception("depth parameter must be an int")
    if file == 'str':
        _file = StringIO()
    elif file is None:
        _file = sys.stdout
    else:
        _file = file
    if done is None:
        done = dict()
    if used_ids is None:
        used_ids = dict()
    used_ids = dict()
    results_to_print = []
    profile_list = []
    order = []  # Toposort
    smap = []  # storage_map
    if isinstance(obj, (list, tuple, set)):
        lobj = obj
    else:
        lobj = [obj]
    for obj in lobj:
        if isinstance(obj, gof.Variable):
            results_to_print.append(obj)
            profile_list.append(None)
            smap.append(None)
            order.append(None)
        elif isinstance(obj, gof.Apply):
            results_to_print.extend(obj.outputs)
            profile_list.extend([None for item in obj.outputs])
            smap.extend([None for item in obj.outputs])
            order.extend([None for item in obj.outputs])
        elif isinstance(obj, Function):
            results_to_print.extend(obj.maker.fgraph.outputs)
            profile_list.extend(
                [obj.profile for item in obj.maker.fgraph.outputs])
            if print_storage:
                smap.extend(
                    [obj.fn.storage_map for item in obj.maker.fgraph.outputs])
            else:
                smap.extend(
                    [None for item in obj.maker.fgraph.outputs])
            topo = obj.maker.fgraph.toposort()
            order.extend(
                [topo for item in obj.maker.fgraph.outputs])
        elif isinstance(obj, gof.FunctionGraph):
            results_to_print.extend(obj.outputs)
            profile_list.extend([getattr(obj, 'profile', None)
                                 for item in obj.outputs])
            smap.extend([getattr(obj, 'storage_map', None)
                         for item in obj.outputs])
            topo = obj.toposort()
            order.extend([topo for item in obj.outputs])
        elif isinstance(obj, (integer_types, float, np.ndarray)):
            print(obj, file=_file)
        elif isinstance(obj, (theano.In, theano.Out)):
            results_to_print.append(obj.variable)
            profile_list.append(None)
            smap.append(None)
            order.append(None)
        else:
            raise TypeError("debugprint cannot print an object of this type",
                            obj)

    scan_ops = []
    if any([p for p in profile_list if p is not None and p.fct_callcount > 0]):
        print("""
Timing Info
-----------
--> <time> <% time> - <total time> <% total time>'

<time>         computation time for this node
<% time>       fraction of total computation time for this node
<total time>   time for this node + total times for this node's ancestors
<% total time> total time for this node over total computation time

N.B.:
* Times include the node time and the function overhead.
* <total time> and <% total time> may over-count computation times
  if inputs to a node share a common ancestor and should be viewed as a
  loose upper bound. Their intended use is to help rule out potential nodes
  to remove when optimizing a graph because their <total time> is very low.
""", file=_file)

    for r, p, s, o in zip(results_to_print, profile_list, smap, order):
        # Add the parent scan op to the list as well
        if (hasattr(r.owner, 'op') and
                isinstance(r.owner.op, theano.scan_module.scan_op.Scan)):
                    scan_ops.append(r)

        debugmode.debugprint(r, depth=depth, done=done, print_type=print_type,
                             file=_file, order=o, ids=ids,
                             scan_ops=scan_ops, stop_on_name=stop_on_name,
                             profile=p, smap=s, used_ids=used_ids,
                             print_clients=print_clients)

    if len(scan_ops) > 0:
        print("", file=_file)
        new_prefix = ' >'
        new_prefix_child = ' >'
        print("Inner graphs of the scan ops:", file=_file)

        for s in scan_ops:
            # prepare a dict which maps the scan op's inner inputs
            # to its outer inputs.
            if hasattr(s.owner.op, 'fn'):
                # If the op was compiled, print the optimized version.
                inner_inputs = s.owner.op.fn.maker.fgraph.inputs
            else:
                inner_inputs = s.owner.op.inputs
            outer_inputs = s.owner.inputs
            inner_to_outer_inputs = \
                dict([(inner_inputs[i], outer_inputs[o])
                      for i, o in
                      s.owner.op.var_mappings['outer_inp_from_inner_inp']
                      .items()])

            print("", file=_file)
            debugmode.debugprint(
                s, depth=depth, done=done,
                print_type=print_type,
                file=_file, ids=ids,
                scan_ops=scan_ops,
                stop_on_name=stop_on_name,
                scan_inner_to_outer_inputs=inner_to_outer_inputs,
                print_clients=print_clients, used_ids=used_ids)
            if hasattr(s.owner.op, 'fn'):
                # If the op was compiled, print the optimized version.
                outputs = s.owner.op.fn.maker.fgraph.outputs
            else:
                outputs = s.owner.op.outputs
            for idx, i in enumerate(outputs):

                if hasattr(i, 'owner') and hasattr(i.owner, 'op'):
                    if isinstance(i.owner.op, theano.scan_module.scan_op.Scan):
                        scan_ops.append(i)

                debugmode.debugprint(
                    r=i, prefix=new_prefix,
                    depth=depth, done=done,
                    print_type=print_type, file=_file,
                    ids=ids, stop_on_name=stop_on_name,
                    prefix_child=new_prefix_child,
                    scan_ops=scan_ops,
                    scan_inner_to_outer_inputs=inner_to_outer_inputs,
                    print_clients=print_clients, used_ids=used_ids)

    if file is _file:
        return file
    elif file == 'str':
        return _file.getvalue()
    else:
        _file.flush()


def _print_fn(op, xin):
    for attr in op.attrs:
        temp = getattr(xin, attr)
        if callable(temp):
            pmsg = temp()
        else:
            pmsg = temp
        print(op.message, attr, '=', pmsg)


class Print(Op):
    """ This identity-like Op print as a side effect.

    This identity-like Op has the side effect of printing a message
    followed by its inputs when it runs. Default behaviour is to print
    the __str__ representation. Optionally, one can pass a list of the
    input member functions to execute, or attributes to print.

    @type message: String
    @param message: string to prepend to the output
    @type attrs: list of Strings
    @param attrs: list of input node attributes or member functions to print.
                  Functions are identified through callable(), executed and
                  their return value printed.

    :note: WARNING. This can disable some optimizations!
                    (speed and/or stabilization)

            Detailed explanation:
            As of 2012-06-21 the Print op is not known by any optimization.
            Setting a Print op in the middle of a pattern that is usually
            optimized out will block the optimization. for example, log(1+x)
            optimizes to log1p(x) but log(1+Print(x)) is unaffected by
            optimizations.

    """
    view_map = {0: [0]}

    __props__ = ('message', 'attrs', 'global_fn')

    def __init__(self, message="", attrs=("__str__",), global_fn=_print_fn):
        self.message = message
        self.attrs = tuple(attrs)  # attrs should be a hashable iterable
        self.global_fn = global_fn

    def make_node(self, xin):
        xout = xin.type()
        return Apply(op=self, inputs=[xin], outputs=[xout])

    def perform(self, node, inputs, output_storage):
        xin, = inputs
        xout, = output_storage
        xout[0] = xin
        self.global_fn(self, xin)

    def grad(self, input, output_gradients):
        return output_gradients

    def R_op(self, inputs, eval_points):
        return [x for x in eval_points]

    def __setstate__(self, dct):
        dct.setdefault('global_fn', _print_fn)
        self.__dict__.update(dct)

    def c_code_cache_version(self):
        return (1,)


class PrinterState(gof.utils.scratchpad):

    def __init__(self, props=None, **more_props):
        if props is None:
            props = {}
        elif isinstance(props, gof.utils.scratchpad):
            self.__update__(props)
        else:
            self.__dict__.update(props)
        self.__dict__.update(more_props)
        # A dict from the object to print to its string
        # representation. If it is a dag and not a tree, it allow to
        # parse each node of the graph only once. They will still be
        # printed many times
        self.memo = {}


class OperatorPrinter:

    def __init__(self, operator, precedence, assoc='left'):
        self.operator = operator
        self.precedence = precedence
        self.assoc = assoc
        assert self.assoc in VALID_ASSOC

    def process(self, output, pstate):
        if output in pstate.memo:
            return pstate.memo[output]
        pprinter = pstate.pprinter
        node = output.owner
        if node is None:
            raise TypeError("operator %s cannot represent a variable that is "
                            "not the result of an operation" % self.operator)

        # Precedence seems to be buggy, see #249
        # So, in doubt, we parenthesize everything.
        # outer_precedence = getattr(pstate, 'precedence', -999999)
        # outer_assoc = getattr(pstate, 'assoc', 'none')
        # if outer_precedence > self.precedence:
        #    parenthesize = True
        # else:
        #    parenthesize = False
        parenthesize = True

        input_strings = []
        max_i = len(node.inputs) - 1
        for i, input in enumerate(node.inputs):
            new_precedence = self.precedence
            if (self.assoc == 'left' and i != 0 or self.assoc == 'right' and
                    i != max_i):
                new_precedence += 1e-6
            try:
                old_precedence = getattr(pstate, 'precedence', None)
                pstate.precedence = new_precedence
                s = pprinter.process(input, pstate)
            finally:
                pstate.precedence = old_precedence
            input_strings.append(s)
        if len(input_strings) == 1:
            s = self.operator + input_strings[0]
        else:
            s = (" %s " % self.operator).join(input_strings)
        if parenthesize:
            r = "(%s)" % s
        else:
            r = s
        pstate.memo[output] = r
        return r


class PatternPrinter:

    def __init__(self, *patterns):
        self.patterns = []
        for pattern in patterns:
            if isinstance(pattern, string_types):
                self.patterns.append((pattern, ()))
            else:
                self.patterns.append((pattern[0], pattern[1:]))

    def process(self, output, pstate):
        if output in pstate.memo:
            return pstate.memo[output]
        pprinter = pstate.pprinter
        node = output.owner
        if node is None:
            raise TypeError("Patterns %s cannot represent a variable that is "
                            "not the result of an operation" % self.patterns)
        idx = node.outputs.index(output)
        pattern, precedences = self.patterns[idx]
        precedences += (1000,) * len(node.inputs)

        def pp_process(input, new_precedence):
            try:
                old_precedence = getattr(pstate, 'precedence', None)
                pstate.precedence = new_precedence
                r = pprinter.process(input, pstate)
            finally:
                pstate.precedence = old_precedence

            return r

        d = dict((str(i), x)
                 for i, x in enumerate(pp_process(input, precedence)
                                       for input, precedence in
                                       zip(node.inputs, precedences)))
        r = pattern % d
        pstate.memo[output] = r
        return r


class FunctionPrinter:

    def __init__(self, *names):
        self.names = names

    def process(self, output, pstate):
        if output in pstate.memo:
            return pstate.memo[output]
        pprinter = pstate.pprinter
        node = output.owner
        if node is None:
            raise TypeError("function %s cannot represent a variable that is "
                            "not the result of an operation" % self.names)
        idx = node.outputs.index(output)
        name = self.names[idx]
        new_precedence = -1000
        try:
            old_precedence = getattr(pstate, 'precedence', None)
            pstate.precedence = new_precedence
            r = "%s(%s)" % (name, ", ".join(
                [pprinter.process(input, pstate) for input in node.inputs]))
        finally:
            pstate.precedence = old_precedence

        pstate.memo[output] = r
        return r


class IgnorePrinter:

    def process(self, output, pstate):
        if output in pstate.memo:
            return pstate.memo[output]
        pprinter = pstate.pprinter
        node = output.owner
        if node is None:
            raise TypeError("function %s cannot represent a variable that is"
                            " not the result of an operation" % self.function)
        input = node.inputs[0]
        r = "%s" % pprinter.process(input, pstate)
        pstate.memo[output] = r
        return r


class LeafPrinter:
    def process(self, output, pstate):
        if output in pstate.memo:
            return pstate.memo[output]
        if output.name in greek:
            r = greek[output.name]
        else:
            r = str(output)
        pstate.memo[output] = r
        return r
leaf_printer = LeafPrinter()


class DefaultPrinter:
    def process(self, output, pstate):
        if output in pstate.memo:
            return pstate.memo[output]
        pprinter = pstate.pprinter
        node = output.owner
        if node is None:
            return leaf_printer.process(output, pstate)
        new_precedence = -1000
        try:
            old_precedence = getattr(pstate, 'precedence', None)
            pstate.precedence = new_precedence
            r = "%s(%s)" % (str(node.op), ", ".join(
                [pprinter.process(input, pstate)
                 for input in node.inputs]))
        finally:
            pstate.precedence = old_precedence

        pstate.memo[output] = r
        return r
default_printer = DefaultPrinter()


class PPrinter:
    def __init__(self):
        self.printers = []
        self.printers_dict = {}

    def assign(self, condition, printer):
        # condition can be a class or an instance of an Op.
        if isinstance(condition, (gof.Op, type)):
            self.printers_dict[condition] = printer
            return
        self.printers.insert(0, (condition, printer))

    def process(self, r, pstate=None):
        if pstate is None:
            pstate = PrinterState(pprinter=self)
        elif isinstance(pstate, dict):
            pstate = PrinterState(pprinter=self, **pstate)
        if getattr(r, 'owner', None) is not None:
            if r.owner.op in self.printers_dict:
                return self.printers_dict[r.owner.op].process(r, pstate)
            if type(r.owner.op) in self.printers_dict:
                return self.printers_dict[type(r.owner.op)].process(r, pstate)
        for condition, printer in self.printers:
            if condition(pstate, r):
                return printer.process(r, pstate)

    def clone(self):
        cp = copy(self)
        cp.printers = list(self.printers)
        cp.printers_dict = dict(self.printers_dict)
        return cp

    def clone_assign(self, condition, printer):
        cp = self.clone()
        cp.assign(condition, printer)
        return cp

    def process_graph(self, inputs, outputs, updates=None,
                      display_inputs=False):
        if updates is None:
            updates = {}
        if not isinstance(inputs, (list, tuple)):
            inputs = [inputs]
        if not isinstance(outputs, (list, tuple)):
            outputs = [outputs]
        current = None
        if display_inputs:
            strings = [(0, "inputs: " + ", ".join(
                        map(str, list(inputs) + updates.keys())))]
        else:
            strings = []
        pprinter = self.clone_assign(lambda pstate, r: r.name is not None and
                                     r is not current, leaf_printer)
        inv_updates = dict((b, a) for (a, b) in iteritems(updates))
        i = 1
        for node in gof.graph.io_toposort(list(inputs) + updates.keys(),
                                          list(outputs) +
                                          updates.values()):
            for output in node.outputs:
                if output in inv_updates:
                    name = str(inv_updates[output])
                    strings.append((i + 1000, "%s <- %s" % (
                        name, pprinter.process(output))))
                    i += 1
                if output.name is not None or output in outputs:
                    if output.name is None:
                        name = 'out[%i]' % outputs.index(output)
                    else:
                        name = output.name
                    # backport
                    # name = 'out[%i]' % outputs.index(output) if output.name
                    #  is None else output.name
                    current = output
                    try:
                        idx = 2000 + outputs.index(output)
                    except ValueError:
                        idx = i
                    if len(outputs) == 1 and outputs[0] is output:
                        strings.append((idx, "return %s" %
                                        pprinter.process(output)))
                    else:
                        strings.append((idx, "%s = %s" %
                                        (name, pprinter.process(output))))
                    i += 1
        strings.sort()
        return "\n".join(s[1] for s in strings)

    def __call__(self, *args):
        if len(args) == 1:
            return self.process(*args)
        elif len(args) == 2 and isinstance(args[1], (PrinterState, dict)):
            return self.process(*args)
        elif len(args) > 2:
            return self.process_graph(*args)
        else:
            raise TypeError('Not enough arguments to call.')

use_ascii = True

if use_ascii:
    special = dict(middle_dot="\\dot",
                   big_sigma="\\Sigma")

    greek = dict(alpha="\\alpha",
                 beta="\\beta",
                 gamma="\\gamma",
                 delta="\\delta",
                 epsilon="\\epsilon")
else:

    special = dict(middle_dot=u"\u00B7",
                   big_sigma=u"\u03A3")

    greek = dict(alpha=u"\u03B1",
                 beta=u"\u03B2",
                 gamma=u"\u03B3",
                 delta=u"\u03B4",
                 epsilon=u"\u03B5")


pprint = PPrinter()
pprint.assign(lambda pstate, r: True, default_printer)

pp = pprint
"""
Print to the terminal a math-like expression.
"""

# colors not used: orange, amber#FFBF00, purple, pink,
# used by default: green, blue, grey, red
default_colorCodes = {'GpuFromHost': 'red',
                      'HostFromGpu': 'red',
                      'Scan': 'yellow',
                      'Shape': 'brown',
                      'IfElse': 'magenta',
                      'Elemwise': '#FFAABB',  # dark pink
                      'Subtensor': '#FFAAFF',  # purple
                      'Alloc': '#FFAA22',  # orange
                      'Output': 'blue'}


def pydotprint(fct, outfile=None,
               compact=True, format='png', with_ids=False,
               high_contrast=True, cond_highlight=None, colorCodes=None,
               max_label_size=70, scan_graphs=False,
               var_with_name_simple=False,
               print_output_file=True,
               return_image=False,
               ):
    """Print to a file the graph of a compiled theano function's ops. Supports
    all pydot output formats, including png and svg.

    :param fct: a compiled Theano function, a Variable, an Apply or
                a list of Variable.
    :param outfile: the output file where to put the graph.
    :param compact: if True, will remove intermediate var that don't have name.
    :param format: the file format of the output.
    :param with_ids: Print the toposort index of the node in the node name.
                     and an index number in the variable ellipse.
    :param high_contrast: if true, the color that describes the respective
            node is filled with its corresponding color, instead of coloring
            the border
    :param colorCodes: dictionary with names of ops as keys and colors as
            values
    :param cond_highlight: Highlights a lazy if by surrounding each of the 3
                possible categories of ops with a border. The categories
                are: ops that are on the left branch, ops that are on the
                right branch, ops that are on both branches
                As an alternative you can provide the node that represents
                the lazy if
    :param scan_graphs: if true it will plot the inner graph of each scan op
                in files with the same name as the name given for the main
                file to which the name of the scan op is concatenated and
                the index in the toposort of the scan.
                This index can be printed with the option with_ids.
    :param var_with_name_simple: If true and a variable have a name,
                we will print only the variable name.
                Otherwise, we concatenate the type to the var name.
    :param return_image: If True, it will create the image and return it.
        Useful to display the image in ipython notebook.

        .. code-block:: python

            import theano
            v = theano.tensor.vector()
            from IPython.display import SVG
            SVG(theano.printing.pydotprint(v*2, return_image=True,
                                           format='svg'))

    In the graph, ellipses are Apply Nodes (the execution of an op)
    and boxes are variables.  If variables have names they are used as
    text (if multiple vars have the same name, they will be merged in
    the graph).  Otherwise, if the variable is constant, we print its
    value and finally we print the type + a unique number to prevent
    multiple vars from being merged.  We print the op of the apply in
    the Apply box with a number that represents the toposort order of
    application of those Apply.  If an Apply has more than 1 input, we
    label each edge between an input and the Apply node with the
    input's index.

    Variable color code::
        - Cyan boxes are SharedVariable, inputs and/or outputs) of the graph,
        - Green boxes are inputs variables to the graph,
        - Blue boxes are outputs variables of the graph,
        - Grey boxes are variables that are not outputs and are not used,

    Default apply node code::
        - Red ellipses are transfers from/to the gpu
        - Yellow are scan node
        - Brown are shape node
        - Magenta are IfElse node
        - Dark pink are elemwise node
        - Purple are subtensor
        - Orange are alloc node

    For edges, they are black by default. If a node returns a view
    of an input, we put the corresponding input edge in blue. If it
    returns a destroyed input, we put the corresponding edge in red.

    .. note::

        Since October 20th, 2014, this print the inner function of all
        scan separately after the top level debugprint output.

    """
    if colorCodes is None:
        colorCodes = default_colorCodes

    if outfile is None:
        outfile = os.path.join(config.compiledir, 'theano.pydotprint.' +
                               config.device + '.' + format)

    if isinstance(fct, Function):
        profile = getattr(fct, "profile", None)
        outputs = fct.maker.fgraph.outputs
        topo = fct.maker.fgraph.toposort()
    elif isinstance(fct, gof.FunctionGraph):
        profile = None
        outputs = fct.outputs
        topo = fct.toposort()
    else:
        if isinstance(fct, gof.Variable):
            fct = [fct]
        elif isinstance(fct, gof.Apply):
            fct = fct.outputs
        assert isinstance(fct, (list, tuple))
        assert all(isinstance(v, gof.Variable) for v in fct)
        fct = gof.FunctionGraph(inputs=gof.graph.inputs(fct),
                                outputs=fct)
        profile = None
        outputs = fct.outputs
        topo = fct.toposort()
    if not pydot_imported:
        raise RuntimeError("Failed to import pydot. You must install graphviz"
                           " and either pydot or pydot-ng for "
                           "`pydotprint` to work.",
                           pydot_imported_msg)

    g = pd.Dot()

    if cond_highlight is not None:
        c1 = pd.Cluster('Left')
        c2 = pd.Cluster('Right')
        c3 = pd.Cluster('Middle')
        cond = None
        for node in topo:
            if (node.op.__class__.__name__ == 'IfElse' and
                    node.op.name == cond_highlight):
                cond = node
        if cond is None:
            _logger.warn("pydotprint: cond_highlight is set but there is no"
                         " IfElse node in the graph")
            cond_highlight = None

    if cond_highlight is not None:
        def recursive_pass(x, ls):
            if not x.owner:
                return ls
            else:
                ls += [x.owner]
                for inp in x.inputs:
                    ls += recursive_pass(inp, ls)
                return ls

        left = set(recursive_pass(cond.inputs[1], []))
        right = set(recursive_pass(cond.inputs[2], []))
        middle = left.intersection(right)
        left = left.difference(middle)
        right = right.difference(middle)
        middle = list(middle)
        left = list(left)
        right = list(right)

    var_str = {}
    var_id = {}
    all_strings = set()

    def var_name(var):
        if var in var_str:
            return var_str[var], var_id[var]

        if var.name is not None:
            if var_with_name_simple:
                varstr = var.name
            else:
                varstr = 'name=' + var.name + " " + str(var.type)
        elif isinstance(var, gof.Constant):
            dstr = 'val=' + str(np.asarray(var.data))
            if '\n' in dstr:
                dstr = dstr[:dstr.index('\n')]
            varstr = '%s %s' % (dstr, str(var.type))
        elif (var in input_update and
              input_update[var].name is not None):
            varstr = input_update[var].name
            if not var_with_name_simple:
                varstr += str(var.type)
        else:
            # a var id is needed as otherwise var with the same type will be
            # merged in the graph.
            varstr = str(var.type)
        if len(varstr) > max_label_size:
            varstr = varstr[:max_label_size - 3] + '...'
        var_str[var] = varstr
        var_id[var] = str(id(var))

        all_strings.add(varstr)

        return varstr, var_id[var]

    apply_name_cache = {}
    apply_name_id = {}

    def apply_name(node):
        if node in apply_name_cache:
            return apply_name_cache[node], apply_name_id[node]
        prof_str = ''
        if profile:
            time = profile.apply_time.get(node, 0)
            # second, %fct time in profiler
            if profile.fct_callcount == 0 or profile.fct_call_time == 0:
                pf = 0
            else:
                pf = time * 100 / profile.fct_call_time
            prof_str = '   (%.3fs,%.3f%%)' % (time, pf)
        applystr = str(node.op).replace(':', '_')
        applystr += prof_str
        if (applystr in all_strings) or with_ids:
            idx = ' id=' + str(topo.index(node))
            if len(applystr) + len(idx) > max_label_size:
                applystr = (applystr[:max_label_size - 3 - len(idx)] + idx +
                            '...')
            else:
                applystr = applystr + idx
        elif len(applystr) > max_label_size:
            applystr = applystr[:max_label_size - 3] + '...'
            idx = 1
            while applystr in all_strings:
                idx += 1
                suffix = ' id=' + str(idx)
                applystr = (applystr[:max_label_size - 3 - len(suffix)] +
                            '...' +
                            suffix)

        all_strings.add(applystr)
        apply_name_cache[node] = applystr
        apply_name_id[node] = str(id(node))

        return applystr, apply_name_id[node]

    # Update the inputs that have an update function
    input_update = {}
    reverse_input_update = {}
    # Here outputs can be the original list, as we should not change
    # it, we must copy it.
    outputs = list(outputs)
    if isinstance(fct, Function):
        function_inputs = zip(fct.maker.expanded_inputs, fct.maker.fgraph.inputs)
        for i, fg_ii in reversed(list(function_inputs)):
            if i.update is not None:
                k = outputs.pop()
                # Use the fgaph.inputs as it isn't the same as maker.inputs
                input_update[k] = fg_ii
                reverse_input_update[fg_ii] = k

    apply_shape = 'ellipse'
    var_shape = 'box'
    for node_idx, node in enumerate(topo):
        astr, aid = apply_name(node)

        use_color = None
        for opName, color in iteritems(colorCodes):
            if opName in node.op.__class__.__name__:
                use_color = color

        if use_color is None:
            nw_node = pd.Node(aid, label=astr, shape=apply_shape)
        elif high_contrast:
            nw_node = pd.Node(aid, label=astr, style='filled',
                              fillcolor=use_color,
                              shape=apply_shape)
        else:
            nw_node = pd.Node(aid, label=astr,
                              color=use_color, shape=apply_shape)
        g.add_node(nw_node)
        if cond_highlight:
            if node in middle:
                c3.add_node(nw_node)
            elif node in left:
                c1.add_node(nw_node)
            elif node in right:
                c2.add_node(nw_node)

        for idx, var in enumerate(node.inputs):
            varstr, varid = var_name(var)
            label = ""
            if len(node.inputs) > 1:
                label = str(idx)
            param = {}
            if label:
                param['label'] = label
            if hasattr(node.op, 'view_map') and idx in reduce(
                    list.__add__, node.op.view_map.values(), []):
                    param['color'] = colorCodes['Output']
            elif hasattr(node.op, 'destroy_map') and idx in reduce(
                    list.__add__, node.op.destroy_map.values(), []):
                        param['color'] = 'red'
            if var.owner is None:
                color = 'green'
                if isinstance(var, SharedVariable):
                    # Input are green, output blue
                    # Mixing blue and green give cyan! (input and output var)
                    color = "cyan"
                if high_contrast:
                    g.add_node(pd.Node(varid,
                                       style='filled',
                                       fillcolor=color,
                                       label=varstr,
                                       shape=var_shape))
                else:
                    g.add_node(pd.Node(varid,
                                       color=color,
                                       label=varstr,
                                       shape=var_shape))
                g.add_edge(pd.Edge(varid, aid, **param))
            elif var.name or not compact or var in outputs:
                g.add_edge(pd.Edge(varid, aid, **param))
            else:
                # no name, so we don't make a var ellipse
                if label:
                    label += " "
                label += str(var.type)
                if len(label) > max_label_size:
                    label = label[:max_label_size - 3] + '...'
                param['label'] = label
                g.add_edge(pd.Edge(apply_name(var.owner)[1], aid, **param))

        for idx, var in enumerate(node.outputs):
            varstr, varid = var_name(var)
            out = var in outputs
            label = ""
            if len(node.outputs) > 1:
                label = str(idx)
            if len(label) > max_label_size:
                label = label[:max_label_size - 3] + '...'
            param = {}
            if label:
                param['label'] = label
            if out or var in input_update:
                g.add_edge(pd.Edge(aid, varid, **param))
                if high_contrast:
                    g.add_node(pd.Node(varid, style='filled',
                                       label=varstr,
                                       fillcolor=colorCodes['Output'], shape=var_shape))
                else:
                    g.add_node(pd.Node(varid, color=colorCodes['Output'],
                                       label=varstr,
                                       shape=var_shape))
            elif len(var.clients) == 0:
                g.add_edge(pd.Edge(aid, varid, **param))
                # grey mean that output var isn't used
                if high_contrast:
                    g.add_node(pd.Node(varid, style='filled',
                                       label=varstr,
                                       fillcolor='grey', shape=var_shape))
                else:
                    g.add_node(pd.Node(varid, label=varstr,
                                       color='grey', shape=var_shape))
            elif var.name or not compact:
                if not(not compact):
                    if label:
                        label += " "
                    label += str(var.type)
                    if len(label) > max_label_size:
                        label = label[:max_label_size - 3] + '...'
                    param['label'] = label
                g.add_edge(pd.Edge(aid, varid, **param))
                g.add_node(pd.Node(varid, shape=var_shape, label=varstr))
#            else:
            # don't add egde here as it is already added from the inputs.

    # The var that represent updates, must be linked to the input var.
    for sha, up in input_update.items():
        _, shaid = var_name(sha)
        _, upid = var_name(up)
        g.add_edge(pd.Edge(shaid, upid, label="UPDATE", color=colorCodes['Output']))

    if cond_highlight:
        g.add_subgraph(c1)
        g.add_subgraph(c2)
        g.add_subgraph(c3)

    if not outfile.endswith('.' + format):
        outfile += '.' + format

    if scan_graphs:
        scan_ops = [(idx, x) for idx, x in enumerate(topo)
                    if isinstance(x.op, theano.scan_module.scan_op.Scan)]
        path, fn = os.path.split(outfile)
        basename = '.'.join(fn.split('.')[:-1])
        # Safe way of doing things .. a file name may contain multiple .
        ext = fn[len(basename):]

        for idx, scan_op in scan_ops:
            # is there a chance that name is not defined?
            if hasattr(scan_op.op, 'name'):
                new_name = basename + '_' + scan_op.op.name + '_' + str(idx)
            else:
                new_name = basename + '_' + str(idx)
            new_name = os.path.join(path, new_name + ext)
            if hasattr(scan_op.op, 'fn'):
                to_print = scan_op.op.fn
            else:
                to_print = scan_op.op.outputs
            pydotprint(to_print, new_name, compact, format, with_ids,
                       high_contrast, cond_highlight, colorCodes,
                       max_label_size, scan_graphs)

    if return_image:
        return g.create(prog='dot', format=format)
    else:
        try:
            g.write(outfile, prog='dot', format=format)
        except pd.InvocationException:
            # based on https://github.com/Theano/Theano/issues/2988
            version = getattr(pd, '__version__', "")
            if version and [int(n) for n in version.split(".")] < [1, 0, 28]:
                raise Exception("Old version of pydot detected, which can "
                                "cause issues with pydot printing. Try "
                                "upgrading pydot version to a newer one")
            raise

        if print_output_file:
            print('The output file is available at', outfile)


class _TagGenerator:
    """ Class for giving abbreviated tags like to objects.
        Only really intended for internal use in order to
        implement min_informative_st """
    def __init__(self):
        self.cur_tag_number = 0

    def get_tag(self):
        rval = debugmode.char_from_number(self.cur_tag_number)

        self.cur_tag_number += 1

        return rval


def min_informative_str(obj, indent_level=0,
                        _prev_obs=None, _tag_generator=None):
    """
    Returns a string specifying to the user what obj is
    The string will print out as much of the graph as is needed
    for the whole thing to be specified in terms only of constants
    or named variables.


    Parameters
    ----------
    obj: the name to convert to a string
    indent_level: the number of tabs the tree should start printing at
                  (nested levels of the tree will get more tabs)
    _prev_obs: should only be used by min_informative_str
                    a dictionary mapping previously converted
                    objects to short tags


    Basic design philosophy
    -----------------------

    The idea behind this function is that it can be used as parts of
    command line tools for debugging or for error messages. The
    information displayed is intended to be concise and easily read by
    a human. In particular, it is intended to be informative when
    working with large graphs composed of subgraphs from several
    different people's code, as in pylearn2.

    Stopping expanding subtrees when named variables are encountered
    makes it easier to understand what is happening when a graph
    formed by composing several different graphs made by code written
    by different authors has a bug.

    An example output is:

    A. Elemwise{add_no_inplace}
        B. log_likelihood_v_given_h
        C. log_likelihood_h


    If the user is told they have a problem computing this value, it's
    obvious that either log_likelihood_h or log_likelihood_v_given_h
    has the wrong dimensionality. The variable's str object would only
    tell you that there was a problem with an
    Elemwise{add_no_inplace}. Since there are many such ops in a
    typical graph, such an error message is considerably less
    informative. Error messages based on this function should convey
    much more information about the location in the graph of the error
    while remaining succint.

    One final note: the use of capital letters to uniquely identify
    nodes within the graph is motivated by legibility. I do not use
    numbers or lower case letters since these are pretty common as
    parts of names of ops, etc. I also don't use the object's id like
    in debugprint because it gives such a long string that takes time
    to visually diff.

    """

    if _prev_obs is None:
        _prev_obs = {}

    indent = ' ' * indent_level

    if id(obj) in _prev_obs:
        tag = _prev_obs[id(obj)]

        return indent + '<' + tag + '>'

    if _tag_generator is None:
        _tag_generator = _TagGenerator()

    cur_tag = _tag_generator.get_tag()

    _prev_obs[id(obj)] = cur_tag

    if hasattr(obj, '__array__'):
        name = '<ndarray>'
    elif hasattr(obj, 'name') and obj.name is not None:
        name = obj.name
    elif hasattr(obj, 'owner') and obj.owner is not None:
        name = str(obj.owner.op)
        for ipt in obj.owner.inputs:
            name += '\n'
            name += min_informative_str(ipt,
                                        indent_level=indent_level + 1,
                                        _prev_obs=_prev_obs,
                                        _tag_generator=_tag_generator)
    else:
        name = str(obj)

    prefix = cur_tag + '. '

    rval = indent + prefix + name

    return rval


def var_descriptor(obj, _prev_obs=None, _tag_generator=None):
    """
    Returns a string, with no endlines, fully specifying
    how a variable is computed. Does not include any memory
    location dependent information such as the id of a node.
    """
    if _prev_obs is None:
        _prev_obs = {}

    if id(obj) in _prev_obs:
        tag = _prev_obs[id(obj)]

        return '<' + tag + '>'

    if _tag_generator is None:
        _tag_generator = _TagGenerator()

    cur_tag = _tag_generator.get_tag()

    _prev_obs[id(obj)] = cur_tag

    if hasattr(obj, '__array__'):
        # hashlib hashes only the contents of the buffer, but
        # it can have different semantics depending on the strides
        # of the ndarray
        name = '<ndarray:'
        name += 'strides=[' + ','.join(str(stride)
                                       for stride in obj.strides) + ']'
        name += ',digest=' + hashlib.sha256(obj).hexdigest() + '>'
    elif hasattr(obj, 'owner') and obj.owner is not None:
        name = str(obj.owner.op) + '('
        name += ','.join(var_descriptor(ipt,
                                        _prev_obs=_prev_obs,
                                        _tag_generator=_tag_generator)
                         for ipt in obj.owner.inputs)
        name += ')'
    elif hasattr(obj, 'name') and obj.name is not None:
        # Only print the name if there is no owner.
        # This way adding a name to an intermediate node can't make
        # a deeper graph get the same descriptor as a shallower one
        name = obj.name
    else:
        name = str(obj)
        if ' at 0x' in name:
            # The __str__ method is encoding the object's id in its str
            name = position_independent_str(obj)
            if ' at 0x' in name:
                print(name)
                assert False

    prefix = cur_tag + '='

    rval = prefix + name

    return rval


def position_independent_str(obj):
    if isinstance(obj, theano.gof.graph.Variable):
        rval = 'theano_var'
        rval += '{type=' + str(obj.type) + '}'
    else:
        raise NotImplementedError()

    return rval


def hex_digest(x):
    """
    Returns a short, mostly hexadecimal hash of a numpy ndarray
    """
    assert isinstance(x, np.ndarray)
    rval = hashlib.sha256(x.tostring()).hexdigest()
    # hex digest must be annotated with strides to avoid collisions
    # because the buffer interface only exposes the raw data, not
    # any info about the semantics of how that data should be arranged
    # into a tensor
    rval = rval + '|strides=[' + ','.join(str(stride)
                                          for stride in x.strides) + ']'
    rval = rval + '|shape=[' + ','.join(str(s) for s in x.shape) + ']'
    return rval