1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
/*
Most of the code in this module has been taken from Guile source code.
This file is distributed under GNU Lesser General Public License.
*/
#include <libguile.h>
#include <math.h>
#include <assert.h>
#include "gc/gc.h"
#define ASSERT(x) assert(x)
#ifndef MINI_GMP_LIMB_TYPE
#define MINI_GMP_LIMB_TYPE long
#endif
typedef unsigned MINI_GMP_LIMB_TYPE mp_limb_t;
typedef long mp_size_t;
typedef unsigned long mp_bitcnt_t;
typedef mp_limb_t *mp_ptr;
typedef const mp_limb_t *mp_srcptr;
struct scm_bignum
{
scm_t_bits tag;
/* FIXME: In Guile 3.2, replace this union with just a "size" member.
Digits are always allocated inline. */
union {
mpz_t mpz;
struct {
int zero;
int size;
mp_limb_t *limbs;
} z;
} u;
mp_limb_t limbs[];
};
#define NLIMBS_MAX (SSIZE_MAX / sizeof(mp_limb_t))
static SCM _scm_i_normbig (SCM);
static struct scm_bignum *
allocate_bignum (size_t nlimbs)
{
ASSERT (nlimbs <= (size_t)INT_MAX);
ASSERT (nlimbs <= NLIMBS_MAX);
size_t size = sizeof (struct scm_bignum) + nlimbs * sizeof(mp_limb_t);
struct scm_bignum *z = scm_gc_malloc_pointerless (size, "bignum");
z->tag = scm_tc16_big;
z->u.z.zero = 0;
z->u.z.size = nlimbs;
z->u.z.limbs = z->limbs;
// _mp_alloc == 0 means GMP will never try to free this memory.
ASSERT (z->u.mpz[0]._mp_alloc == 0);
// Our "size" field should alias the mpz's _mp_size field.
ASSERT (z->u.mpz[0]._mp_size == nlimbs);
// Limbs are always allocated inline.
ASSERT (z->u.mpz[0]._mp_d == z->limbs);
// z->limbs left uninitialized.
return z;
}
static struct scm_bignum *
negate_bignum (struct scm_bignum *z)
{
z->u.z.size = -z->u.z.size;
return z;
}
static inline unsigned long
long_magnitude (long l)
{
unsigned long mag = l;
return l < 0 ? ~mag + 1 : mag;
}
static struct scm_bignum *
make_bignum_0 (void)
{
return allocate_bignum (0);
}
static struct scm_bignum *
make_bignum_1 (int is_negative, mp_limb_t limb)
{
struct scm_bignum *z = allocate_bignum (1);
z->limbs[0] = limb;
return is_negative ? negate_bignum(z) : z;
}
static inline SCM
scm_from_bignum (struct scm_bignum *x)
{
return SCM_PACK (x);
}
static struct scm_bignum *
ulong_to_bignum (unsigned long u)
{
return u == 0 ? make_bignum_0 () : make_bignum_1 (0, u);
};
static struct scm_bignum *
long_to_bignum (long i)
{
if (i > 0)
return ulong_to_bignum (i);
return i == 0 ? make_bignum_0 () : make_bignum_1 (1, long_magnitude (i));
};
static SCM
long_to_scm (long i)
{
if (SCM_FIXABLE (i))
return SCM_I_MAKINUM (i);
return scm_from_bignum (long_to_bignum (i));
}
static mp_limb_t*
bignum_limbs (struct scm_bignum *z)
{
// FIXME: In the future we can just return z->limbs.
return z->u.z.limbs;
}
static struct scm_bignum *
make_bignum_from_mpz (mpz_srcptr mpz)
{
size_t nlimbs = mpz_size (mpz);
struct scm_bignum *ret = allocate_bignum (nlimbs);
mpn_copyi (bignum_limbs (ret), mpz_limbs_read (mpz), nlimbs);
return mpz_sgn (mpz) < 0 ? negate_bignum (ret) : ret;
}
static SCM
take_mpz (mpz_ptr mpz)
{
SCM ret;
if (mpz_fits_slong_p (mpz))
ret = long_to_scm (mpz_get_si (mpz));
else
ret = scm_from_bignum (make_bignum_from_mpz (mpz));
mpz_clear (mpz);
return ret;
}
SCM
scm_integer_from_double (double val)
{
if (!isfinite (val))
scm_out_of_range ("inexact->exact", scm_from_double (val));
if (((double) INT64_MIN) <= val && val <= ((double) INT64_MAX))
return scm_from_int64 (val);
mpz_t result;
mpz_init_set_d (result, val);
return take_mpz (result);
}
static int convert_to_integer( SCM x )
{
if( SCM_LIKELY( SCM_I_INUMP( x ) ) )
{
return SCM_I_INUM( x );
}
else if( SCM_BIGP( x ) )
{
SCM xNormed = _scm_i_normbig( x );
if( SCM_I_INUMP( xNormed ) )
{
return SCM_I_INUM( xNormed );
}
else
{
scm_wrong_type_arg_msg( "convert_to_integer", SCM_ARG1, x,
"inum");
}
}
else
{
scm_wrong_type_arg_msg( "convert_to_integer", SCM_ARG1, x,
"inum");
}
}
static SCM
_scm_i_normbig (SCM b)
{
/* convert a big back to a fixnum if it'll fit */
/* presume b is a bignum */
if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
{
scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
if (SCM_FIXABLE (val))
b = SCM_I_MAKINUM (val);
}
return b;
}
#define MAKE_WRAPPER(name, func) \
SCM name( SCM x ) \
{ \
return scm_from_double( func ( scm_to_double( x ) ) ); \
}
#define MAKE_WRAPPER2(name, func) \
SCM name( SCM x1, SCM x2 ) \
{ \
return scm_from_double( func ( scm_to_double( x1 ), \
scm_to_double( x2 ) ) ); \
}
static SCM gl_b_fast_fma = SCM_UNSPECIFIED;
static SCM gl_i_ilogb0 = SCM_UNSPECIFIED;
static SCM gl_i_ilogbnan = SCM_UNSPECIFIED;
static SCM gl_i_nan = SCM_UNSPECIFIED;
static SCM gl_i_infinite = SCM_UNSPECIFIED;
static SCM gl_i_zero = SCM_UNSPECIFIED;
static SCM gl_i_subnormal = SCM_UNSPECIFIED;
static SCM gl_i_normal = SCM_UNSPECIFIED;
SCM is_integer_wrapper( SCM x )
{
return ( SCM_I_INUMP( x ) || SCM_BIGP( x ) ) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM is_real_wrapper( SCM x )
{
return SCM_REALP( x ) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM real_to_integer_wrapper( SCM x )
{
if( SCM_LIKELY( SCM_REALP( x ) ) )
{
double r = SCM_REAL_VALUE( x );
if( r == floor( r ) )
{
return scm_integer_from_double( r );
}
else
{
scm_misc_error(
"real_to_integer_wrapper", "argument not integer valued", SCM_EOL
);
}
}
else
{
scm_wrong_type_arg_msg( "real_to_integer_wrapper", SCM_ARG1, x, "real");
}
}
MAKE_WRAPPER( r_round_wrapper, round )
MAKE_WRAPPER( r_trunc_wrapper, trunc )
MAKE_WRAPPER( r_floor_wrapper, floor )
MAKE_WRAPPER( r_ceil_wrapper, ceil )
MAKE_WRAPPER( r_sqrt_wrapper, sqrt )
MAKE_WRAPPER( r_sin_wrapper, sin )
MAKE_WRAPPER( r_cos_wrapper, cos )
MAKE_WRAPPER( r_tan_wrapper, tan )
MAKE_WRAPPER( r_asin_wrapper, asin )
MAKE_WRAPPER( r_acos_wrapper, acos )
MAKE_WRAPPER( r_atan_wrapper, atan )
MAKE_WRAPPER( r_exp_wrapper, exp )
MAKE_WRAPPER( r_log_wrapper, log )
MAKE_WRAPPER( r_log10_wrapper, log10 )
MAKE_WRAPPER( r_sinh_wrapper, sinh )
MAKE_WRAPPER( r_cosh_wrapper, cosh )
MAKE_WRAPPER( r_tanh_wrapper, tanh )
MAKE_WRAPPER( r_asinh_wrapper, asinh )
MAKE_WRAPPER( r_acosh_wrapper, acosh )
MAKE_WRAPPER( r_atanh_wrapper, atanh )
MAKE_WRAPPER2( r_expt_wrapper, pow )
MAKE_WRAPPER2( r_atan2_wrapper, atan2 )
#ifdef STANDARD_MATH
MAKE_WRAPPER2( fmod_wrapper, fmod )
MAKE_WRAPPER2( r_remainder_wrapper, remainder );
MAKE_WRAPPER2( fmin_wrapper, fmin )
MAKE_WRAPPER2( fmax_wrapper, fmax )
MAKE_WRAPPER2( fdim_wrapper, fdim )
MAKE_WRAPPER( r_exp2_wrapper, exp2 )
MAKE_WRAPPER( r_expm1_wrapper, expm1 )
MAKE_WRAPPER( r_log2_wrapper, log2 )
MAKE_WRAPPER( r_log1p_wrapper, log1p )
MAKE_WRAPPER( logb_wrapper, logb )
MAKE_WRAPPER( r_cbrt_wrapper, cbrt )
MAKE_WRAPPER2( r_hypot_wrapper, hypot )
MAKE_WRAPPER( r_erf_wrapper, erf )
MAKE_WRAPPER( r_erfc_wrapper, erfc )
MAKE_WRAPPER( r_lgamma_wrapper, lgamma )
MAKE_WRAPPER( r_tgamma_wrapper, tgamma )
MAKE_WRAPPER( r_nearbyint_wrapper, nearbyint )
MAKE_WRAPPER( rint_wrapper, rint )
MAKE_WRAPPER2( r_nextafter_wrapper, nextafter )
MAKE_WRAPPER2( r_copysign_wrapper, copysign )
#endif
#ifdef STANDARD_MATH
SCM frexp_wrapper( SCM x )
{
double r = scm_to_double( x );
int iExp = 0;
double rFraction = frexp( r, &iExp );
SCM xExp = scm_from_signed_integer( iExp );
return scm_cons( scm_from_double( rFraction ), xExp );
}
#endif
#ifdef STANDARD_MATH
SCM ldexp_wrapper( SCM x1, SCM x2 )
{
double rBase = scm_to_double( x1 );
int iExp = convert_to_integer( x2 );
return scm_from_double( ldexp( rBase, iExp ) );
}
#endif
#ifdef STANDARD_MATH
SCM modf_wrapper( SCM x )
{
double r = scm_to_double( x );
double rInt = 0;
double rFraction = modf( r, &rInt );
return scm_cons( scm_from_double( rFraction ), scm_from_double( rInt ) );
}
#endif
#ifdef STANDARD_MATH
SCM fma_wrapper( SCM x1, SCM x2, SCM x3 )
{
return scm_from_double( fma( scm_to_double( x1 ),
scm_to_double( x2 ),
scm_to_double( x3 ) ) );
}
#endif
#ifdef STANDARD_MATH
SCM fast_fma_wrapper( void )
{
return gl_b_fast_fma;
}
#endif
#ifdef STANDARD_MATH
SCM ilogb_wrapper( SCM x )
{
int iResult = ilogb( scm_to_double( x ) );
return scm_from_signed_integer( iResult );
}
#endif
#ifdef STANDARD_MATH
SCM ilogb0_wrapper( void )
{
return gl_i_ilogb0;
}
#endif
#ifdef STANDARD_MATH
SCM ilogbnan_wrapper( void )
{
return gl_i_ilogbnan;
}
#endif
#ifdef STANDARD_MATH
SCM fpclassify_wrapper( SCM x )
{
int iResult = fpclassify( scm_to_double( x ) );
return scm_from_signed_integer( iResult );
}
#endif
#ifdef STANDARD_MATH
SCM fpclassify_nan_wrapper( void )
{
return gl_i_nan;
}
#endif
#ifdef STANDARD_MATH
SCM fpclassify_infinite_wrapper( void )
{
return gl_i_infinite;
}
#endif
#ifdef STANDARD_MATH
SCM fpclassify_zero_wrapper( void )
{
return gl_i_zero;
}
#endif
#ifdef STANDARD_MATH
SCM fpclassify_subnormal_wrapper( void )
{
return gl_i_subnormal;
}
#endif
#ifdef STANDARD_MATH
SCM fpclassify_normal_wrapper( void )
{
return gl_i_normal;
}
#endif
#ifdef STANDARD_MATH
SCM r_isnormal_wrapper( SCM x )
{
return isnormal( scm_to_double( x ) ) ? SCM_BOOL_T : SCM_BOOL_F;
}
#endif
#ifdef STANDARD_MATH
SCM r_signbit_wrapper( SCM x )
{
return ( signbit( scm_to_double( x ) ) != 0 ) ? SCM_INUM1 : SCM_INUM0;
}
#endif
#ifdef POSIX_MATH
MAKE_WRAPPER( r_j0_wrapper, j0 )
MAKE_WRAPPER( r_j1_wrapper, j1 )
MAKE_WRAPPER( r_y0_wrapper, y0 )
MAKE_WRAPPER( r_y1_wrapper, y1 )
#endif
#ifdef POSIX_MATH
SCM r_jn_wrapper( SCM xN, SCM xArg )
{
int i = convert_to_integer( xN );
double r = scm_to_double( xArg );
return scm_from_double( jn( i, r ) );
}
#endif
#ifdef POSIX_MATH
SCM r_yn_wrapper( SCM xN, SCM xArg )
{
int i = convert_to_integer( xN );
double r = scm_to_double( xArg );
return scm_from_double( yn( i, r ) );
}
#endif
void init_theme_d_support( void )
{
#ifdef STANDARD_MATH
#ifdef FP_FAST_FMA
gl_b_fast_fma = SCM_BOOL_T;
#else
gl_b_fast_fma = SCM_BOOL_F;
#endif
gl_i_ilogb0 = scm_from_signed_integer( FP_ILOGB0 );
gl_i_ilogbnan = scm_from_signed_integer( FP_ILOGBNAN );
gl_i_nan = scm_from_signed_integer( FP_NAN );
gl_i_infinite = scm_from_signed_integer( FP_INFINITE );
gl_i_zero = scm_from_signed_integer( FP_ZERO );
gl_i_subnormal = scm_from_signed_integer( FP_SUBNORMAL );
gl_i_normal = scm_from_signed_integer( FP_NORMAL );
#endif
scm_c_define_gsubr( "is-integer?", 1, 0, 0, is_integer_wrapper );
scm_c_define_gsubr( "is-real?", 1, 0, 0, is_real_wrapper );
scm_c_define_gsubr( "real->integer", 1, 0, 0, real_to_integer_wrapper );
scm_c_define_gsubr( "r-round", 1, 0, 0, r_round_wrapper );
scm_c_define_gsubr( "r-truncate", 1, 0, 0, r_trunc_wrapper );
scm_c_define_gsubr( "r-floor", 1, 0, 0, r_floor_wrapper );
scm_c_define_gsubr( "r-ceiling", 1, 0, 0, r_ceil_wrapper );
scm_c_define_gsubr( "r-sqrt", 1, 0, 0, r_sqrt_wrapper );
scm_c_define_gsubr( "r-sin", 1, 0, 0, r_sin_wrapper );
scm_c_define_gsubr( "r-cos", 1, 0, 0, r_cos_wrapper );
scm_c_define_gsubr( "r-tan", 1, 0, 0, r_tan_wrapper );
scm_c_define_gsubr( "r-asin", 1, 0, 0, r_asin_wrapper );
scm_c_define_gsubr( "r-acos", 1, 0, 0, r_acos_wrapper );
scm_c_define_gsubr( "r-atan", 1, 0, 0, r_atan_wrapper );
scm_c_define_gsubr( "r-exp", 1, 0, 0, r_exp_wrapper );
scm_c_define_gsubr( "r-log", 1, 0, 0, r_log_wrapper );
scm_c_define_gsubr( "r-log10", 1, 0, 0, r_log10_wrapper );
scm_c_define_gsubr( "r-sinh", 1, 0, 0, r_sinh_wrapper );
scm_c_define_gsubr( "r-cosh", 1, 0, 0, r_cosh_wrapper );
scm_c_define_gsubr( "r-tanh", 1, 0, 0, r_tanh_wrapper );
scm_c_define_gsubr( "r-asinh", 1, 0, 0, r_asinh_wrapper );
scm_c_define_gsubr( "r-acosh", 1, 0, 0, r_acosh_wrapper );
scm_c_define_gsubr( "r-atanh", 1, 0, 0, r_atanh_wrapper );
scm_c_define_gsubr( "r-expt", 2, 0, 0, r_expt_wrapper );
scm_c_define_gsubr( "r-atan2", 2, 0, 0, r_atan2_wrapper );
#ifdef STANDARD_MATH
scm_c_define_gsubr( "fmod", 2, 0, 0, fmod_wrapper );
scm_c_define_gsubr( "r-remainder", 2, 0, 0, r_remainder_wrapper );
scm_c_define_gsubr( "fma", 3, 0, 0, fma_wrapper );
scm_c_define_gsubr( "fast-fma?", 0, 0, 0, fast_fma_wrapper );
scm_c_define_gsubr( "fmin", 2, 0, 0, fmin_wrapper );
scm_c_define_gsubr( "fmax", 2, 0, 0, fmax_wrapper );
scm_c_define_gsubr( "fdim", 2, 0, 0, fdim_wrapper );
scm_c_define_gsubr( "r-exp2", 1, 0, 0, r_exp2_wrapper );
scm_c_define_gsubr( "r-expm1", 1, 0, 0, r_expm1_wrapper );
scm_c_define_gsubr( "r-log2", 1, 0, 0, r_log2_wrapper );
scm_c_define_gsubr( "r-log1p", 1, 0, 0, r_log1p_wrapper );
scm_c_define_gsubr( "logb", 1, 0, 0, logb_wrapper );
scm_c_define_gsubr( "ilogb", 1, 0, 0, ilogb_wrapper );
scm_c_define_gsubr( "ilogb0", 0, 0, 0, ilogb0_wrapper );
scm_c_define_gsubr( "ilogbnan", 0, 0, 0, ilogbnan_wrapper );
scm_c_define_gsubr( "r-cbrt", 1, 0, 0, r_cbrt_wrapper );
scm_c_define_gsubr( "r-hypot", 2, 0, 0, r_hypot_wrapper );
scm_c_define_gsubr( "r-erf", 1, 0, 0, r_erf_wrapper );
scm_c_define_gsubr( "r-erfc", 1, 0, 0, r_erfc_wrapper );
scm_c_define_gsubr( "r-lgamma", 1, 0, 0, r_lgamma_wrapper );
scm_c_define_gsubr( "r-tgamma", 1, 0, 0, r_tgamma_wrapper );
scm_c_define_gsubr( "r-nearbyint", 1, 0, 0, r_nearbyint_wrapper );
scm_c_define_gsubr( "rint", 1, 0, 0, rint_wrapper );
scm_c_define_gsubr( "frexp", 1, 0, 0, frexp_wrapper );
scm_c_define_gsubr( "ldexp", 2, 0, 0, ldexp_wrapper );
scm_c_define_gsubr( "modf", 1, 0, 0, modf_wrapper );
scm_c_define_gsubr( "r-nextafter", 2, 0, 0, r_nextafter_wrapper );
scm_c_define_gsubr( "r-copysign", 2, 0, 0, r_copysign_wrapper );
scm_c_define_gsubr( "fpclassify", 1, 0, 0, fpclassify_wrapper );
scm_c_define_gsubr( "fpclassify-nan", 0, 0, 0, fpclassify_nan_wrapper );
scm_c_define_gsubr( "fpclassify-infinite", 0, 0, 0,
fpclassify_infinite_wrapper );
scm_c_define_gsubr( "fpclassify-zero", 0, 0, 0, fpclassify_zero_wrapper );
scm_c_define_gsubr( "fpclassify-subnormal", 0, 0, 0,
fpclassify_subnormal_wrapper );
scm_c_define_gsubr( "fpclassify-normal", 0, 0, 0,
fpclassify_normal_wrapper );
scm_c_define_gsubr( "r-isnormal?", 1, 0, 0, r_isnormal_wrapper );
scm_c_define_gsubr( "r-signbit", 1, 0, 0, r_signbit_wrapper );
#endif
#ifdef POSIX_MATH
scm_c_define_gsubr( "r-j0", 1, 0, 0, r_j0_wrapper );
scm_c_define_gsubr( "r-j1", 1, 0, 0, r_j1_wrapper );
scm_c_define_gsubr( "r-jn", 2, 0, 0, r_jn_wrapper );
scm_c_define_gsubr( "r-y0", 1, 0, 0, r_y0_wrapper );
scm_c_define_gsubr( "r-y1", 1, 0, 0, r_y1_wrapper );
scm_c_define_gsubr( "r-yn", 2, 0, 0, r_yn_wrapper );
#endif
}
|