File: index.txt

package info (click to toggle)
theano 1.0.5%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 30,016 kB
  • sloc: python: 142,361; ansic: 9,767; javascript: 2,413; sh: 175; makefile: 147; pascal: 81
file content (300 lines) | stat: -rw-r--r-- 11,571 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

.. _libdoc_sparse:

=========================================
:mod:`sparse` -- Symbolic Sparse Matrices
=========================================

In the tutorial section, you can find a :ref:`sparse tutorial
<tutsparse>`.

The sparse submodule is not loaded when we import Theano. You must
import ``theano.sparse`` to enable it.

The sparse module provides the same functionality as the tensor
module. The difference lies under the covers because sparse matrices
do not store data in a contiguous array. Note that there are no GPU
implementations for sparse matrices in Theano. The sparse module has
been used in:

- NLP: Dense linear transformations of sparse vectors.
- Audio: Filterbank in the Fourier domain.

Compressed Sparse Format
========================

This section tries to explain how information is stored for the two
sparse formats of SciPy supported by Theano. There are more formats
that can be used with SciPy and some documentation about them may be
found `here
<../../sandbox/sparse.html>`_.

.. Changes to this section should also result in changes to tutorial/sparse.txt.

Theano supports two *compressed sparse formats*: ``csc`` and ``csr``,
respectively based on columns and rows. They have both the same
attributes: ``data``, ``indices``, ``indptr`` and ``shape``.

  * The ``data`` attribute is a one-dimensional ``ndarray`` which
    contains all the non-zero elements of the sparse matrix.

  * The ``indices`` and ``indptr`` attributes are used to store the
    position of the data in the sparse matrix.

  * The ``shape`` attribute is exactly the same as the ``shape``
    attribute of a dense (i.e. generic) matrix. It can be explicitly
    specified at the creation of a sparse matrix if it cannot be
    inferred from the first three attributes.


CSC Matrix
----------

In the *Compressed Sparse Column* format, ``indices`` stands for
indexes inside the column vectors of the matrix and ``indptr`` tells
where the column starts in the ``data`` and in the ``indices``
attributes. ``indptr`` can be thought of as giving the slice which
must be applied to the other attribute in order to get each column of
the matrix. In other words, ``slice(indptr[i], indptr[i+1])``
corresponds to the slice needed to find the i-th column of the matrix
in the ``data`` and ``indices`` fields.

The following example builds a matrix and returns its columns. It
prints the i-th column, i.e. a list of indices in the column and their
corresponding value in the second list.

>>> import numpy as np
>>> import scipy.sparse as sp
>>> data = np.asarray([7, 8, 9])
>>> indices = np.asarray([0, 1, 2])
>>> indptr = np.asarray([0, 2, 3, 3])
>>> m = sp.csc_matrix((data, indices, indptr), shape=(3, 3))
>>> m.toarray()
array([[7, 0, 0],
       [8, 0, 0],
       [0, 9, 0]])
>>> i = 0
>>> m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
(array([0, 1], dtype=int32), array([7, 8]))
>>> i = 1
>>> m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
(array([2], dtype=int32), array([9]))
>>> i = 2
>>> m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
(array([], dtype=int32), array([], dtype=int64))

CSR Matrix
----------

In the *Compressed Sparse Row* format, ``indices`` stands for indexes
inside the row vectors of the matrix and ``indptr`` tells where the
row starts in the ``data`` and in the ``indices``
attributes. ``indptr`` can be thought of as giving the slice which
must be applied to the other attribute in order to get each row of the
matrix. In other words, ``slice(indptr[i], indptr[i+1])`` corresponds
to the slice needed to find the i-th row of the matrix in the ``data``
and ``indices`` fields.

The following example builds a matrix and returns its rows. It prints
the i-th row, i.e. a list of indices in the row and their
corresponding value in the second list.

>>> import numpy as np
>>> import scipy.sparse as sp
>>> data = np.asarray([7, 8, 9])
>>> indices = np.asarray([0, 1, 2])
>>> indptr = np.asarray([0, 2, 3, 3])
>>> m = sp.csr_matrix((data, indices, indptr), shape=(3, 3))
>>> m.toarray()
array([[7, 8, 0],
       [0, 0, 9],
       [0, 0, 0]])
>>> i = 0
>>> m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
(array([0, 1], dtype=int32), array([7, 8]))
>>> i = 1
>>> m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
(array([2], dtype=int32), array([9]))
>>> i = 2
>>> m.indices[m.indptr[i]:m.indptr[i+1]], m.data[m.indptr[i]:m.indptr[i+1]]
(array([], dtype=int32), array([], dtype=int64))

List of Implemented Operations
==============================

- Moving from and to sparse
    - :func:`dense_from_sparse <theano.sparse.basic.dense_from_sparse>`.
      Both grads are implemented. Structured by default.
    - :func:`csr_from_dense <theano.sparse.basic.csr_from_dense>`,
      :func:`csc_from_dense <theano.sparse.basic.csc_from_dense>`.
      The grad implemented is structured.
    - Theano SparseVariable objects have a method ``toarray()`` that is the same as
      :func:`dense_from_sparse <theano.sparse.basic.dense_from_sparse>`.

- Construction of Sparses and their Properties
    - :class:`CSM <theano.sparse.basic.CSM>` and ``CSC``, ``CSR`` to construct a matrix.
      The grad implemented is regular.
    - :func:`csm_properties <theano.sparse.basic.csm_properties>`.
      to get the properties of a sparse matrix.
      The grad implemented is regular.
    - csm_indices(x), csm_indptr(x), csm_data(x) and csm_shape(x) or x.shape.
    - :func:`sp_ones_like <theano.sparse.basic.sp_ones_like>`.
      The grad implemented is regular.
    - :func:`sp_zeros_like <theano.sparse.basic.sp_zeros_like>`.
      The grad implemented is regular.
    - :func:`square_diagonal <theano.sparse.basic.square_diagonal>`.
      The grad implemented is regular.
    - :func:`construct_sparse_from_list <theano.sparse.basic.construct_sparse_from_list>`.
      The grad implemented is regular.

- Cast
    - :func:`cast <theano.sparse.basic.cast>` with ``bcast``, ``wcast``, ``icast``, ``lcast``,
      ``fcast``, ``dcast``, ``ccast``, and ``zcast``.
      The grad implemented is regular.

- Transpose
    - :func:`transpose <theano.sparse.basic.transpose>`.
      The grad implemented is regular.

- Basic Arithmetic
    - :func:`neg <theano.sparse.basic.neg>`.
      The grad implemented is regular.
    - :func:`eq <theano.sparse.basic.eq>`.
    - :func:`neq <theano.sparse.basic.neq>`.
    - :func:`gt <theano.sparse.basic.gt>`.
    - :func:`ge <theano.sparse.basic.ge>`.
    - :func:`lt <theano.sparse.basic.lt>`.
    - :func:`le <theano.sparse.basic.le>`. 
    - :func:`add <theano.sparse.basic.add>`.
      The grad implemented is regular.
    - :func:`sub <theano.sparse.basic.sub>`.
      The grad implemented is regular.
    - :func:`mul <theano.sparse.basic.mul>`.
      The grad implemented is regular.
    - :func:`col_scale <theano.sparse.basic.col_scale>` to multiply by a vector along the columns.
      The grad implemented is structured.
    - :func:`row_scale <theano.sparse.basic.row_scale>` to multiply by a vector along the rows.
      The grad implemented is structured.

- Monoid (Element-wise operation with only one sparse input).
    `They all have a structured grad.`

    - ``structured_sigmoid``
    - ``structured_exp``
    - ``structured_log``
    - ``structured_pow``
    - ``structured_minimum``
    - ``structured_maximum``
    - ``structured_add``
    - ``sin``
    - ``arcsin``
    - ``tan``
    - ``arctan``
    - ``sinh``
    - ``arcsinh``
    - ``tanh``
    - ``arctanh``
    - ``rad2deg``
    - ``deg2rad``
    - ``rint``
    - ``ceil``
    - ``floor``
    - ``trunc``
    - ``sgn``
    - ``log1p``
    - ``expm1``
    - ``sqr``
    - ``sqrt``

- Dot Product
    - :func:`dot <theano.sparse.basic.dot>`.

        - One of the inputs must be sparse, the other sparse or dense.
        - The grad implemented is regular.
        - No C code for perform and no C code for grad.
        - Returns a dense for perform and a dense for grad.
    - :func:`structured_dot <theano.sparse.basic.structured_dot>`.

        - The first input is sparse, the second can be sparse or dense.
        - The grad implemented is structured.
        - C code for perform and grad.
        - It returns a sparse output if both inputs are sparse and
          dense one if one of the inputs is dense.
        - Returns a sparse grad for sparse inputs and dense grad for
          dense inputs.
    - :func:`true_dot <theano.sparse.basic.true_dot>`.

        - The first input is sparse, the second can be sparse or dense.
        - The grad implemented is regular.
        - No C code for perform and no C code for grad.
        - Returns a Sparse.
        - The gradient returns a Sparse for sparse inputs and by
          default a dense for dense inputs. The parameter
          ``grad_preserves_dense`` can be set to False to return a
          sparse grad for dense inputs.
    - :func:`sampling_dot <theano.sparse.basic.sampling_dot>`.

        - Both inputs must be dense.
        - The grad implemented is structured for `p`.
        - Sample of the dot and sample of the gradient.
        - C code for perform but not for grad.
        - Returns sparse for perform and grad.
    - :func:`usmm <theano.sparse.basic.usmm>`.

        - You *shouldn't* insert this op yourself!
           - There is an optimization that transform a
             :func:`dot <theano.sparse.basic.dot>` to ``Usmm`` when possible.

        - This op is the equivalent of gemm for sparse dot.
        - There is no grad implemented for this op.
        - One of the inputs must be sparse, the other sparse or dense.
        - Returns a dense from perform.

- Slice Operations
    - sparse_variable[N, N], returns a tensor scalar.
      There is no grad implemented for this operation.
    - sparse_variable[M:N, O:P], returns a sparse matrix
      There is no grad implemented for this operation.
    - Sparse variables don't support [M, N:O] and [M:N, O] as we don't
      support sparse vectors and returning a sparse matrix would break
      the numpy interface.  Use [M:M+1, N:O] and [M:N, O:O+1] instead.
    - :func:`diag <theano.sparse.basic.diag>`.
      The grad implemented is regular.

- Concatenation
    - :func:`hstack <theano.sparse.basic.hstack>`.
      The grad implemented is regular.
    - :func:`vstack <theano.sparse.basic.vstack>`.
      The grad implemented is regular.

- Probability
    `There is no grad implemented for these operations.`

    - :class:`Poisson <theano.sparse.basic.Poisson>` and ``poisson``
    - :class:`Binomial <theano.sparse.basic.Binomial>` and ``csc_fbinomial``, ``csc_dbinomial``
      ``csr_fbinomial``, ``csr_dbinomial``
    - :class:`Multinomial <theano.sparse.basic.Multinomial>` and ``multinomial``

- Internal Representation
    `They all have a regular grad implemented.`

    - :func:`ensure_sorted_indices <theano.sparse.basic.ensure_sorted_indices>`.
    - :func:`remove0 <theano.sparse.basic.remove0>`.
    - :func:`clean <theano.sparse.basic.clean>` to resort indices and remove zeros

- To help testing
    - :func:`theano.sparse.tests.test_basic.sparse_random_inputs`

===================================================================
:mod:`sparse` --  Sparse Op
===================================================================

.. module:: sparse
   :platform: Unix, Windows
   :synopsis: Sparse Op
.. moduleauthor:: LISA

.. automodule:: theano.sparse.basic
    :members:

.. autofunction:: theano.sparse.tests.test_basic.sparse_random_inputs