1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
// -*- C++ -*-
//
// SpinorWaveFunction.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 2003-2011 Peter Richardson, Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_SpinorWaveFunction_H
#define ThePEG_SpinorWaveFunction_H
//
// This is the declaration of the SpinorWaveFunction class.
//
#include "WaveFunctionBase.h"
#include <ThePEG/Helicity/LorentzSpinor.h>
#include <ThePEG/Helicity/FermionSpinInfo.h>
#include <ThePEG/EventRecord/Particle.h>
#include <ThePEG/EventRecord/RhoDMatrix.h>
namespace ThePEG {
namespace Helicity {
/**
* Forward declaration of the SpinorBarWaveFunction class
*/
class SpinorBarWaveFunction;
/** \ingroup Helicity
* \author Peter Richardson
*
* The SpinorWaveFunction class is designed to store the wavefunction
* of a spinor in a form suitable for use in helicity amplitude calculations
* of the matrix element using a similar philosophy to the FORTRAN HELAS code.
*
* In addition to storing the spinor using the LorentzSpinor class
* it inherits from the WaveFunctionBase class to provide storage of
* the momentum and getParticleData for the fermion.
*
* This class also contains the code which does the actually calculation
* of the spinor for an external particle.
*
* When calculating the wavefunction the direction of the particle is used,
*
* \e i.e.
* - incoming calculates a \f$u\f$ spinor.
* - outgoing calculates a \f$v\f$ spinor.
*
* N.B. In our convention 0 is the \f$-\frac12\f$ helicity state and
* 1 is the \f$+\frac12\f$ helicity state
*
* @see WaveFunctionBase
* @see LorentzSpinor
* @see HelicityDefinitions
*/
class SpinorWaveFunction : public WaveFunctionBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Constructor, set the momentum and the components of the spinor.
* @param p The momentum.
* @param part The ParticleData pointer.
* @param s1 The first component
* @param s2 The second component
* @param s3 The third component
* @param s4 The fourth component
*/
SpinorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,complex<double> s1,
complex<double> s2,complex<double> s3,complex<double> s4)
: WaveFunctionBase(p,part), _wf(s1,s2,s3,s4)
{
assert(iSpin()==2);
}
/**
* Constructor, set the momentum and the wavefunction.
* @param p The momentum.
* @param part The ParticleData pointer.
* @param wave The wavefunction.
* @param dir The direction of the particle
*/
SpinorWaveFunction(const Lorentz5Momentum & p, tcPDPtr part,
const LorentzSpinor<double> & wave,
Direction dir=intermediate)
: WaveFunctionBase(p,part,dir), _wf(wave)
{
assert(iSpin()==2);
}
/**
* Constructor, set the momentum and the wavefunction.
* @param p The particle
* @param wave The wavefunction.
* @param dir The direction of the particle
*/
SpinorWaveFunction(const tPPtr & p, const LorentzSpinor<SqrtEnergy> & wave,
Direction dir=intermediate)
: WaveFunctionBase(p->momentum(), p->dataPtr(), dir), _wf(wave.Type())
{
assert(iSpin()==2);
for (unsigned int i=0; i<4; ++i)
_wf[i]=wave[i]*UnitRemoval::InvSqrtE;
}
/**
* Constructor, set the momentum, helicity, direction.
* @param p The momentum.
* @param part The ParticleData pointer.
* @param ihel The helicity (0,1 as described above.)
* @param dir The direction.
*/
SpinorWaveFunction(const Lorentz5Momentum & p,tcPDPtr part,
unsigned int ihel,
Direction dir)
: WaveFunctionBase(p,part,dir)
{
assert(iSpin()==2);
calculateWaveFunction(ihel);
}
/**
* Constructor, set the momentum, direction, zero the
* wavefunction.
* @param p The momentum.
* @param part The ParticleData pointer.
* @param dir The direction.
*/
SpinorWaveFunction(const Lorentz5Momentum & p,
tcPDPtr part,Direction dir)
: WaveFunctionBase(p,part,dir), _wf()
{
assert(iSpin()==2);
}
/**
* Default constructor.
*/
SpinorWaveFunction()
: WaveFunctionBase(), _wf()
{}
/**
* Special for spin correlations
*/
SpinorWaveFunction(vector<SpinorWaveFunction> & wave,
tPPtr part,Direction dir,bool time,bool=true) {
calculateWaveFunctions(wave,part,dir);
constructSpinInfo(wave,part,dir,time);
}
//@}
/**
* Access to the wavefunction and its components.
*/
//@{
/**
* Subscript operator for the wavefunction.
*/
complex<double> operator ()(int i) const {
assert(i>=0 &&i<=3);
return _wf(i);
}
/**
* Return wavefunction as LorentzSpinor<double>.
*/
const LorentzSpinor<double> & wave() const {return _wf;}
/**
* Return wavefunction as LorentzSpinor<SqrtEnergy>.
*/
LorentzSpinor<SqrtEnergy> dimensionedWave() const {return dimensionedWf();}
/**
* Get the first spin component component.
*/
complex<double> s1() const {return _wf.s1();}
/**
* Get the second spin component component.
*/
complex<double> s2() const {return _wf.s2();}
/**
* Get the third spin component component.
*/
complex<double> s3() const {return _wf.s3();}
/**
* Get the fourth spin component component.
*/
complex<double> s4() const {return _wf.s4();}
//@}
/**
* Take the conjugate of the spinor \f$u_c=C\bar{u}^T\f$. This operation
* transforms u-spinors to v-spinors and vice-versa and is required when
* dealing with majorana particles.
*/
void conjugate() {
_wf=_wf.conjugate();
}
/**
* Return the barred spinor
*/
SpinorBarWaveFunction bar();
/**
* Reset functions.
*/
//@{
/**
* Reset the helicity (calculates the new spinor).
* @param ihel The helicity (0,1 as described above.)
*/
void reset(unsigned int ihel) {
calculateWaveFunction(ihel);
}
//@}
public:
/**
* Perform the Lorentz transformation of the wave function
*/
void transform(const LorentzRotation & r) {
_wf.transform(r);
transformMomentum(r);
}
public:
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<LorentzSpinor<SqrtEnergy> > & waves,
tPPtr particle,Direction);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<SpinorWaveFunction> & waves,
tPPtr particle,Direction);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<LorentzSpinor<SqrtEnergy> > & waves,
RhoDMatrix & rho,
tPPtr particle,Direction);
/**
* Calculate the wavefunctions
*/
static void calculateWaveFunctions(vector<SpinorWaveFunction> & waves,
RhoDMatrix & rho,
tPPtr particle,Direction);
/**
* Construct the SpinInfo object
*/
static void constructSpinInfo(const vector<LorentzSpinor<SqrtEnergy> > & waves,
tPPtr part,Direction dir, bool time);
/**
* Construct the SpinInfo object
*/
static void constructSpinInfo(const vector<SpinorWaveFunction> & waves,
tPPtr part,Direction dir, bool time);
private:
/**
* Calcuate the wavefunction.
* @param ihel The helicity (0,1 as described above.)
*/
void calculateWaveFunction(unsigned int ihel);
private:
/**
* Storage of the Lorentz Spinor.
*/
LorentzSpinor<double> _wf;
/// Return wavefunction as LorentzSpinor<SqrtEnergy>
LorentzSpinor<SqrtEnergy> dimensionedWf() const {
LorentzSpinor<SqrtEnergy> temp(_wf.Type());
for (unsigned int i=0; i<4; ++i)
temp(i) = _wf(i)*UnitRemoval::SqrtE;
return temp;
}
};
}
}
#endif
|