1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
;; -*-theme-d-*-
;; Copyright (C) 2018, 2021 Tommi Höynälänmaa
;; Distributed under GNU Lesser General Public License version 3,
;; see file doc/LGPL-3.
(define-body (standard-library extra-math)
;; We trust libthemedsupport so we can use unchecked-prim-proc here.
(add-method fmod
(unchecked-prim-proc fmod (<real> <real>) <real> pure))
(add-method r-remainder
(unchecked-prim-proc r-remainder (<real> <real>) <real> pure))
(add-method fma
(unchecked-prim-proc fma (<real> <real> <real>) <real> pure))
(add-method fast-fma?
(unchecked-prim-proc fast-fma? () <boolean> pure))
(add-method fmin
(unchecked-prim-proc fmin (<real> <real>) <real> pure))
(add-method fmax
(unchecked-prim-proc fmax (<real> <real>) <real> pure))
(add-method fdim
(unchecked-prim-proc fdim (<real> <real>) <real> pure))
(add-method r-exp2
(unchecked-prim-proc r-exp2 (<real>) <real> pure))
(add-method r-expm1
(unchecked-prim-proc r-expm1 (<real>) <real> pure))
(add-method r-log2
(unchecked-prim-proc r-log2 (<real>) <real> pure))
(add-method r-log1p
(unchecked-prim-proc r-log1p (<real>) <real> pure))
(add-method logb
(unchecked-prim-proc logb (<real>) <real> pure))
(add-method ilogb
(unchecked-prim-proc ilogb (<real>) <integer> pure))
(add-method ilogb0
(unchecked-prim-proc ilogb0 () <integer> pure))
(add-method ilogbnan
(unchecked-prim-proc ilogbnan () <integer> pure))
(add-method r-cbrt
(unchecked-prim-proc r-cbrt (<real>) <real> pure))
(add-method r-hypot
(unchecked-prim-proc r-hypot (<real> <real>) <real> pure))
(add-method r-erf
(unchecked-prim-proc r-erf (<real>) <real> pure))
(add-method r-erfc
(unchecked-prim-proc r-erfc (<real>) <real> pure))
(add-method r-lgamma
(unchecked-prim-proc r-lgamma (<real>) <real> pure))
(add-method r-tgamma
(unchecked-prim-proc r-tgamma (<real>) <real> pure))
(add-method r-nearbyint
(unchecked-prim-proc r-nearbyint (<real>) <real> pure))
(add-method rint
(unchecked-prim-proc rint (<real>) <real> pure))
(add-method frexp
(unchecked-prim-proc frexp (<real>) (:pair <real> <integer>) pure))
(add-method ldexp
(unchecked-prim-proc ldexp (<real> <integer>) <real> pure))
(add-method modf
(unchecked-prim-proc modf (<real>) (:pair <real> <real>) pure))
(add-method r-nextafter
(unchecked-prim-proc r-nextafter (<real> <real>) <real> pure))
(add-method r-copysign
(unchecked-prim-proc r-copysign (<real> <real>) <real> pure))
(add-method fpclassify
(unchecked-prim-proc fpclassify (<real>) <integer> pure))
(add-method fpclassify-nan
(unchecked-prim-proc fpclassify-nan () <integer> pure))
(add-method fpclassify-infinite
(unchecked-prim-proc fpclassify-infinite () <integer> pure))
(add-method fpclassify-zero
(unchecked-prim-proc fpclassify-zero () <integer> pure))
(add-method fpclassify-subnormal
(unchecked-prim-proc fpclassify-subnormal () <integer> pure))
(add-method fpclassify-normal
(unchecked-prim-proc fpclassify-normal () <integer> pure))
(add-method r-isnormal?
(unchecked-prim-proc r-isnormal? (<real>) <boolean> pure))
(add-method r-signbit
(unchecked-prim-proc r-signbit (<real>) <integer> pure))
(define-simple-method r-log2-neg (((r <real>)) <complex> pure)
(complex (r-log2 (r-abs r)) gl-r-pi/ln2))
(define-simple-method i-cbrt (((i <integer>)) (:union <real> <integer>) pure)
(let ((r-result (r-cbrt (integer->real i))))
(if (integer-float? r-result) (real->integer r-result) r-result)))
(define-simple-method rat-cbrt (((rat <rational>))
(:union <real> <rational> <integer>) pure)
(let ((r-numer (r-cbrt (integer->real (numerator rat))))
(r-denom (r-cbrt (integer->real (denominator rat)))))
(if (and (integer-float? r-numer) (integer-float? r-denom))
(let ((i-numer (real->integer r-numer))
(i-denom (real->integer r-denom)))
(if (equal? (remainder i-numer i-denom) 0)
(quotient i-numer i-denom)
(rational i-numer i-denom)))
(/ r-numer r-denom))))
(define-simple-virtual-method exp2 (((nr <number>)) <number> pure)
(raise-simple 'exp2:dispatch-error))
(define-simple-virtual-method exp2 (((nr <real-number>)) <real-number> pure)
(raise-simple 'exp2:dispatch-error))
(include-virtual-methods exp2 c-exp2)
(include-virtual-methods exp2 r-exp2)
(define-simple-virtual-method exp2 (((rat <rational>)) <real-number> pure)
(let* ((rat-s (simplify-rational rat))
(i-numer (numerator rat-s))
(i-denom (denominator rat-s)))
(if (equal? i-denom 1)
(i-expt 2 i-numer)
(r-exp2 (rational->real rat)))))
(define-simple-virtual-method exp2 (((i <integer>)) <rational-number> pure)
(i-expt 2 i))
(define-simple-virtual-method expm1 (((nr <number>)) <number> pure)
(raise-simple 'expm1:dispatch-error))
(define-simple-virtual-method expm1 (((nr <real-number>)) <real-number> pure)
(raise-simple 'expm1:dispatch-error))
(define-simple-virtual-method expm1 (((cx <complex>)) <complex> pure)
(- (c-exp cx) 1.0))
(include-virtual-methods expm1 r-expm1)
(define-simple-virtual-method expm1 (((rat <rational>))
(:union <real> <integer>)
pure)
(if (rat-zero? rat)
0
(r-expm1 (rational->real rat))))
(define-simple-virtual-method expm1 (((i <integer>)) (:union <real> <integer>)
pure)
(if (equal? i 0)
0
(r-expm1 (integer->real i))))
(define-simple-virtual-method log2 (((nr <number>)) <number> pure)
(raise-simple 'log2:dispatch-error))
(define-simple-virtual-method log2 (((cx <complex>)) <complex> pure)
(let ((r-abs-value (c-abs cx))
(r-phase (c-angle cx)))
(create <complex> (r-log2 r-abs-value) (/ r-phase gl-r-ln2))))
(define-simple-virtual-method log2 (((r <real>)) (:union <real> <complex>)
pure)
(if (>= r 0.0)
(r-log2 r)
(r-log2-neg r)))
(define-simple-virtual-method log2 (((rat <rational>))
(:union <integer> <real> <complex>) pure)
(cond
((rat-zero? rat) (raise-numerical-overflow 'log2))
((rat-one? rat) 0)
((> rat 0)
(match-type (rat-log2-exact rat)
((<null>) (r-log2 (rational->real rat)))
((i2 <integer>) i2)))
(else (r-log2-neg (rational->real rat)))))
(define-simple-virtual-method log2 (((i <integer>))
(:union <integer> <real> <complex>) pure)
(cond
((= i 0) (raise-numerical-overflow 'log2))
((= i 1) 0)
((> i 0)
(match-type (i-log2-exact i)
((<null>) (r-log2 (integer->real i)))
((i2 <integer>) i2)))
(else (r-log2-neg (integer->real i)))))
(define-simple-virtual-method log1p (((nr <number>)) <number> pure)
(raise-simple 'log1p:dispatch-error))
(define-simple-virtual-method log1p (((cx <complex>)) <complex> pure)
(c-log (+ 1 cx)))
(define-simple-virtual-method log1p (((r <real>))
(:union <complex> <real>) pure)
(cond
((> r -1.0) (r-log1p r))
((equal? r -1.0) (neg-inf))
((< r -1.0) (r-log-neg (+ 1.0 r)))
(else (nan))))
(define-simple-virtual-method log1p (((rat <rational>))
(:union <complex> <real> <integer>) pure)
(cond
((> rat -1) (r-log1p (rational->real rat)))
((equal? rat -1) (raise-numerical-overflow 'log1p))
((< rat -1) (r-log-neg (rational->real (+ 1 rat))))
(else
;; We should never arrive here.
(raise-simple 'log1p:internal-error))))
(define-simple-virtual-method log1p (((i <integer>))
(:union <complex> <real> <integer>) pure)
(cond
((> i -1) (r-log1p (integer->real i)))
((equal? i -1) (raise-numerical-overflow 'log1p))
((< i -1) (r-log-neg (integer->real (+ 1 i))))
(else
;; We should never arrive here.
(raise-simple 'log1p:internal-error))))
(define-simple-virtual-method cbrt (((nr <number>)) <number> pure)
(raise-simple 'cbrt:dispatch-error))
(define-simple-virtual-method cbrt (((r <real-number>)) <real-number> pure)
(raise-simple 'cbrt:dispatch-error))
(define-simple-virtual-method cbrt (((cx <complex>)) <complex> pure)
(let ((r-abs (c-abs cx))
(r-angle (c-angle cx)))
(make-polar (r-cbrt r-abs) (/ r-angle 3))))
(include-virtual-methods cbrt r-cbrt)
(include-virtual-methods cbrt rat-cbrt)
(include-virtual-methods cbrt i-cbrt)
(define-simple-virtual-method hypot (((r1 <real-number>) (r2 <real-number>))
<real-number> pure)
(raise-simple 'hypot:dispatch-error))
(include-virtual-methods hypot r-hypot)
(define-simple-virtual-method hypot (((r1 <real>) (rat2 <rational>)) <real>
pure)
(r-hypot r1 (rational->real rat2)))
(define-simple-virtual-method hypot (((r1 <real>) (i2 <integer>)) <real> pure)
(r-hypot r1 (integer->real i2)))
(define-simple-virtual-method hypot (((rat1 <rational>) (r2 <real>)) <real>
pure)
(r-hypot (rational->real rat1) r2))
(define-simple-virtual-method hypot (((rat1 <rational>) (rat2 <rational>))
<real-number> pure)
(rat-sqrt (+ (square rat1) (square rat2))))
(define-simple-virtual-method hypot (((rat1 <rational>) (i2 <integer>))
<real-number> pure)
(rat-sqrt (+ (square rat1) (square i2))))
(define-simple-virtual-method hypot (((i1 <integer>) (r2 <real>)) <real> pure)
(r-hypot (integer->real i1) r2))
(define-simple-virtual-method hypot (((i1 <integer>) (rat2 <rational>))
<real-number> pure)
(rat-sqrt (+ (square i1) (square rat2))))
(define-simple-virtual-method hypot (((i1 <integer>) (i2 <integer>))
(:union <real> <integer>) pure)
(i-sqrt (+ (square i1) (square i2))))
(define-simple-virtual-method erf (((r <real-number>))
(:union <real> <integer>)
pure)
(raise-simple 'erf:dispatch-error))
(include-virtual-methods erf r-erf)
(define-simple-virtual-method erf (((rat <rational>))
(:union <real> <integer>)
pure)
(if (rat-zero? rat) 0 (r-erf (rational->real rat))))
(define-simple-virtual-method erf (((i <integer>)) (:union <real> <integer>)
pure)
(if (equal? i 0) 0 (r-erf (integer->real i))))
(define-simple-virtual-method erfc (((r <real-number>))
(:union <real> <integer>)
pure)
(raise-simple 'erfc:dispatch-error))
(include-virtual-methods erfc r-erfc)
(define-simple-virtual-method erfc (((rat <rational>))
(:union <real> <integer>)
pure)
(if (rat-zero? rat) 0 (r-erfc (rational->real rat))))
(define-simple-virtual-method erfc (((i <integer>)) (:union <real> <integer>)
pure)
(if (equal? i 0) 1 (r-erfc (integer->real i))))
(define-simple-virtual-method lgamma (((r <real-number>))
(:union <real> <integer>)
pure)
(raise-simple 'lgamma:dispatch-error))
(include-virtual-methods lgamma r-lgamma)
(define-simple-virtual-method lgamma (((rat <rational>))
(:union <real> <integer>)
pure)
(let* ((rat-s (simplify-rational rat))
(i-numer (numerator rat-s))
(i-denom (denominator rat-s)))
(if (and (equal? i-denom 1) (or (equal? i-numer 1) (equal? i-numer 2)))
0
(r-lgamma (rational->real rat-s)))))
(define-simple-virtual-method lgamma (((i <integer>))
(:union <real> <integer>)
pure)
(if (or (equal? i 1) (equal? i 2))
0
(r-lgamma (integer->real i))))
(define-simple-virtual-method tgamma (((r <real-number>))
(:union <real> <integer>)
pure)
(raise-simple 'tgamma:dispatch-error))
(include-virtual-methods tgamma r-tgamma)
(define-simple-virtual-method tgamma (((rat <rational>))
(:union <real> <integer>)
pure)
(let* ((rat-s (simplify-rational rat))
(i-numer (numerator rat-s))
(i-denom (denominator rat-s)))
(if (and (equal? i-denom 1) (>= i-numer 1))
(factorial (- i-numer 1))
(r-tgamma (rational->real rat-s)))))
(define-simple-virtual-method tgamma (((i <integer>))
(:union <real> <integer>)
pure)
(if (>= i 1)
(factorial (- i 1))
(r-tgamma (integer->real i)))))
|