1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
from __future__ import absolute_import, print_function, division
from collections import defaultdict
from six import iteritems
from theano.gof.graph import list_of_nodes
from theano.compat import cmp
# {{{ http://code.activestate.com/recipes/578231/ (r1)
# Copyright (c) Oren Tirosh 2012
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
def memodict(f):
"""
Memoization decorator for a function taking a single argument.
"""
class memodict(defaultdict):
def __missing__(self, key):
ret = self[key] = f(key)
return ret
return memodict().__getitem__
# end of http://code.activestate.com/recipes/578231/ }}}
def make_depends():
@memodict
def depends(pair):
"""
Returns True if a depends on b.
"""
a, b = pair
return (any(bout in a.inputs for bout in b.outputs) or
any(depends((ainp.owner, b)) for ainp in a.inputs
if ainp.owner))
return depends
def make_dependence_cmp():
"""
Create a comparator to represent the dependence of nodes in a graph.
"""
depends = make_depends()
def dependence(a, b):
"""
A cmp function for nodes in a graph - does a depend on b?
Returns
-------
int
Positive number if a depends on b, negative number
if b depends on a, 0 otherwise.
"""
if depends((a, b)):
return 1
if depends((b, a)):
return -1
return 0
return dependence
def reverse_dict(d):
"""
Reverses direction of dependence dict.
Notes
-----
dict order is not deterministic. As we iterate on the
input dict, it makes the output of this function depend on the
dict order. So this function output order should be considered
as undeterministic.
Examples
--------
>>> d = {'a': (1, 2), 'b': (2, 3), 'c':()}
>>> reverse_dict(d)
{1: ('a',), 2: ('a', 'b'), 3: ('b',)}
"""
result = {}
for key in d:
for val in d[key]:
result[val] = result.get(val, tuple()) + (key, )
return result
def _toposort(edges):
"""
Topological sort algorithm by Kahn [1] - O(nodes + vertices).
Parameters
----------
edges
A dict of the form {a: {b, c}} where b and c depend on a.
Returns
-------
L : list
An ordered list of nodes that satisfy the dependencies of edges.
Closely follows the wikipedia page [2]
References
----------
[1] Kahn, Arthur B. (1962), "Topological sorting of large networks",
Communications of the ACM
[2] http://en.wikipedia.org/wiki/Toposort#Algorithms
Examples
--------
>>> _toposort({1: {2, 3}, 2: (3, )})
[1, 2, 3]
"""
incoming_edges = reverse_dict(edges)
incoming_edges = dict((k, set(val))
for k, val in iteritems(incoming_edges))
S = set((v for v in edges if v not in incoming_edges))
L = []
while S:
n = S.pop()
L.append(n)
for m in edges.get(n, ()):
assert n in incoming_edges[m]
incoming_edges[m].remove(n)
if not incoming_edges[m]:
S.add(m)
if any(incoming_edges.get(v, None) for v in edges):
raise ValueError("Input has cycles")
return L
def posort(l, *cmps):
"""
Partially ordered sort with multiple comparators.
Given a list of comparators, orders the elements in l so that the
comparators are satisfied as much as possible giving precedence to
earlier comparators.
Parameters
----------
l
An iterable of nodes in a graph.
cmps
A sequence of comparator functions that describe which nodes should
come before which others.
Returns
-------
list
A list of nodes which satisfy the comparators as much as possible.
Notes
-----
Implemented with _toposort.
Examples
--------
>>> lower_tens = lambda a, b: a/10 - b/10 # prefer lower numbers div 10
>>> prefer evens = lambda a, b: a%2 - b%2 # prefer even numbers
>>> posort(list(range(20)), lower_tens, prefer_evens)
[0, 8, 2, 4, 6, 1, 3, 5, 7, 9, 16, 18, 10, 12, 14, 17, 19, 11, 13, 15]
"""
comes_before = dict((a, set()) for a in l)
comes_after = dict((a, set()) for a in l)
def add_links(a, b): # b depends on a
comes_after[a].add(b)
comes_after[a].update(comes_after[b])
for c in comes_before[a]:
comes_after[c].update(comes_after[a])
comes_before[b].add(a)
comes_before[b].update(comes_before[a])
for c in comes_after[b]:
comes_before[c].update(comes_before[b])
def check():
"""
Tests for cycles in manufactured edges.
"""
for a in l:
for b in l:
assert not(b in comes_after[a] and a in comes_after[b])
for cmp_fn in cmps:
for a in l:
for b in l:
if cmp_fn(a, b) < 0: # a wants to come before b
# if this wouldn't cause a cycle and isn't already known
if b not in comes_before[a] and b not in comes_after[a]:
add_links(a, b)
# check() # debug code
return _toposort(comes_after)
def sort_apply_nodes(inputs, outputs, cmps):
"""
Order a graph of apply nodes according to a list of comparators.
The following example sorts first by dependence of nodes (this is a
topological sort) and then by lexicographical ordering (nodes that start
with 'E' come before nodes that start with 'I' if there is no dependence.
Examples
--------
>>> from theano.gof.graph import sort_apply_nodes, dependence
>>> from theano.tensor import matrix, dot
>>> x = matrix('x')
>>> y = dot(x*2, x+1)
>>> str_cmp = lambda a, b: cmp(str(a), str(b)) # lexicographical sort
>>> sort_apply_nodes([x], [y], cmps=[dependence, str_cmp])
[Elemwise{add,no_inplace}(x, InplaceDimShuffle{x,x}.0),
InplaceDimShuffle{x,x}(TensorConstant{2}),
Elemwise{mul,no_inplace}(x, InplaceDimShuffle{x,x}.0),
InplaceDimShuffle{x,x}(TensorConstant{1}),
dot(Elemwise{mul,no_inplace}.0, Elemwise{add,no_inplace}.0)]
"""
return posort(list_of_nodes(inputs, outputs), *cmps)
def sort_schedule_fn(*cmps):
"""
Make a schedule function from comparators.
See Also
--------
sort_apply_nodes
"""
dependence = make_dependence_cmp()
cmps = (dependence,) + cmps
def schedule(fgraph):
"""
Order nodes in a FunctionGraph.
"""
return sort_apply_nodes(fgraph.inputs, fgraph.outputs, cmps)
return schedule
def key_to_cmp(key):
"""
comparator function based on "key" function
"""
def key_cmp(a, b):
return cmp(key(a), key(b))
return key_cmp
|